
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4, JULYIAUGUST 1991 777

A Petri-Net Coordination Model for an
Intelligent Mobile Robot

Fei Yue Wang, Member, IEEE, Konstantinos J. Kyriakopoulos, Member, IEEE,
Athanasios Tsolkas, Member, IEEE, and George N. Saridis, Fellow, IEEE

Abstract-A Petri net model of the coordination level of an
intelligent mobile robot system (IMRS) is presented. The purpose
of this model is to specify the integration of the individual efforts
on path planning, supervisory motion control, and vision system
that are necessary for the autonomous operation of the mobile
robot in a structured dynamic environment. This is achieved by
analytically modeling the various units of the system as Petri
net transducers and, explicitly representing the task precedence
and information dependence among them. The model can also be
used to simulate the task processing and evaluate the efficiency of
operations and the responsibility of decisions in the coordination
level of the intelligent mobile robot system. Some simulations
results of the task processing and learning are presented in the
paper.

I. INTRODUCTION
URING THE PAST DECADE, considerable research D effort has been focused on various problems related to

mobile robots, such as control [5], path planning [9], [20],
navigation [8], [26], obstacle avoidance [2], vision [16] and
architectures [3] , [17], [25]. However, little effort has been
reported on the integration of the above areas and especially on
the formal specification of the entire architecture of the mobile
robot systems. As a result, the task priorities and information
dependence among the principal parts of a system are not
clear and therefore the problems of synchronization and delay
analysis among them cannot be well addressed.

A two robotic arm platform with primary purpose assembly
operations is currently under development in the NASA-
Center of Intelligent Robotic Systems for Space Exploration
(CIRSSE) at Rensselaer Polytechnic Institute. This test bed
is going to be assisted by mobile robots, fetching assembly
parts and/or providing additional visual information at the
assembly regions using cameras that are mounted on them.
Such an environment will contain a number of moving entities
(arms, mobile robots, parts, etc.). Therefore the need for an
autonomous intelligent mobile robot system (IMRS) that can
efficiently and safely perform the assisting tasks is eminent.
The IMRS should be therefore provided with a sensing system
and a local decision making unit that will enable it to plan its
motion and avoid obstacles.

Manuscript received January 27, 1990; revised June 18, 1990, February 8,
1991, and March 23, 1991. This work has been supported in part by the NASA
Center for Intelligent Robotic Systems for Space Exploration (CIRSSE), and
in part by a fellowship of Alexander Onasis Foundation.

The authors are with the NASA Center for Intelligent Robotic Systems for
Space Exploration Rensselaer Polytechnic Institute Troy, NY 12180-3590.

IEEE Log Number 9100404.

Dispatcher f l
Coordinator

XEGUT80N E V E

Fig. 1. The structure of intelligent machines.

Such capabilities require the integration of the sensing activ-
ities with the decision making processes related to path plan-
ning, supervisory motion control, navigation, etc. The frame-
work of IMRS, based on the theory of hierarchical intelligent
control [21], [23], [24], consists of the three major levels, the
organization, coordination and execution shown in Fig. 1.

The organization level (the task organizer) generates higher
level motion tasks for IMRS to accomplish the required task.

The coordination level serves as an interface between the
organization and execution level. This level consists of one
dispatcher and several coordinators. The dispatcher receives
the task plans from the organizer, decomposes the tasks of a
plan into coordinator-oriented control actions with qualitative
requirements and then dispatches them to the corresponding
coordinators. The coordinators translate the control commands
further into the operation instructions and load them down to
the appropriate execution devices in the execution level for
real-time execution.

The execution level executes the instructions coming from
the coordination level and reports the results to it.

In CIRSSE, several projects have been conducted on the in-
dividual areas related to mobile robots, and that are integrated
in this work.

1) The Extended VGraph Algorithm [4] has been suggested
for path planning.

0018-9472/91$01.00 0 1991 IEEE

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4, JULYiAUGUST 1991

The Hough Transform has been implemented [27] for
visual detection and kinematic estimation of moving
objects,
The Supervisory Control Strategy for Navigation of Mo-
bile Robots in Dynamic Environments [12] has been
developed to integrate path planning with vision and
tracking control, and
The Coordination Theory for Intelligent Machines [30]
has been established to integrate the above individual
efforts efficiently to form the final IMRS.
formalize the integration of the IMRS, one has first

to select a proper model as the basic module. Finite states
machines (FSM's) have already been used by Brooks [3] to
describe the basic modules of the mobile robot system that
he proposed. However, since the connection of several FSM's
is no longer a FSM, the communication specification between
modules can not be achieved using the FSM framework. To
accommodate this, Brooks [3] has recently endowed his FSM's
with registers and timers. Since Petri nets were originally
introduced to describe the communications of finite state
machines, we believe that Petri nets are more suitable to
specify mobile robot systems. The primary purpose of this
paper is to develop a Petri net model for coordination of IMRS
based on the coordination theory of intelligent machines [31].

