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ABSTRACT - This paper presents a Petri net (PN) model for Connection Management
Services (CMS) of the Manufacturing Message Specification (MMS) which describes all
possible sequences of service primitives that can occur during establishment, maintenance
and termination of the connection and their relation at each service state. The PN model
enables a complete and unambiguous specification to be derived for CMS. P-invariants and
T-invariants analysis carried out on the connection PN provides useful information on the
CMS behavior and specification for its implementation. It is claimed that PNs may offer a
hierarchical mathematical description for the entire MMS protocol, a uniform representation
for various level of abstraction of MMS protocol and an analytical model for protocol

performance evaluation and analysis.
1. INTRODUCTION

The Manufacturing Message Specification (MMS) is an application layer protocol
(layer 7 of the ISO Basic Reference model for Open Systems Interconnection [ISO/IS
7498]) designed to facilitate messaging on a manufacturing floor [ISO/DIS 9506]. MMS is
the modernized and accepted version of the Manufacturing Message Format Specification
(MMEFS) of the Manufacturing Automation Protocol (MAP) version 2.1 [McGuffin, 1987].
MMS became a ISO/Draft International Standard in 1987.

The connection management services (CMS) of MMS are used to maintain
connections between MMS-users. Initiate, Conclude, Abort, Cancel, and Reject services
are included in CMS. In ISO/DIS 9506, connection management services are included in
environment and general management services.

In this paper the problem of modeling and analyzing the connection management
services with (colored) Petri nets has been investigated. Several works have been done in
this direction. BURKHARDT et al have established a model for OSI Communication Services
and Protocol using predicate/transition nets and applied the results successfully to obtain a
specification of the OSI-Transport and -Network Service as well as for the specification of
the OSI-Transport Protocol classes 2 and 3 [Burkhardt, et al, 1984], Another extension of
the Petri net model, the numerical Petri net (NPN), has been employed in BILLINGTON's
work for the specification of the OSI-Transport Service (TS) [Billington, 1982, 1983]. The
results show that the NPN technique allows all interactions between the TS-provider and its
users to be specified for a single connection and provides a very simple description of the
queues used to model the interactions between TS-users on a connection. It is claimed that
NPNs provide a visually appealing model of signal flow, which facilitates the design
process and enables a complete and unambiguous specification to be derived.
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It should be pointed out, however, that the application of the conventional Petri net
analysis methods in both predicate/transition net and numerical Petri net models is difficult,
if not impossible. For example, there is no obvious way to incorporate memory reference
enabling conditions and transition operations in NPN into the Petri net analysis methods,
even though they could be modeled by using additional places and transitions in a standard
fashion. To apply Petri net analysis methods in our modeling and analyzing, we have
developed a rigorous (colored) Petri net. mode! for CMS in MMS. Through P- and T-
invariants analysis on the Petri net model, several important properties of CMS have been
derived out analytically which are helpful in understanding the behavior of CMS and useful
in its implementation.

The specification of CMS may be considered at two levels of abstraction. In the
higher level the qualitative aspect of behavior of CMS is specified and only the set of
possible sequences of service primitives and their relation at each service state is
considered. At the second level the quantitative aspect of behavior of CMS is described and
parameters associated with service primitives may be represented together with the
procedures involved with connection establishment, maintenance, and termination. In this
paper we only address the problem of modeling and analyzing of CMS at the higher level
of abstraction. Section 2 introduces the system structure of CMS and gives an overview of
the service primitives in CMS. Section 3 reviews briefly ordinary and colored Petri net
theory. Section 4 presents a Petri net model for the connection between two MMS-users
and the analytical results derived from the model. Section 5 shows the colored Petri net
model for the general case, multiple connections, and proves that the behavior of multiple
connections is identical to single connection behavior. In the final section we discus how to
apply the Petri net models in the implementation of the MMS connection services and
performance evaluation.

2. OVERVIEW AND BACKGROUND

The system structure for the connection management is given by the block diagram
of figure 1 (where user 1 is the requester and user 2 the responder). The connection
management services in MMS contain the Initiate, Conclude, Abort, Cancel, and
"‘Reject services. These services allow the MMS-user to:

a)initiate communication with another MMS-user in the MMS
environment, and to establish the requirements and capabilities that
support that communication;

b)conclude communication with another MMS-user in the MMS
environment in a graceful manner;

c)abort communications with another MMS-user in the MMS
environment in an abrupt manner;

d)cancel pending service requests; and

e)receive notification of protocol errors that occur.

