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Abatmet-The effect of random initial geometric imperfections on the vibration behavior of rec- 
tangular plates is investigated in thii paper using a statistical method. The random initial geometric 
imperfections of plates are described by Gaussiun random fields and simulated numerically using 
EWwko~s method. Lindstedt-Poincark’s perturbation technique is employed to solve Du@tg’s 
Equation with an additional quadratic spring term derived in the vibration analysis of imperfect 
rectangular plates. A Nonre Carlo analysis for simply supported plates is carried out in detail to 
illustrate the proposed approach. It is shown that the effect of random geometric imperfections on 
the vibration behavior of the plates can be described quantitatively in terms of the frequency 
reliability function and the hardening type probability. 

1. INTRODUCTION 

It is well known that the initial geometric irn~~~tio~ has a profound effect on the buckling 
behavior of shell and plate structures; however, the effect of im~rf~tion on the vibrational 
behavior has received relatively little attention. This may be caused by the fact that a 
considerable amount of work on nonlinear vibrations of perfect structures (Reissner, 1955 ; 
Chu and Herrmann, 1956; Chu, 1961; Yamaki, 1961; Prathap and Veradan, 1978) has 
shown that the large amplitude vibrations of the perfect structures were always of hardening 
type for various boundary conditions and shapes of the structures. 

Recently, the effect of initial geometric imperfection has been investigated by several 
authors (Rosen and Singer, 1974 ; Singer and Prucz, 1982 ; Hui, 1983, 1984a, b ; Hui and 
Leissa, 1983a, b). A series of works have been published by Hui and Leissa (1983a, b) and 
Hui (1983, 1984a, b). One term mode was used in their papers for both the vibration and 
imperfection modes and it was found that the presence of geometric imperfection may 
si~ifi~n~y raise the free vibration fr~u~~y. More inte~sting, contrary to the well- 
established and widely accepted theory that the nonlinear vibration of flat plates is of the 
hardening type, it was shown that the presence of unavoidable geometric imperfection 
amplitudes of only half the plate thickness may change the nonlinear hard-spring character 
of the plate to one with a soft-spring behavior. 

This paper is based on the work reported in Wang (1986). Two further questions about 
the description of imperfections and the corresponding analysis are investigated in the 
paper. The first is about the form of imperfection. Clearly, the initial imperfection is 
independent of the vibration mode and only depends on the manufacturing process, environ- 
ment, etc. The second is that in practice it is very difficult to describe imperfection exactly. 
In most cases, it is imperative to take the imperfection as a random variable or field. 
Consequently, the uncertainties of irn~~~tion must be taken into account in studying its 
effects on the vibrational behavior. 

The paper suggests a statistical method using the Monte Carlo technique which can be 
used to solve the two questions in a unified way. The method by Elishakoff and Arbocz 
(1982) for the buckling analysis of shell structures is used, and is demonstrated in detail 
through the vibration simulation analysis of simply supported rectangular plates with 
random geometric imperfections. The Monte Carlo method is used to “create” a large 
number of imperfection plate samples, and the distribution function of the vibration fre- 
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quency and the probability by which a plate behaves like a hard-spring or a soft-spring, the 
two most important characteristics of vibration behavior, are calculated in the simulation. 

2. MOTION EQUATIONS OF IMPERFECT PLATES 

The dynamic analogue of uon Kurman equilibrium and compatibility differential equa- 
tions (also known as Murguerre equations) in terms of the normal displacement G and the 
Airy stress function F for moderately large amplitude vibrations of plates with geometric 
imperfection 9, can be given by (Chia, 1980) 

D is the flexural rigidity, E is Young’s modulus, h is the plate thickness, p is the plate mass 
per unit area, 2, jj are the two in-plane coordinates and ris the time. 

We introduce 
defined by 

now the nondimensional quantities MY, \vo, f, q, x, y and I. which are 

(4 wo) = (a, 6,)/h, f = F/Eh2 

(X,Y) = (f,Wb, t = o,t 

4(x, Y, 0 = 4G I;, whl 

and 

c = J3(1 -v2), a: 
4n4D x4Eh3 

=-p =pc2647 

(3) 

a 4x4Dh x4Eh4 
a=-, 

b q”=T---=- c2b4 

where v is Poisson’s ratio and a and b are the plate widths along the x- and F-directions, 
respectively. The governing nonlinear differential equations (I), (2) can now be written in 
the nondimensional form 

V4w+4n4$ = 4n4q+4c2[FJx(w o.yy + w.yy) +F,(wo..~.~ + w.,) - 2F,(w0..~~ + ,~.,)I (4) 