The coordination level of IMRS is composed of one dis-
patcher and three coordinators: a path planning coordinator,
an obstacle avoidance and tracking control coordinator, and a
vision system coordinator. The dispatcher and the coordinators
have been modeled as Petri net transducers and the coordina-
tion structure constructed by those transducers has been used
to represent the task dependence in the coordination level. The
task processing and learning in the coordination level of IMRS
has been simulated using this model. The main contribution
of this work is to show that,

1) Petri nets can be used as basic modules of a mobile
robot system.

2) The communication or connection of modules can be
efficiently specified within the Petri net framework.

3) A control and communication mechanism for task co-
ordination of a mobile robot system can be established
based on a Petri net model.

Section I1 introduces the Petri net model for coordination of
intelligent machines and some coordination process properties.
A layout of the architecture of the coordination level of
IMRS and a description of its units, along with their Petri
net transducer models is presented in Section 111. The system
integration and task execution procedure based the Petri net
model are also specified in this section. The task simulation is
performed and the results are presented in Sections IV and V.
Finally, Section VI concludes the paper.

11. COORDINATION THEORY OF INTELLIGENT MACHINES

The coordination level of intelligent machines is composed
of one dispatcher and a number of coordinators (Fig. 1).
The dispatcher receives the task plans (i.e., the sequences of
tasks) from the Organizer, translates the plans into coordinator-
oriented control actions and then dispatches them to the

corresponding coordinators. A coordinator, just after it gets the
control commands from the dispatcher, translates them into the
operation instructions and sends them down to the appropriate
execution devices of the execution level for real-time execu-
tion. The process of task translation is continued until the job
issued by the Organizer is completed. A coordination theory
for such operation has been developed [30] based on a formal
model of the coordination level of Intelligent Machines that is
called coordination structure.

A. The Coordination Structure (CS)

The basic construction module for coordination structures is
Petri net (PN). A Petri net N = (P, T , I , 0) consists of a finite
set of places P , a finite set of transitions T, an input function I ,
and an output function 0. The set of places describes the states
of the system, and the set of transitions defines events that can
change the states of the system. The input function specifies the
preconditions for each event to occur and the output function
gives the effects of the occurrence of each event. A place
may contain a nonnegative integer number of tokens. The
state of a Petri net is represented by its markings, i.e., the
distribution of tokens among its places. Petri net has been
proved to be an excellent tool for system modeling, especially
when concurrency and conflict are involved [18].

However, the ordinary Petri net model is incapable of
describing language translation. Therefore, in order to use
Petri net to implement the linguistic decision schemata [22] for
describing the task translation processes in the dispatcher and
the coordinators, the Petri net transducer (PNT) is introduced
[28]. A PNT= (N , C, A, u, ,xl F) is a language translator that
translates a given input task plan into an output task plan.
The Petri net N = (P, T , I , 0) of PNT is the controller of
translation. p is the initial marking of N, i.e., the initial state
of PNT. C is the input alphabet represented input tasks, and
A is the output alphabet represented the output tasks. u, the
translation mapping from T x (C U {A}) to finite sets of A*
(where X is the empty string and A* is the set of all finite
length strings over A), specifies for a given input task the
processing transitions in N as well as the output subtask plans
that may be used for that task. Finally, F is a set of final
markings indicating the termination of the task translation.
Two PNT's can be combined together to perform the task
translation according to the rule of synchronous composition.