The state diagram for entering and leaving the MMS environment defined in MMS
is given in the figure 2. The initial state for both calling and called MMS-users is the state "
No MMS Environment ". The diagram is depicted from the point of view of an MMS-user.
The restrictions on use of MMS services are the follows:

1) The " No MMS Environment " State-:while in the state " No MMS
Environment ", an MMS-user may only issue the initiate.request service
primitive.
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2) The " Establishing MMS Environment (calling) " State-:while in
the state " Establishing MMS Environment (calling)", an MMS- user may
only issue the abort.request service primitive.

3) The " Establishing MMS Environment (called)" State-:while in
the state " Establishing MMS Environment (called)", an MMS-user may
only issue the initiate.response or abort.request service primitives.

4) The " MMS Environment " State-:this stare is divided into a series of
substates described in clauses 8-16 of MMS. The only events which cause
an exit from the " MMS Environment " state are the issuance of an
abort.request, the issurance of a conclude.request service primitive, the
receipt of an abort.indication, or the receipt of a conclude.indication
service primitive.

5) The " Relinquishing MMS Environment (Requester) " State-
:while in the state " Relinquishing MMS Environment (Requester)", the
only request primitive that the MMS-user may issue is the abort.request
service primitive.

6) The " Relinquishing MMS Environment (Responder) " State-:
while in the state " Relinquishing MMS Environment (Responder)", the
MMS-user may only issue the abort.request and the conclude.response
service primitives.

In the next three sections, we will construct a mathematical model for MMS
connection management using Petri nets based on the above restrictions and perform
various analysis to reveal the qualitative behavior of the connection management protocol.

3. BASIC CONCEPTS FOR PETRI NETS AND COLORED PETRI NETS

In this section, we give a brief introduction to (ordinary) Petri net and colored Petri
net theory through some definitions and examples. These definitions are quite standard and
come mostly from Peterson (1981) and Jensen (1981).

Petri nets (both ordinary and colored ) are tools for modeling the dynamic behavior
of discrete event systems. They consist mainly of two types of elements: places and
transitions. The set of places represents the system' s states, and the transitions represent
events which change the state of the system. A place can contain a non-negative integer
number of tokens. The state of the system modeled by a Petri net is given by its marking,
the number of tokens in each of its places. The system evolves by firing its transitions. The
rules governing firing will be given below. We will first discuss ordinary Petri nets (or
simply, Petri nets ) and then extend the results to colored Petri nets.

3.1 Mathematical Structure of Petri Nets

Definition 1: A Petri net (PN) is a quadruple PN=(P, T, I, O) where:

1)P and T are finite sets of places and transitions, respectively, such that
PNT=¢ and PUT0,

2) I: PXT — N is the input function,

3) O: PXT — N is the output function,
where N is the set of natural numbers.

A PN can be represented by a bipartite directed multigraph, the Petri net graph.
Places are represented by circles and transitions by bars. There is an arc joining a place p
to a transition t iff I(p,t)=0. Analogously, there is an arc from a transition t to a place p iff
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O(p,1)#0. Natural numbers I(p,t) and O(p,t) are called the weights of the arcs. Arcs are -
labeled with their weights, Labels will be omitted if the arc's weight is equal to one.

Definition 2: A marking m of a PN is a function m: P — N. It gives
the number of tokens contained in each place pe P.

A token can be represented by a dot. The initial state of a system is defined by a net
marking called the initial marking. Figure 3a shows a PN with its initjal marking

mo(p1)= mo (p2)=1, mg (p3)=0.
The marking can be more briefly expressed as a column vector: my=(1 1 0)T.

Definition 3: A transition t is enabled wrt a marking m iff:
for all pe P, m(p)zI(p,t).

In figure 3a, only transition ty is enabled and t; in figure 3b.

Definition 4 (execution rule). Firing an enabled transition consists of
removing I(p,t) tokens from each input place p and adding O(p,t) tokens
to each output place p.

Figure 3b shows the marking of the PN after firing the enabled transition t;. The
marking reached is m;=(0 0 1)T; in general ,

for all pe P, m;(p)=mo (p) + O(p,t) - I(p,t).

Let m be the marking reached from my by applying the firing sequence s, mp— s

— m. If y is the count vector of s (i.e., y represents the number of times each transition has
been fired in s), then m can be expressed by the state equation

m=mgp + Ay

where A=0 - I =[a(p,1)], a(p,t)=0(p,t) - I(p,t), is called the incidence matrix of the
Petri net. In the example of figure 3,

-1 1
A:{: -1 1]
1-1 ,
And s=ttoty, i.e., y=(2 1)T, leads to the marking m=my + Ay =(0 0 )T,
Definition 5 (reachability set): The reachability set R(m) for a PN with
marking m is the set of all markings of PN which can be reached from m
by firing a finite number of transitions of PN,
The reachability set of the PN in figure 3 is R(mg)={(1 1 )T, (00 1)T}.
3.2 Analysis of Petri Nets
The following are some of the properties and questions that have been studied in the

literature about Petri nets [Al-Jaar, 1987]. Later we will use these properties to analyze the
behavior of the Petri net model for connection management services.
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1) A deadlock in a PN occurs when a marking is reached where no
transitions in the net can be fired from that point on.