V4F = (w,J2 - w,,w,~~ - wo.xxw,), - ‘(‘o.~~w,, +2wo.xyw.x,., (5) 

V2 =.$+X 
ay2 * 

The boundary conditions are taken as simply supported, the in-plane displacements 
normal to the edges are constant and there is no in-plane shear along all edges. that is, 

x=Oora w=O, w.,=O, J:,=O, &=O; 

y = 0 or 1 w = 0, )l:YY = 0, IYX = 0, j& = 0. (6) 

For a rectangular plate, the fundamental vibrational mode corresponds to the half sine 
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waves on both the x- and y-directions. Some interesting results have been obtained by Hui 
(1984a) by assuming that the shape of the geometrical imperfection is the same as the 
fundamental mode. Obviously, this is not the general case. In fact a realistic geometrical 
imperfection cannot be described deterministically in most cases. In order to get a complete 
picture of the dynamic behavior of structures a statistical analysis of the imperfection must 
be used. 

3. REPRESENTATION OF RANDOM GEOMETRIC IMPERFECTIONS 

In actual structures the initial geometric imperfections are unavoidable and cannot be 
described deterministically in general. In fact, the magnitude or type of geometric imper- 
fection of practical structures are never known exactly and, in a mass production situation, 
these quantities will generally be subject to random variations. To obtain a clear and 
complete picture of the behavior of such imperfect structures it becomes imperative to take 
account of uncertainties that enter into any real application. The purely analytical approach 
is to use a random field to describe the initial imperfection. This approach is rigorous in its 
concept, but has disadvantages resulting from the mathematical complexities. A method of 
digital simulation of Gaussian random fields has been developed by Elishakoff (1979). In 
this method, the original random field problem is reduced to one of the simulation of 
normal vectors. This method is very efficient in view of the difficulties in the purely analytical 
approach, and of the recent advance of high-speed digital computers. Here, we extended 
the method to describe the initial geometric imperfection in the plate structures. 

Consider a plate which occupies the region R. Let wO(x) be a Gaussian random field 
on R, and x = (xi, x2) be a coordinate vector. Suppose w,(x) (i = 1,. . . , ao) is a complete 
set of orthogonal functions on R which satisfy certain boundary conditions. Thus, the 
random field w,,(x) can be represented by the following series : 

(7) 

where Ai, i = 1 , . . . , ao, are normal random variables and they are correlated with each 
other. In practical computations, the series of eqn (7) is usually truncated to some finite 
number N, so that the equation is replaced in what follows by 

wO(x) = j, Atwi(x)* (8) 

The mean value function of we(x) then becomes 

E[wO(X)l = i E(AJwi(x)- 
i- I 

Thus the mean values of the Ais are readily found as 

where 

(9) 

is the inner product of I$ and $. 
The variance-covariance matrix of A,s can be determined by the auto-correlation 

function of we(x), 
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NXlrXd = E{(w,(x,)-E[M’O(X,)J)(U’O(X?)-E[WO(X-)I)) = 

where 

bij = E{(Ai-E[AiJ)(Aj-E[Aj])>a (11) 

Using the orthogonality of ~~,(x)s, we find 

1 

Oij = (Wi, Wi)(Wj, Wj) 
R(X~,x~)wi(X~)~~~j(X~) dRZ, i,j= 1,. . ., N. (W 

The problem is now reduced to simulation of the random vector {A}T = {A ,, 
A 2,. . . , AN} with mean value (9) and variance-covariance matrix [Z] = (a,),,, de- 
fined by eqn (12). Because of its positive definiteness, this matrix has a unique Cholesky 
decomposition; that is, there exists a lower triangular matrix [C] with positive diagonal 
elements which satisfies 

PI = [CIW. (13) 

Then, according to the theory of probability, the random vector {A} can be represented 
as 

(4 = [Cl{B) + {A) 

where (A} is the mean value vector of {A}, and {B}T = (B,, B2,. . . , B,v> is the standard 
normal random vector with distribution N((O), [I,.,]). Therefore the problem can be further 
reduced to one of the simulation of a set of independent standard normal variables. 

Since eqn (8) is an approximation of the random field wO(x), by constructing the mean 
function and the auto-correlation function of IV&) from the collected data of the real 
manufacturing process, the mean value and the variance-covariance matrix of A/S can be 
calculated directly through eqns (9) and (12). This idea, even though it may be expensive, is 
very useful sometimes. 