A coordination structure (CS) is then constructed by inte-
grating the Petri net transducer models of the dispatcher and
coordinators of the coordination level using a set of connection
points, formally,

CS = (0, C, F, RD, SO, Rc, Sc)
where

the dispatcher D = (Nd, E,, A,, U d , p d , Fd) is a PNT
with a Petri net Nd = (Pd. T d , Id. od);
the coordinators C = {C,, C2, . . . , Cn}, n 2 1. Each
coordinator C, is a PNT C, = (N i , E:, A:, a:, p:, F,")
with Petri net N," = (E',", T,", I:, 0:);
the connection points F = u:="=,f;, f h I , fh , fro}.
f ; , f& and fi0 are the inputpoint, inputsemaphore,
output point, and output semaphores of C,, respectively.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

WANG et al.: PETRI-NET COORDINATION MODEL FOR AN INTELLIGENT MOBILE ROBOT

~

779

4) the dispatcher receiving mapping RD and sending map-
ping So: mappings from T d to subsets of F that satisfy
the following connection constraints:

a) (t ,fi) E S D * (t , f h ~) E RD,(t , f&) E R D @

(t,f&) E SO;
b) (t 3 . f ;) f R D , (t , f &) e R D I (~ , ~ &) $

S D , (t , & I) $ S D ;
c) for any firing sequence s of transitions in Nd,

o ~ # { t I t in s, (t , fj) E SO)-
#{t’ I t’ in s, (t’, f&) E &) I n; + 1

where R; 2 1;
for any fj and f&, there exist t and t’ E Td such
that (t , fj) E SD and (t’, f&) E RD.

5) The coordinator receiving mapping Rc and sending
mapping Sc: mappings from T, = U&l T: to subsets
of F that satisfy the following connection constraints:

d)

a) (t ,f&) E sc @ (t,fio) E Rc (tlfhI) E

b) (t,f&) e R c , (t , . f &) e R c , (t , f j) e SC ;

sc, (6 fho) sc.
The receiving mappings RD and Rc specify the way in

which the dispatcher and coordinators receive information
from the connection points F . The sending mappings SD
and SC specify the way in which the dispatcher and coor-
dinators send information to F . Therefore, they define the
configuration of the connection between the dispatcher and
the coordinators of the coordination structure. The connection
constraints guarantee that each coordinator Ci is bidirection-
ally connected with the dispatcher D. D can issue tasks
to Ci only when Ci is available and Ci can report the
execution result to D only when the communication facility
is ready. The number ni represents the task buffer capacity
of c;.

Various connection patterns can be designed by using dif-
ferent receiving and sending mappings. A simple connection
configuration has been selected for the coordination level of
IMRS by imposing the following additional conditions: 1) Ci
only accesses its own connection points; 2) there is only one
initially enabled transition, ti: in Ci with (t i , f j) E Rc; 3)
there is only one transition, t i , in C; with (t > , f &) E Sc; 4)
only t) has its output place as the input place of ti. A CS
with these properties is called a simple coordination structure.

A coordination structure CS is operated by applying the
standard execution rule of Petri nets to a Petri net derived
from CS. This Petri net, called the Petri net underlying CS,
specifies the precedence relationships of the task activities in
the dispatcher and coordinators and therefore defines the infor-
mation structure of the entire coordination level. The formal
specification of the underlying Petri net is the following:

Od(t) u{f I (t , f) E SO) if t E Td
o:(t) U{f I (t , f) E SC} if t E T,;

~ (p) or pt(p) for P E Pd or P 6 f‘:

O(t) =

and the initial marking of N is

P (P) = ni for p = fkI or fk0
i 0 otherwise.

The underlying Petri net N also provides a way to use
concepts and analysis methods of Petri net theory to study
the process properties of the coordination level, such as
liveness, boundedness, reversibility, consistency, repetitive-
ness, etc. The following two theorems give the results about
the boundedness and liveness of the simple coordination
structures.

Theorem 1: The Petri net N , underlying the CS, is bounded
if all Petri nets Nd, N,!, i = 1, . . . , n are bounded.

Proof: Reminding that R (N , p) represents the reacha-
bility set of N and from the definition of the receiving and
sending mappings we obtain that Vm E R (N , p) e m(p) 5
1zi if p E F . Since Petri nets Nd, N:, i = 1,. . . , n are closed
subnets of N , it follows immediately that the restriction of
R (N , ,U) on Pd is a subset of R(Nd, , U d) and the restriction
of R (N , ,U) on P: is a subset of R(N,!, p i) . Therefore,
the boundedness of Nd, N,!, i = 1,. . . , n guarantees the
boundedness of the underlying Petri net N . It is also easy
to show that when ni = 1, i = 1, . . . , n, the safeness of Nd,
N,!, i = 1,. , , , R will guarantee the safeness of N . Note that
the boundedness of N guarantees the structural stability of the
coordination level. Q.E.D.

Theorem 2: The Petri net N , underlying the CS, is live if
all Petri nets Nd, N:, i = 1, . . . , n are live.