2) A PN is live wrt a marking m if, for any marking in R(m), it is
possible to fire any transition in the net. Liveness guarantees the absence
of deadlocks.

3) A PN is reversible or proper wrt a marking m if for every m’e R(m),

me R(m'). Reversibility guarantees that the system modeled by the PN
can re-initialize itself. This is very important for automatic error recovery.

It is easy to show that the PN in figure 3 is live and reversible. Therefore it is
deadlock-free.

4) A PN is bounded wrt a marking m if there exists a finite number k
such that for any marking in R(m) the number of tokens in each place of
the PN under that marking is less than k. When k=1, the PN is safe.

5) A PN is (structurally) conservative if, for any initial marking my,

there exists a weighting vector w20 € N, n=IP| and for all me R(my),
wTm=wTmy

i.e., the sum of the tokens weighted by w is constant. When wT=(1 1 ...

1), the PN is called strictly conservative.

The weighting vector w is called a P-«invariant or S-invariant of the PN. It
can be proved from the state equation that w is an P-invariant of a PN iff
wTA=0
where A is the incidence matrix of the PN.

6) A PN is (structurally) consistent if, for any initial marking m, there
exists a firing sequence s, called a cyclic firing sequence wrt m, such

that m —s—m.

The count vector of a cyclic firing sequence of a PN is called a T-invariant of the
net. Similarly, from the state equation, a T-invariant x of a PN must satisfy equation:
Ax=0
For the PN defined in figure 3, the P-invariants are (n; ny n;+ ny)T, ng, n20,
n1ny#0. The net is obviously safe and bounded. The P—invariants are (n n)T, n>0.

3.3 Colored Petri Nets

The major advantage of using colored Petri nets is to short description and analysis
of the systems consisting of a number of different processes having a similar structure and
behavior. In a colored Petri net, each of its places and transitions is associated with a set of
colors. The state of the net is described by the distribution of colors among its places. The
conditions for enabling a transition and the firing rule depend on linear functions which
label the net's arcs. These functions indicate which colors must mark each place in order to
enable a transition wrt a given color as well as which colors must be added to or removed

from a place on firing.

Definition 6: A colored Petri net (CPN) is a 5-tuple CPN=(P, T, C,
I, O) where:
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1) P and T are finite sets of places and transitions, respectively, such

that PNT=¢ and PUT#9,

2) C are the sets of colors associated with the places and the transitions.
C(p) and C(t) are finite sets of colors associated with the place p and the
transition t.

3) I and O are , respectively, the input function and the output
Sfunction defined on PxT such that [, O: C(t) » sam[C(p)],

(p,t)e PXT, where sum[C(p)] represents the set of non-negative formal
sums of elements of C(p).

Definition 7: A marking m of a CPN is a function defined on P such

that m(p): C(p)—N. m(p) gives the number of tokens of each color in the
place p.

Like ordinary Petri nets, a CPN can be represented by a bipartite directed
multigraph with I(p,t) and O(p,t) as its arc labels. Each of the nodes (circles and bars) of
the CPN graph is marked with its associated set of colors.

The incidence matrix of a CPN is defined to be A=0 - I = [a(p,t)] where
a(p,t)y=0(p,t) - I(p,t), A is a [PIxITI matrix of linear functions.

A transition t is enabled wrt a color ce C(t) if the current marking m is such that

m(p) 2 I(p,t)(c) for all pe P, When a transition is enabled wrt the color c, it can fire. This
firing is carried out in two steps:

1) Remove I(p,t)(c) colored tokens (i.e., colors) from each input place.
2) Add O(p,t)(c) colored tokens (i.e., colors) from each output place.

Having made these definitions, reachability set, deadlock, live, reversible,
bounded, conservative, and consistent are defined exactly as for ordinary Petri nets.
The equations for P~invariants and T-invariants still hold except that each element of
the P—invariant and T—invariant vector is now replaced by a sub-vector weighting the colors
associated with the corresponding places and transitions.

4. Petri Net Model for Connection Between Two MMS Users

The objective of this section is to investigate the feasibility of modeling and
analyzing the connection management services of MMS using Petri net. We will treat a very
simple case, i.e., the connection between two MMS-users, in this section. The results
obtained in this section will help us to understand the general results of multi-connection of
n MMS-users developed in the next section.

4,1 Connection Petri Net

To model the connection between two MMS-users using a PN, we introduce the
following places and transitions based on the description given in the section 2.