4. LARGE AMPLITUDE VIBRATION ANALYSIS OF IMPERFECT PLATES 

We now apply the above-mentioned results to the present problem. The initial random 
geometric imperfection can be described approximately as 

w,(~,y) = i$ ji, A, sin kx sin iV9 Z = i/u. (15) 

A,, in the equation are normal random variables. 
Let the fundamental vibration mode and the pressure distribution be given in form 

{w&y, f), q(x,y, t)> = {w(r),q, cos (cur/c~,>} sin Mrx sin nrr~ 

where o is the vibration frequency, A4 = m/a, and w(r) is the time-depended amplitude of 
w(x,y, 2). The specification of this type of pressure distribution will not affect the problem, 
since the present paper deals primarily with free vibrations of the plate. 

Substituting w(x,y, r) and w,(x,y) into the nonlinear compatibility eqn (5), it follows 
that 
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V”f = x ~M2n2(COS 2M7CX+COS 2t17ty)+X4W(t) ZM?IC(m,tl) : z AijZjC(i, j) i- I j-1 
-S&t?) 5 z ~~j(~2~2+j2~2)~(~, j) . i-l j-l 1 

Solving this equation with the boundary conditions (6), we find the stress function f 
to be 

f(x,y,t) = 3s w*(r) EC > ; 2 cos 2M*x+ (;J cos tiiy] 

+H&$(i-m, j-n)+H $mC(i+m, j-n)+H&,,,C(i-m,j+n)l (16) 1 
where the notations Cfi, j), S(i, j) and Hi,,,,, are 

C(i, j) = cos Zxx cos jny, S(i, j) = sin Znrx sin jny, 

Hi:,“,, = - $tUt 
A(i+m, j+n) ’ 

f& = _ Ah 
A(i-m, j-n)’ 

Hf:m. = A$m Hi, = 
&$USlS 

A(i+m, j-n) ’ A(i-m, j+n)’ 

AZINN = [Zn+(-l)‘jM)‘, k = 1,2; A(i, j) = (Z2+j2)2. (17) 

Substituting w(x,y, t), w&y), qfx, y, z) and f(x,y, t) into the no&near equation of 
motion (4) and applying the GaZerk~ procedure, i.e. m~tipl~ng both sides by S(m, m) and 
then integrating over the plate, we obtain the following second-order nonlinear ordinary 
differential equation in time for the amplitude w(t) : 

d2w 1 
-@+;r 

CL 
+ p4+n4)w3 = q1 cos (cor/c9~) (18) 

where 
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Letting the random parameters 6, E, < be 

6 =a (M’+r+)‘- g yA,j&,,. 
[ 1 

7 

, 
r.,- I 

MJA,3n+nJA,,, 

> M4+n4 ’ 

eqn (18) becomes 

d2w 
-@- +6w+&5(<wZ+ w3) = qf cos (Of/O(J 

(21) 

(22) 

which is the well-known DuJing’s Equation with an additional quadratic spring term. As 
in Nayfeh and Mook (1979), considering the case q, = 0, taking E as a small parameter and 
using Lhtistedt-PoincurP’s perturbation method, we get that the ratio of the nonlinear to 
linear free vibration frequencies n/C&@: = 6) is related to the vibration amplitude A in 
the form 

n/n, = 1 +qA2- 15c2A4/256, (23) 

where 

q = 3~/8-5<~~~/12. (24) 

The result here is same in the form as that obtained by Hui (1984a) ; however, from the 
equations in (21), the parameters E, 5, therefore q are now random variables. Note that the 
random parameter q is a characteristic parameter for the dynamic behavior of the plates, 
since, at least in the case of sufficiently small values of the vibration amplitude A, the 
nonlinear hard-spring or soft-spring characters can be indicated by positive or negative 
values of the random parameter q, respectively. 

5. MONTE CARLO SIMULATION AND NUMERICAL RESULTS 

As shown by formula (14), having S realizations of random vector {B;, we obtain the 
same number of realizations of {A}, i.e. the realizations of plate samples. This simulation 
technique is applicable for homogeneous as well as for nonhomogeneous random pro- 
cesses with the given mean and autocovariance functions. 

For a numerical example, assume the random initial imperfection is fully separable, 
and the autocovariance function is of exponential-cosine type in both the X- and y-direction, 
i.e. the dimensionless autocovariance function is 

R(x,,x~) = A’exp(-A,Ix, -+I -4421~1 -~zl)cos B,(x, -x,)cos Bz(y, -yJ. (25) 

The mean function is taken as 

E[w,] = ~1 sin Knx sin 17~~ ; (26) 

this form emphasizes the effect of imperfection mode (k, I). 
Substituting the two functions into eqns (9), (12), we obtain expressions for A, and 

bijk- as fOllOWS : 
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Fig. 1. Histogram of frequency. 
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Fig. 2. Histogram of frequency. 