Proof: By connection constraint (4d), for each Ci there
exist transitions in Nd that take fj and f& as their input and
output places in F , respectively. From the definition of simple
coordination structures and constraint (Section V-A), t) takes
both f& and fiI as its output places. Since only t) has its
output place being the input place oft”, , it is guaranteed that if
a number of tokens is displaced into fj, the same number of
tokens will appear in f& when N,! is live. Therefore, in order
to show N is live, we only need to show that Nd as a subnet
of N is a live Petri net.

Let m E R (N , p) be an arbitrary marking; R (N , m, k) be
the set of markings reached from m by firing at most k transi-
tions in T d . Let md and & (N , m, k) be the restrictions of m
and R (N , m, k) on Pd, respectively; and R(Nd, md, k) be the
set of markings reached from md by firing at most k transitions
in Td when Nd is considered as an independent Petri net. Let
T (k) be the set of transitions in Td that are enabled under
R (N , m , k) and T’(k) be the set of transitions in Td that
are enabled under R(Nd, md, k) when Nd is considered to be
independent. We first prove that Rd(N, m, I C) = R(Nd, md, k)
and T (k) = T’(k) for any k 2 0.

When k = 0, Rd(N,m,O) = m d = R(Nd,md,O), and,
obviously, T’(0) 2 T(0) . Let t E T’(0) be an enabled
transition with respect to Nd. If (t , f;) $ SD and (t , f&) $ RD
for all i, then it is clear that t is also enabled by m, therefore
t E T(0) in this case. When (t. f j) E So, let s be the firing

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

780 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4, JULYIAUGUST 1991

sequence of transitions from p to m, k i be the number of
transitions t’ in s such that (t’, f j) E So, k i be the number
of transitions t” such that (t”, f &) E RD, p i s be the number
of tokens in f j s , p& be the number of tokens in f & , and k i
be the number of firings by transition t;. Since there are ni
initial tokens in f j s and fhS, respectively, we have

p i s = n; - k i + k>
kk 5 k) 5 min{ki,ni + kk}.

However, by connection constraint (4c), in this case:

o 5 k i - kk 5 ni

that imlpies min{ki, ni + k k } = k i . Therefore, t) can be
fired enough times such that p i s > 0, which indicates that t
is enabled under m, i.e., t E T(0). Similarly, when (t , fh)
E RD, we have

p b = k> - k k

The constraint (Section IV-C) indicates in this case

1 2 k i - k i 5 n; + 1

which implies min{kk, ni + k k } 2 k k + 1. Therefore, t) can
be fired enough times such that p b > 0, hence t E T(0) . In
all the cases, t E T’(0) + t E T(O), therefore T/(O) = T(0) .

Assume that Rd(N, m, k) = R(Nd, md, k),T’(k) =
T(k)fork 5 q. Clearly, Rd(N, m, q + 1) = R(Nd, md, q + 1)
follows immediately from T’(q) = T(q) . Since T’(q + 1) 2
T(q + l), by the same procedure used in the proof of “(0) =
T’(O), we can show that T(q + 1) 2 T’(q + 1). Hence
Rd(N,m,k) = R(Nd,md,k) and T (k) = T’(k) for any
k 2 0.

Since Nd is live, every transition can be enabled by firing
some transitions from md in Nd. Since Rd(N,m,k) =
R(Nd, md, k) and T (k) = T’(k) for any k 2 0, we see that
the same transition can also be enabled after the same number
of firings of transitions from m in N . Therefore, N is live.

Q.E.D.
The liveness of N insures the absence of deadlock in the

coordination level.

B. Decision Making in the Coordination Structure

The decision makihg in the coordination level is achieved
in three steps: task scheduling, task translation, and task
formulation. Task scheduling is the process of identifying the
appropriate tasks to be executed for the requested job. Once
a task is located, task translation takes place by decomposing
the task into a subtask sequence and, after assigned with real-
time information through task formulation, executing subtasks
or sending them to the corresponding infimal units. In terms
of PNT, the problem of task scheduling and translation for a
given task a is to find an enabled transition t such that the
translation mapping a(t , a) is defined and then select the right
translation string from a(t , a) for t.