Place P:
pi1: MMS-user i in No MMS Environment;
piz: MMS-user i in Establishing MMS Environment (calling);
pi3: MMS-user i in Establishing MMS Environment (called);
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Pi4: MMS-useriin MMS Environment ;
pis: MMS-user i in Relinquishing MMS Environment (Requester);
Pis: MMS-user i in Relinquishing MMS Environment (Responder);
pi7: MMS-user i received an initiate.indication;
pig: MMS-user i received an inttiate.confirm-+;
Pio: MMS-user i received an initiate.confirm-;
pito: MMS-user i received a conclude.indication;
pi11: MMS-user i received a conclude.confirm+;
pi12: MMS-user i received a conclude.confirm-;
Transition T:
ti;: MMS-user i issues an initiate.request;
t;: MMS-user i issues an initiate.response-+;
t;3: MMS-user i issues an initiate.response-;
tie: MMS-user i issues a conclude.request;
tis: MMS-user i issues a conclude.response+;
tis: MMS-user i issues a conclude.response-;
t;7: MMS-user i receives an initiate.indication;
tis: MMS-user i receives an initiate.confirm+;
tiog: MMS-user i receives an initiate.confirm-;
tiyo: MMS-user i receives a conclude.indication;
t;11: MMS-user i receives a conclude.confirm+;
tiiz: MMS-user i receives a conclude.confirm-;
ti13, tilds ti15» titg, tit7: MMS-user i issues an abort.request or receives an
abort.indication;
where i=1, 2.

The places pi1, pi2> Pi3» Pids Pis» Di6» 1=1,2, called user states, are corresponding
to the six states defined in the section 2 for each MMS-user. The places p;7, Dis, Pi9» Pi10s
Pil1» Pi12, i=1,2, called connection places, are introduced to express the interaction
between two MMS-users explicitly. The transitions are exactly the same as those defined in
ISO/DIS 9506.

Let

P=(Py, Py), T=(Ty, Ty, T3)

_ Pi=(Pis, Pic), Ti=(Tis, Tirs Tia)

where (i=1, 2)
Pi=(pi1, .- Pi6)» Pic=(Pi7, .-+ Pi12)
Tis=( tit, ..o tie)s Tir=(ti7, w0 ti12), Tia=(ti135 ..0s i17).

With such arrangement of the places and transitions, the incidence matrix of our
Petri net model for connection of MMS-user 1 and 2 is

r b
A, AL A 0 0 0
0 A 0 A 00
A= D
0 0 0 A A A
A, O 0 0 A O

where
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101010
1 00 0 0 0
0 -1 -1 0 0 0
A =
s 0 1 0 -1 01
0 00 10 O
0 0 0 0 -1 -1
101010
0 -1 -1 0 0 0
1 00 0 0 O
A = (2)
r 0 1 0-1 01
0 0 0 0 -1 -1
| 0001 00
11 1 1 1
1 00 0 0
0 -1 0 00
A =
a 0 0 -10 0
0 00 -10
0 0 0 0 -1

Ao=-A;=1, and Iis the 6x6 identity matrix.

The connection PN with the initial marking is given in Figure 4(a). The number of
tokens in places pi;y (No MMS Environment) indicates the number of communication
channels available to user i. It is clear from Figure 4(a) that two users are two closed
subnets of the connection PN.

Two special cases are worth mentioning. The enabled transitions in the initial
marking are tq;, 1 (i.e., both users can issue initiate.request in the initial states) Once the
two users issue initiate. request simultaneously, the only enabled transitions in the resulting
marking are abort transitions (t1s3, t213) (see Figure 4(b)). Therefore no MMS
Environment can be established in this case and the connection attempt fails. Similarly,
when both machines are in the MMS Environment state (Figure 4(c)) and the two users
issue the conclude.request simultaneously (transition t4, t24), the only enabled transitions
in the resulting marking are again abort transitions (t116, t216) (Figure 4(d)).
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Another case is that the connection process may continue indefinitely. In Figure
4(c), if user 1 issues a conclude.request and user 2 responds with a conclude.confirm-, the
two users have to return back to MMS Environments (Figure 4(c)). User 1 may re-issue a
conclude.request and user 2 may again respond with a conclude.confirm-. This situation
could potentially continue forever.

4.2 Invariant Analysis for The Connection PN

To reveal the qualitative behavior of the connection between two MMS-users, we
perform the following invariant analysis on the connection PN.