(271 

AA3i+2i~B + i AliA&-AaA:i 

Ai Ai Ai 
+2B AGli 

> 

Zij(A, B) = +A11A2i-A* Gzi 
> 1 i =/, 

i#j 

Aki = B-(-l)“in, A(z+kji = A*+Azi, A(d+k)i = A*-Aii, Ai = A3,Ad1, k = 1,2. 

pi = 2ABGki-(A* -AliAa)Gz, Gli = (-l)‘e-“sin B, Gzi = (-l)‘e-A~~sB-l. 

Equation (27) is analogous to Elishakoff’s formula for the simply supported beam in 
Elishakoff [1983, eqns (10.84) or (11.36)]. 

The calculations are carried out for various types of mean imperfection and vibration 
mode. The Monte Carlo Method (Mihram, 1972) is applied to generate 500 realizations of 
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Fig. 3. Histogram of frequency. 
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Fig. 4. Histogram of frequency ratio. 

the random vector (B) ; thus the same number of plate samples are “created”. The 
parameters of the simulated plates are fixed at v = 0.3, A, = A2 = 42, B, = B2 = IC, 
A* = 0.005. For each plate sample a deterministic vibration analysis is performed. Some of 
the simulation results are shown in Figs l-8 (AZ = 0.5, k = I = 1, Nr = Nz = 8 for all 
figures). 

The numerical results show that the degree of divergence of frequency (i.e. the deviation 
from the normal concentration of frequency) increases as the fundamental vibration mode 
(m, n) or the mean imperfection amplitude ~1 increase (Figs l-3). More interesting, for the 
given vibration mode (m, n) and mean imperfection mode (k, I), there exists a specific value 
pC of p ; the degree of divergence of frequency ratio Q/Q,, is significantly high near pC and 
significantly low far away from pC (Figs 4-6). In the case (k, I) = (m, n), considering only 
the vibration mode S(m, n) term in the geometric imperfection series (15), we can find 
approximately this specific mean imperfection amplitude value to be 

The simulation has shown that q is small when p = pC, which means the vibrational behavior 
is very sensitive near the region p = pC. 
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Fig. 7. The frequency reliability. 
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Fig. 8. The hardening type probability. 

The reliability function is defined as the probability that the random natural frequency 
of a plate structure is greater than a specific frequency value. The reliability function 
measures physically the reliability that no consonance would occur when the structure is in 
the environment of the specific vibration frequency. A more general definition of the 
reliability function, i.e. the probability that the random natural frequency Lies in some specific 
region, can also be considered. The retiability function of frequency distribution at p = 0.7 
and m = n = 1 is given in Fig. 7. For example, the reliability of R > 1.14 is 0.712, i.e. 
Prob(R > 1.14) = 0.712. The hardening type probability is defined to be the probability 
that the vibration behavior of a given plate is of hardening type. Figure 8 gives the hardening 
type probability as a function of the mean imperfection amplitude p at m = n = 1. The 
probability curve indicates clearly that for small imperfection amplitudes 01 < 0.6) most of 
the plates are of hardening type (since Prob [plate is hardening type1 p < 0.61 > 0.5) and 
for large im~rfection amplitudes (,u > 0.6) most of the plates are of softening type (since 
Prob [plare is hardening type 1 p 2 0.61 < OS), a result consistent with the works on nonlinear 
vibrations of the perfect plates @ = 0) in Chu and Herrmann (1956), Yamaki (1961) and 
Prathap and Varadan (1978), and the corresponding works for imperfect plates (p = OS) 
in Hui and Leissa (1983a, b) and Hui (1983, 1984a). 

According to the Kolmogorov-Smirnov test (Massey, 195 1) of goodness of fit at a level 
of significance of 0.05 the critical value of the maximum absolute difference between the 
unknown theoretical and obtained simulated distributions of 0 and Q R, is 1.361 

J---- 500 = 0.0608. 

6. CONCLUSION 

A statistical method using the Monte Carlo technique for the analysis of the effect of 
random initial geometric imperfections on the vibrational behavior of rectangular plates is 
presented. The proposed method is adequate and practical to deal with the uncertainties of 
the realistic imperfections and can be used to solve the random geometric imperfection 
representation and the corresponding vibration analysis in a unified way. The Monte Carlo 
analysis performed for the simply supported plates illustrates how to use the proposed 
approach to calculate the frequency reliability function and the probability by which a plate 
behaves like a hard-spring or a soft-spring, the two characteristics which can be used to 
describe quantitatively the effect of random geometric imperfections on the vibration 
behavior of the plates. 
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