Let QT and Q D be two queues to be used to store
the unexecuted tasks and the delayed tasks, respectively.
Let ZI = a1a2.. .a, be a task plan to be executed. Based
on the execution rule of Petri nets, a simple and uniform

. . -~

scheduling procedure for task scheduling of the dispatcher and
coordinators can be defined:

Scheduling procedure (SP):
1) QT := a1.a2,. . . , a,,
2) IF QT is empty THEN STOP;

4) IF there exists a t E T(u) and t is enabled by firing t ,

5) IF there exists an internal operation sequence e E T,*
such that a t E T (u) is enabled by firing e, THEN firing
e.t, GO TO 7;

6) ~ (Q D , U) , IF QT is empty THEN QT := QD and N (Q D) ,

7) IF Q D is not empty THEN QT := U (Q D , Q T) and

where F (Q) returns and deletes the first element of Q; I (Q , U)

inserts U to Q at the end of Q; U(Q1 , Q2) unifies Q1 and Q2
by placing Q2 at the end of Q1; and N (Q) empties Q; Q, Q1,
and Q2 are queue variables. T(u) = { t : a(t ,u) is defined}
is the set of transitions that are capable of processing task U .

TO = { t : a(t , A) is defined or a(t , .) is not defined}, called the
set of internal operations, are the transitions that can be called
to change the internal state of a transducer without processing
any input task.

The information for task translation of a transition includes
the task to be executed as by the translation mapping a, the
current relevant status of the transducer as specified by the
input function I , and the feedback from the infimal units
through the receiving mapping R. The transition will notify
its task translation decision to those transitions specified by
the output function 0, and send it to the other units through
the sending mapping S .

A passive approach for task translation has been adapted in
the present work, i.e., a fixed number of different translations
for a transition are predetermined and the translation is just
to select one of them according to the situation encountered.
Since it is impossible to get analytic formulas required for per-
formance evaluation, a random strategy and learning approach
have used for task translation. For a transition t , let Mt =
Ela(t ,a) l be the number of translations designed for t and
Nt be the number of situations distinguished by the transition.
Consider a matrix of subjective probabilities, (P , ~) M ~ x ~ t . The
decision rule of the task translation for choosing a translation is

Decision Rule (DR): When situation j , j = 1,. . . , Nt,
is observed, choose a translation string s, using a random
strategy with the subjective probability p t 3 , i = 1, . . . , Mt.

A random cost function is associated with each translation.
After each execution of the action specified by s, for situation
j , the cost estimates and the subjective probabilities will be
updated according to certain learning algorithm. This issue
will be discussed in detail in the task simulation of Section V.

Using the execution rule of Petri nets, the scheduling
procedure SP, and the decision rule DR, we can establish
a uniform task execution procedure for the dispatcher and
coordinators to manipulate the control and communication
among them during the task processing of the coordination
level [31].

QD := 4;

3) U := F (Q T) ;

GO TO 7;

GO TO 2;

N (Q D) , GO TO 2.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

WANG et al.: PETRI-NET COORDINATION MODEL FOR AN INTELLIGENT MOBILE ROBOT

-

781

TAAC-I Coordinator
MVP-WE

Fig. 2. Implementation of IMRS.

111. SYSTEM DESCRIPTION AND PETRI NET
MODEL OF THE COORDINATION LEVEL

The mobile robot used for the IMRS is a Labmate of TRC.
The robot will be able to perform motion tasks with the
ability of avoiding unexpected moving objects in a structured
environment. The SMRS is composed of three main levels
namely, the organization level, the coordination level, and the
execution level. The Organizer, in the organization level, issues
higher level task plans in the form of ordered strings of tasks
to the coordination level to accomplish the tasks assigned
for IMRS. After receiving task plans from the Organizer,
the coordination level translates them to real-time operation
instructions and then gives these instructions interactively to
the devices of the execution level. The execution level will
execute the instructions and report the execution results to the
coordination level.

The focus of this paper is on the coordination level, which
consists of one dispatcher (DSP) and three coordinators: a
path planning coordinator (PPC), an obstacle avoidance and
tracking control coordinator (OATC), and a vision system
coordinator (VSC), as depicted in Fig. 2. Since only task plans
from the Organizer are concerned here, these plans have been
generated by a given task grammar.

To facilitate the design and implementation of the mobile
robotic system, the system specifications have been divided
into two levels of abstraction. At the higher level of ab-
straction, the qualitative aspects of behavior of the system
are represented by considering only the set of possible se-
quences of tasks and the precedence relationships among them.
At the lower level, the quantitative aspects of behavior of
the system are described by providing all the operational
procedures invoked with the specific parameters. Since the
interest here is focused on the coordination level of IMRS,
only the higher level specification has been considered. The
coordination structure described in Section IS is used to specify
the coordination level.