1) P-invariants: From section 3 we know that P-invariants satisfy
WTA=(0

WT= [WT;; WTy; WTy WThy ] = (wy,...,w)

Let

where Wj; and Wy, are the weighting vectors corresponding to the user states pj; to pig and
the connection places pi7 to pi12, i=1, 2, respectively.
It follows that

WT1As + WA, =0, WT 24, + WTy1Ag =0,
WA+ WTpA; =0, WTy1A, + WTyA, =0,
WT1A, =0, WTyA, =0,

The solution can be found to be

WTu:oc(l 1111 D=an, W721=Bn 3)
WT=0, WTpy=0,

o and B are two arbitrary positive integers.

The minimal P-invariants are
WTi=(n 00 0), WT=(00n0) 4)

Based on the P-invariants (4), we get the following results,

Claim 4,1: Each subnet of the connection PN corresponding to a user is strictly
conservative,

Proof: Letm'and m" be two arbitrary marking from the reachability set, then, by
the definition of P-invariant

erm'=Wr1m", W’[‘zmlzwrzmn’
that is,
m:(Pl1)+---+m:(P16)=m::(pl1)+---+m::(PI6)
m'(p21)+...+m'(pag)=m"(p21)+...+m"(pag)
which proves the claim. #

Claim 4.1 indicates that for the connection PN in Figure 4(a), each user will be in
one and only one of six user states. For the user with multiple channels, the claim means
that each of user's channels will be in one and only one of the six states. This claim
guarantees that in our connection PN no user can be interrupted by other users.

-84-



Since each of the places pji,..., pig, i=1, 2, can enable an abort transition, the
following can be derived from claim 4.1:

Claim 4.2: The connection PN cannot be deadlock.

Note that without abort-transitions, the connection PN may be deadlock. Therefore
is necessary to introduce abort services. By investigating the reachability set of the
connection PN, we get a further result,

Claim 4.3;: The connection PN is both live and reversible.

It can be shown, however, that the connection PN is not bounded, which means
physically there may be as many as possible messages left in the connection places due to
the protocol errors. This can be avoid in the implementation through the proper supervision
by the MMS-provider.

2) T-invariants: T-invariants satisfy the equation
AX=0

XT= [XTy XTyp XT3 XTyy XTyy XTs] = (xy,...,%34)
where X1, Xj, and Xj3 are the count vectors corresponding to the transitions t;; to tig, t;7
to tj12, and the abort transitions tj3 to tj17, i=1, 2, respectively.

Let

It follows that
ASXk1+ A,sz <+ Aang =O, k=1,2
AX19 + AgXg =0,
A Xy + AiXyy =0.

The solution can be found to be
Xo=X12,  Xp=Xi1,
X13=51Xy1 + 52X)9, (5)
X7_3282X11 + 81X12.

where
100000 ] [ 0-1-1000 ]
0-1-1000 100000
=] 010-101 s,=| 010101 (5
000100 0000-1-1
| 0000-1-1 | | 000100

and X1, Xjqe N6 satisfy the constraints:
S1X11+ $9X9e N6, S$1Xq1 + S2X € N6,
It can be shown that
$1Xq1 + S2X 126 N6 & §1 X1 + S2X 26 N6,

Hence, since XT11=(x1,...,Xg), XT12=(x7,...,X12), the above constraints can be reduced to
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X1 2 Xg + X9, X4 2 X11+X12,
X7 2 X + X3, X10 2 X5 +Xs, (7)
X9 + Xg + Xg +X12 2 X4 +X10

A normal connection cycle is any firing sequence which leads the connection
PN back to its initial marking (i.e., No MMS Environments) without leaving any messages
(tokens) at the connection places. Therefore a normal connection cycle is cyclic firing
sequence wrt the initial marking shown in the Figure 4(a). The equations in the first line of
the (5) implies that

Claim 4.4; For any normal connection cycles, the numbers of firings of each of
the transitions tyy, ..., t16 (121, ..., t26) must be equal to that of firings of each of the
corresponding transitions ty7, ..., t212 (t17, ..., t1;2), respectively.

The claim indicates that for a normal connection cycle, the number of firing a
request transition by one user must be same as that of firing the corresponding response
transition by the other user. This result agrees with our intuition.

1t follows from the equations in the second line of (5) that

Claim 4.5: For any normal connection cycles, the numbers of firings of each of
the abort transitions t713.t114 1115, 4116, L117 must be equal to that of firings of each of the
corresponding abort transitions 1314, 1213 215, 1217, 1216, respectively.

The claim 4.5 indicates that for a normal connection cycle the number of firings of
the abort transition at a calling user state by a calling MMS-user must be same as that of
firings of the abort transition at the corresponding called user state by the called MMS-
user. In the MMS protocol this is guaranteed by forcing the two abort transitions to fire
simultaneously. The claim, however, does not imply that the two abort transitions have to
be fired at the same time. It also should be pointed out that the T-invariant condition is just
a necessary condition for the normal connection cycles.

Combining the equations (5) and (7), we get a further result

Claim 4.6; For any normal connection cycles, the numbers of firings of the non-
abort transitions entering a user state is no less than that of firings of the non-abort
transitions leaving the same user state. And the difference between the two firing numbers
is equal to the number of firings of the abort transition at that user state.

Actually, claim § and claim 6 are the consequences of claim 4 and the simple fact
that the number of firings of the transitions entering a user state is equal to the number of
firings of the transitions leaving the same user state; since at any user state the abort
transition always leaves that state.

Even though the results obtained seem trivial, the significance of the above analysis
is that instead of specifying those properties as the requirements, we derive them
analytically as the necessary conditions for the normal connection cycles.

5. Colored Petri Net for Multiple Connection
The connection PN model obtained in the above section shows that both MMS-
users have the identical structure and the similar behavior. The results also indicate that a

large number of new places and transitions are required to model the connection among
more than two MMS-users using ordinary PN. To avoid dealing with a large connection
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system consisting of many identical MMS-users with similar behavior, we construct 2
colored Petri net (CPN) for the multiple connection in this section.

5.1 Colored Connection Petri Net

Figure 5 gives a CPN for multiple connections among n MMS-users which shows
an identical structure as that of one MMS-user in the connection PN (figure 4). The 12
places and the 17 transitions have the same functions as those defined in the last section. To
associate colors to each of the places and transitions, as well as to specify the input and
the output relations, we introduce two color sets

M= {my, ..., My}
CNN={(m;,m;) | i#j, m; and mje M}

and four linear functions over the color sets

REQ: CNN-M, REQ((m;,m;))=mi
RSP: CNN--M, RSP((m;,m;))=mj

ID: CNN-—-CNN, ID((my;,my))=(m;,m;)
REV: CNN-—CNN, REV((mi,mj))z(mj,mi)

where M is the set of MMS-users, and CNN is the set of connection peers, i.e., (m;,m;)
means MMS-user my; is calling MMS-user m;.

The color function of the CPN is defined as:

C(p1)=M, C(p)=CNN for all pe P, p#p1.
C(t)=CNN, forallteT.

The incidence matrix is defined as

A= (8)

where
[.REQ 0 RSP 0 RSPO
Do 0 0 0 0
DD-ID 0 0 0

0 0 ID O O

0

5 0 REV 0 -ID 0 REV
0
0 0 0 0 -ID-ID |
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[ RSP 0 REQ 0 REQ O |
0 -ID-ID 0 0 0
D 0 0 0 00
A% o6 D 0 -REV 0-D ®
0 0 0 0-ID-D
0 0 0 I 0 0]
REQ RSP REQ REO RSP
D 0 0 0 0
0 -ID 0 0 0
A =

o o ™ o0 0
0 0 0 Do
0 0 0 0 D]

IDO 0O 0 0 O
0D 0 0 O
00 ID 0 O

00 0 0 I
00 0 0 O

0
0
o i 00 0ID 0 O
0
ID‘

In figure S we assume that all unlabeled places and transitions have the color
set CNN and all unlabeled arcs have the label ID. The initial marking is

my(py)(my=n;21, for all m; € C(p1)=M,
or

mo(p1) = Znim;

my(p)=0, for all pe P, p#p;.

where n; represents the number of channels available at MMS-user m;,

Under the initial marking myg, transition t; is the only enabled one (wrt any of its
colors). When t; is firing wrt the color (m;,m;), a token with color m; will be removed from



place p;, and a token with color (mj,m;) will be added to place p; and place p7,
respectively. It is very obvious from the CPI{I that for multiple channels, concurrency
exists everywhere.

Next we present P-invariant and T-invariant analysis for the connection CPN. We
will see that the results here are the direct extension of the results obtained for twvo MMS-
users.

5.2 Invariant Analysis for The Connection CPN
1) P-invariants:  P-invariants satisfy
WTA=0

where we consider every linear function in the incidence matrix as a matrix with
appropriate dimensions. This is equivalent to consider the formal sum of colors as a
linear space with every color as a base element. We assume that the same color has the
same index in all the color sets associated with the places and transitions.

Let
WT= [WT; W)

W= [WTy; WTio WTi3 WTy WTis W)

and

Wiand W, are the weighting vector about places p; to ps and p7y to p12,
respectively. And Wy; is the weighting vector about the place p; , i=1,...,6. Therefore Wy

is a nx1 vector, Wy;, i=2,..., 6, are n(n-1)x1 vectors.