Four tasks for the coordination level have been defined: 1)
wmu:3-D world memory update; 2) mod: moving obstacles
detection; 3) pp: path planning; 4) moac: moving obstacle
avoidance and tracking control. The one-step task plans from
the Organizer have been generated by the grammar

G = (S , N , Eo, f‘)
where CO = {wmu, m o d , p p , moac} is the set of terminal
symbols; S is the start symbol; N = {S, A , B , C, D} is the
set of nonterminal symbols; and

P = { S + wmuA, A -+ p p B , B + modC, C +

moacD I moac, D + B I S }

is the set of production rules.
In order to be able to concurrently execute the present

motion task and do path planning for the next motion task,
two-step task plans are constructed using one-step plans by

T S = L(G)(JL(G)

where L(G) is the language generated by grammar G and 1 1
is the concurrent operator between two languages [18]: T S is
the set of task plans to be processed by the dispatcher.

A. The Dispatcher (DSP)

1) Unit Description: The dispatcher deals with the control
and communication of the three coordinators. It is mainly con-
cerned with the problem of which coordinator should be called
for a given task (task sharing) and/or be informed by the result
of recently completed execution (result sharing). The control
and communication is achieved by translating a given task
plan to a sequence of control commands with the necessary
information and dispatching it to coordinators. The process of
translating and dispatching is performed interactively between
the dispatcher and the coordinators. After the completion of all
the required tasks, the dispatcher will formulate the feedback
information to the Organizer.

The dispatcher (as well as the Organizer) is physically
sited on a Sun 41260 workstation based on a 10 MIPS Sparc
processor (RISC architecture) with 8 Mbytes of main memory
and 892 Mbytes hard disk at CIRSSE. The command and
data transmission between the dispatcher and coordinators is
realized through Thinnet, a local network version of Ethernet.

2) Petri Net Model: In order to process the task plans gen-
erated by the grammar G, the dispatcher given by the Petri
net in Fig. 6 has been designed (the links connected with any
of the places I , I S , 0, and OS are ignored at this point). A
description of the individual transitions follows.

t ,

t,,,

tpp

initialize the dispatcher when a task is received
from the Organizer.
issue command to perform “3-D world memory
update’ ’ process.
issue command for path planning and provide
constraints (space, kinematic, dynamic, etc.,) and
optimization criterion
issue command for moving obstacle detection
within the specified space and provide accuracy
and time requirements.

tmod

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

782 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4, JULYIAUGUST 1991

t,,,, issue command for moving obstacle avoidance and
tracking control.

tmte perform motion task evaluation. In case the
execution is failed, determine an appropriate
sequence of transitions to continue the motion
task.
formalize feedback required by the Organizer.
continue motion task along the original path.
continue motion task along a new path.
report the result of motion task execution to the
Organizer.

t f bo
t,,,
t,,,
tf

3) Task Translation and Specification: The input alphabel
of the dispatcher is C O , and the output alphabet is

A, = C, = C, U E, U C,

where
C, = {path}
C, = {freemove, move}
C, = {sendinfo, detection, terrain}

are the input alphabets to the path planning, obstacle avoidance
and tracking control, and vision coordinators. The tasks in
these alphabets will be defined later in the specification of the
corresponding coordinators.

The translation mappings in the dispatcher are:

o(twmu3 wmu) = {terrain(mmo;, art i) i = 1 , 2 , . . .}
where mmo;: minimum magnitude of the objects to be con-
sidered. art;: accuracy requirements about detected objects in
terrain exploration mode:

4 ~ , , , P P) =
{path(mss;,prpi, dct;,gcc;,poc;) i = 1 , 2 , . . .}

where mss; is the margin of safe distance from static ob-
stacles. prp; is the preferred region for the path. dct; is the
dynamic constraints of the robot expressed in terms of bounds
in torque. gcc, is the geometric constraint in terms of bounds in
curvature of F (s) ; and poc; is the parameters of optimization
criteria. That is, values for the parameters of the following
cost function:

J = L T f (C t + c, . 11u112) d t .

where Ct and C, are weighting factors for time and energy,
respectively, and U is the control torque:

o (t m o d . mod) =

{detection.sendinfo(urdi,ptci),
sendinfo(ard;,ptc;) i = 1 , 2 , . . .}

where urd; is the accuracy requirements about detected objects
in moving object detection mode and ptc; is the upper bound
of processing time (results must be reported within that time).

o (t m o a c ? moat) =

{move(msmi; f t p ;) , freemove(ftp;) i = 1 , 2 , . . .}
where msmi: margin of safe distance with moving obstacles
and f t p i 'is the requirement about final execution time and
position.

Mcmcay-Updale
lnfonnation from
The Dispatcher

Commands from
The Dispatcher

1) Initial Position

2) Final Posilion

Off-Lme
Chartographic

(Smtic Environment) Path Planning Unit

Fig. 3. The path planning coordinator.

Note that there are two tokens in the initial place p,. This
will make the dispatcher capable of processing the concurrent
task sequences specified by T S = L(G)IJL(G).

B. The Path Planning Coordinator (PPC)

I) Unit Description: The path planning (off-line) coordina-
tor will solve the problem of finding a path between a start
point and a goal point, avoiding collisions with the static
obstacles and optimizing over some criteria (e.g., time) under
certain constraints (e.g., input constraints). A macroscopic
structure of this coordinator is given in Fig. 3. The cartographic
memory stores the geometric description of the environment
pertinent to the motion tasks.

A path is specified by its geometry through a configuration
function

F (s) E R2 s E [O? 11

and its motion trajectory through a nominal execution function

sn (t) t E [O,Tfl

where Tf is the total motion time. For reasons explained later,
it is also necessary to associate F (s) with two more functions,
namely, L (s) and R(s), denoting the distances of the obstacle
free segment of the line perpendicular to F (s) on the left and
right of F (s) , respectively, as s goes from 0 to 1. This is done
in order to have a notion of the free space along F (s) .

Several approaches are available for the calculation of F (s)
ands,(t) by the path planning coordinator [4], [7], [9]. The
2-D version of the Extended VGraph Algorithm by Chung and
Saridis [4] has been used here.

After the completion of path planning, the result will be sent
to the obstacle avoidance and tracking control coordinator for
execution.

It is obvious that the complexity of the problem is big and
the solution is obtained in an off-line fashion. This coordinator
is physically realized, at CIRSSE, on a Sun Sparc station with
8 Mbytes of main memory.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

WANG et al.: PETRI-NET COORDINATION MODEL FOR AN INTELLIGENT MOBILE ROBOT

From PPC

~

783

From VSC

Moving Obstacle's
Kinematic Information

2) Petri Net Model: The task to be processed by this coor-
dinator is a single task C p = {path}. The Petri-net model of
the Planer is in Fig. 7. The transitions of the coordinator are
as follows:

initialize the coordinator.
choose path from menu when there exists a F (s) in
the menu. of predetermined paths that satisfies the
imposed requirements mss,, prp, , gee, (defined in
Section 111-A).
build Grown Space Obstacles.
construct VGraph.
find a collision-free configuration function F (s)
(i.e., a collision free path) from VGraph with the
requirements mss,, prp, . gee, (defined in Section

determine execution function sn(t) (i.e., motion wrt
time along F (s)) based on the constraints dct, and
pot,.
find an alternate path. In case that no trajectory was
found to satisfy requirements, perform planning
with minimum possible loss.
acknowledge results of path planning to the
dispatcher and reset the input semaphore and the
start place p , .

111-A).

3) Task Translation and Specification: The translation map-
pings are

o(tcpm, p a t h) = { SearchMenu}
o(tgso, p a t h) = {BuildGSpacsObstacles}

o(tug, A) = {BuildVGraph}
o (t f p , A) = {SearchVGraph]
o(t e f , A) = {Trajectory}

where SearchMenu, BuildGSpacsObstacle, BuildVGraph,
SearchVGraph, and Trajectory are executable programs.

C. The Obstacle Avoidance and Tracking Control
Coordinator (OATC)

1) Unit Description: The obstacle avoidance and tracking
control coordinator supervises the execution of the motion task
of the robot. The structure of this coordinator can be seen in
Fig. 4. Three basic operations are involved in the coordinator:

1) utilization of the sensory input to adjust for local cali-

2) collision avoidance with the unpredictable objects of the

3) tracking control of the actual vehicle.
In order that these operations can be implemented in real

time the following items must be obtained:
1) the information from the off-line planning, i.e., func-

tions F (s) , sn(t) , L (s) , R(s) , must be available to the
coordinator,

bration errors with respect to the world,

environment.

Tracking
Conmoller

Fig. 4. The obstacle avoidance and tracking control coordinator.

2) some modeling simplifications, regarding the dynamics
of the mobile robot and the shape of the objects, have
to be made for the computation load reduction purpose.