Expanding the P-invariant equation, we get

WTA; + WHhA,=0
WTiA; + WA; =0
WhA,=0

It is easy to see that XxID=X, so

WTy = WTy; REQ,

WTy4 = WT;; REQ, 9)

WTys = WTy; REQ,

WT16 = erl RSP,

WTA; + W =0 (10)

WTA - Wh=0
Since

RSPxID(mj,m;)=m;, REQXREYV (m;,m;)=m;, for all (m;,m;)e CNN

then

RSPXID - REQXREV=0
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We find that Wy; in (9) satisfy WTA;=WT;A,=0, therefore the general form of
P-invariants is

WT, = WT; REQ,
WTi3 = WTy; RSP,
WTi4 =WT; REQ, WT,=0, (11)
WT;s = WTy; REQ,
WT s = WT}; RSP,

where W1,eR" is an arbitrary positive vector.

Claim 5.1; For every MMS-user m; and marking m reached from the initial
marking, the sum of the number of m; tokens in pj, the number of (mjmy),tokens k=1,
.y N, IR D2, D4, Ps, and the number of (m;my) tokens , k=1, ..., n, in p3, ps is a
constant, n;.

Proof: Let m be an arbitrary marking from the reachability set R(myp), then, by the

definition of P-invariant
- WIm = WT mg=WT)mo(py),
where W is shown in (11), it follows that

WTm =WT1m(py )+ WT1am(p2)+WT13m(pa)+WT 1 m(pg)+WT sm(ps)+WT sm(ps)
=W (m(p)+REQIm(p2)+m(ps)+m(ps)]+RSP[m(p3)+m(pe)] }

Since WTy; is an arbitrary positive vector, we get
m(p1)+REQ[m(p2)+m(p4)+m(ps)]+RSP[m(p3)+m(ps)}=mo(p1)
Note that
REQ{m(p2)+m(p4)+m(ps)]=(the number of (m;,my) tokens, k=1, .., n,in
(P2,P4:P5) .., the number of (my,my) tokens, k=1, ..., n, in (p2,p4,ps))T
RSP[m(p3)+m(p6)] (thc number of (my,m;) tokens, k=1, ..., n, in (p3, pPs) ...,
the number of (my,my,) tokens, k=1, ..., n, in (p3, ps)T
Therefore , for any reachable marking m,
the number of m;tokens in p;+ the number of (m;,my) tokens, k=1, ..., n, in py,
P4, ps + the number of (m;,my) tokens, k=1, ..., n, in p3, ps =n;. #
Claim 5.1 is the extension of claim 4.1 for multiple connection CPN, which simply

says that each channel of a MMS-user can only be in one of the six states p;, ... Ps.

Similar to the situation in the ordinary connection PN, we can prove easily the
following results:

Claim 8.2; The connection CPN cannot be deadlock wrt any colors.
Claim 8.3: The connection CPN is live and reversible wrt any colors.

2) T-invariants: T-invariants satisfy the equation



AX=0

XT = [XT; XTy XT3]

XTy = [XTyy XTyp XTy3 XTyy XTys XTig)

XT3= [XT3 XT3 XT3z XT3y XT3s]
where X1, X2, and X3 are the count vectors corresponding to the transitions t;; to tig, ti7
to ti19, and the abort transitions t; 3 to t;37, i=1, 2, respectively; Xj; and X3; are n(n-1)¥1
count vectors of transitions t; and tj2.i), respectively.

and

Expanding the T-invariant equation, we get

AgX+ ArXZ + AaXB =0,
A Xy + AiXy =(),

which implies that

XZ = Xlo

(As+ Ar)Xl + AaX3 =Oa
It follows further that

(RSP+REQ)(Xj1-X13 -X15)=REQ(X31+X33+X34)+RSP(X32+X35)
The first equation can be reduced to

) [REQ + RSP - REQ(ID + REV)](X12 - X14 + X16)=0
{
' REQ( ID + REV)=REQ + RSP

The general form of the solution is

Xo= X
X31= Kgp= X11 - Xi2- X3 (12)
X33=(1D + REV)( Xj2 - X4+ Xy6)
_ . K34 X3s= X4 - Xi15 - X6
with the constraints:
X2z Xpp+ Xpa, Xt Xig2Xie, Xig2Xps + Xy

From the first equation of (12), we get

Claim 5.4; For any normal connecrion cycles, the numbers of firings of each
color of the transitions ty, ..., ts must be equal to that of firings of the same color of the
corresponding transitions t7, ..., t12 , respectively.

The claim indicates that for a normal connection cycle, the number of firings of a
request transition wrt a given color must be same as that of firings of the corresponding
response transition wrt the same color.

The rest of the equations in (12) imply that

Claim 5.5; For any normal connection cycles, the numbers of firings of each
color of the abort transitions t;3, tj¢ must be equal to that of firings of the same color of



the corresponding abort transitions )4, t17, respectively; and the number of firings of
(mi,mj) the abort transitions t;s must be equal to that of firings of (mj,m;) of 1;5.

The claim indicates that for a normal connection cycle the number of firings of an
abort transition at a calling user state wrt a given color must be same as that of firings of
the abort transition at the corresponding called user state wrt the same color . This 1is
guaranteed by MMS.

Combing the equations (12) and (13), we get a further result

Claim 5,6: For any normal connection cycles, the numbers of firings of the non-
abort transitions entering a user state wrt a given color is no less than that of firings of the
non-abort transitions leaving the same user state wrt the same color . Also he difference
between the two firing numbers is equal to the number of firings of the abort transition at
that user state wrt the same color .

Note that in our connection CPN model for multiple connections, we already
assumed that every MMS-user can talk with each other (as assumed in MMS), if there are
limitations on the connectivity among some MMS-users, an additional place has to be
added to the connection CPN to indicate the connectivity of MMS-users.

6. CONCLUSIONS

As can be seen from figures 4 and 5 the Petri net models provide a complete,
unambiguous and compact description of connection management services of MMS at the
higher level of abstraction of specification and their graphical nature helps to visualize the
system structure and dynamics. Petri net models describe all of the possible sequences of
service primitives that can occur during establishment, maintenance and termination of the
connection and their relationships at each service state. By P-invariants analysis we have
proved that the connection PN models the mutual exclusion in the states of communication
channel, a property that has to be followed for any valid model. The P-invariants analysis
also indicates that automatic error recovery procedures can be incorporated into our PN
model later since it is deadlock-free and reversible. T-invariants analysis gives the
necessary conditions for normal connection cycles on the possible sequences of service
primitives. These conditions provide useful information about what procedures we have to
take in the implementation of CMS to guarantee the establishment of a correct connection.

Other important facts about the PN model which also indicate the advantages of
using Petri nets include:

A hierarchical mathematical description for the entire MMS
protocol can be developed using Petri nets. PN methods allow various
phases of CMS to be constructed separately. In the connection PN, the
connection maintenance phase is represented by a single place "MMS
Environment" (P14, P34 in figure 4 and P4 figure 5) which actually consists
of a number of service activities. For each of the service activities, e.g., file
management services, a sub-PN model can be constructed. The PN model
for MMS Environment may be built upon those sub-PN models by merging
the common places and transitions, or introducing additional places and
transitions if necessary. Once the MMS Environment place is invoked, one
of the sub-PNs will be executed accordingly. Similar approaches can be
taken for each of the services of MMS. Therefore a hierarchical
mathematical description for the entire MMS protocol can be established.
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A uniform representation for various level of abstraction of
the MMS protocol can be provided by using Petri nets. Physically,
tokens in the connection PN represent messages and service states in CMS.
Therefore the specification of CMS at different levels of abstraction can be
achieved easily by associating tokens with attributes containing information
needed at the corresponding abstraction level. Decisions can be made about
what to do next at each of places by referring to this information and actions
can be taken during every transition firing by fetching parameters from the
attributes for a specific service. Since attributes corresponding to different
abstraction levels may be incorporated into tokens separately, this approach
leads to a stepwise refinement technique for both specification and
implementation of CMS, thereby increasing ease of understanding and
programming. Clearly, this method for specification at different levels of
abstraction can be applied to other MMS services.

An analytical model for protocol performance evaluation and
analysis can be constructed from Petri net models. Recent studies on
stochastic Petri nets (SPNs) show that SPN is a very promising tool for
system performance evaluation and analysis [Molloy 1982]. A SPN can be
constructed from a PN by assigning to transitions the (random) time used to
complete their firings or to places the time during which the conditions
represented by them hold. Time consideration allows a performance
analysis to be carried out on the system modeled by the PN through
calculating production time, resource utilization, throughput rate, etc.
Equivalence between (semi-) Markov processes and (generalized) SPNs
provide various analytical and convenient methods for performance index
calculation. For CMS, the average connection cycle time, the machine
utilization and the user waiting time offer important measures for
optimization of system design and implementation. More important, the
sensitivity of these performance indices on variations of CMS system
structure and parameters can be determined using SPN, which provides
very useful information for the improvement of system design and
implementation and the selection of service parameters (the optimal
operating conditions). Similar performance analysis can be carried out on
other MMS services.

Describing all these aspects of the MMS protocol with the single mathematical
structure, the Petri nets, is presently being explored.

It is claimed the Petri nets are a powerful and generic tool for the modeling and
analyzing of CMS and other MMS services. More research is needed to verify this claim.
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FIGURE 5. THE COLORED PETRI NET FOR MULTIPLE CONNECTION