In order to plan the path and control the vehicle efficiently,
the dynamics of the mobile robot has to be fully taken into
account. If the velocity S is bounded at each point of the
trajectory to avoid sliding and skidding, a complete dynamic
model of the mobile robot system is of the form [12]

where M is the mass of the robot, I is the moment of inertia
of the robot around the axis vertical to the moving plane, f (s)
is the curvature of the trajectory, and U is the input force into
the system that is actually bounded by

Umin 5 'ZL I umax.

This dynamic model satisfies the nonholonomic constraints of
the motion of the robot, because these were considered during
the off-line planning, when F (s) is defined. Furthermore, the
velocity j. has to be bounded at every point s of the trajectory
so that skidding is avoided. Rolling without slipping is satisfied
by appropriately steering of all the wheels of the mobile robot.
This is assured during the off-line planning stage.

For the representation of moving objects, it is assumed
that the shape of objects is satisfactorily described by
their convex polyhedral hulls [lo], or mathematically,
by

A . x I b

where x E E3.A E Elx3, b E R' and 1 denotes the
number of planes of the object. Although such a description

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

784 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4, JULYIAUGUST 1991

may be considered as crude, it satisfies the collision avoid-
ance requirements and assists the reduction of computation
load.

The major units in this coordinator are described briefly in
the sequel:

The distance prediction unit takes as input from the vision
system coordinator, the description of the polyhedral hull
form and the prediction of the rotational and translational
motion of a detected moving object. Combining them with
the corresponding information of the robot, it predicts the
minimum distance

between the robot C, and the moving object CO, during some
finite time horizon Th [7].

The collision prediction unit determines the likelihood of
having collision within time Th, as well as the expected
collision time T,. This is done by an enhanced version of
the accelerated expanding subinterval random search (AESRS)

The motion replanning unit calculates a new execution
function s(t)so that the expected collision can be avoided,
while s (t) stays as close as possible to sn(t) . An optimal
control strategy (OCS) proposed by Kyriakopoulos and Saridis
[12] has been used by this unit for motion replanning. Fur-
thermore, to enable the on-line implementation of OCS and
to accelerate its convergence, a strategy that is based on
the heuristic notion of either accelerate or deccelerate so
that avoidance is guaranteed, was implemented. This strategy,
the minimum interference strategy (MIS), is used to find an
initial guess for the new motion function. Generally, MIS is
computationally efficient and in most of the cases gives a close
to optimal solution. Its output can be used as an initial guess
to ocs.

When replanning of s (t) does not guarantee collision avoid-
ance, a local perturbation on F (s) within the bounds L(s) and
R(s) , will be performed by the path replanning unit.

This coordinator is implemented, at CIRSSE, on a Sun Sparc
workstation.

2) Petri Net Model: The tasks to be processed by this co-
ordinator are C, = {freemove, move}. The Petri-net is given
in Fig. 8. The transitions of the coordinator are as follows:

[111*

initialize coordinator.
execute nominal plan with the specification f tpi
(defined in Section III-A) in case of no moving
obstacle.
combine the motion information about a moving
obstacle and the robot and determine the time
horizon Th of interest during which the predicted
minimum distance between the object and the robot
is sought.
predict collision and estimate the collision time T,,
by the accelerated expanding subinterval random
search (AESRS).

t d m p perform motion replanning with the specifications
msmi and ftp; (defined in Section III-A). Combine
information about geometry F (s) of path, current
execution function s (t) , predicted minimum distance
d (t) , expected collision time T, and moving objects’
predicted trajectory, determine s (t) that can prevent
collision. First execute MIS to get a collision, free
initial guess and then feed the result to OCS.
perform path replanning with the specification
msm;. If there is no s (t) that prevents collision,
alter locally the geometry F (s) of the path. ttc:
optimally track the desired trajectory, as expressed
by both F (s) and s (t) . t f : report execution results
to the dispatcher.
report execution results to the dispatcher.

tpr

t f

3) Task Translation and Specification: The translation map-
pings are:

o(tnp, freemove) = {DownloadCurrentTraj}
o(t,, A) = { A E S R S }

o(tdp, move) = {DetermineTimeHor.PredictDistance}
o(tmrp, A) = {MIs.ocs}

o(tpr, A) = {GetFeasSpace.Replan}
o(ttc, A) = {InvKinematics.Trackangles}

where DownloadCurrentTraj etc., are are executable programs.

D. The Vision System Coordinator (VSC)
1) Unit Description: The vision system coordinator (on-

line) performs two basic operations: detection of obstacles,
and description of the detected obstacles as convex polyhedra.

This coordinator is hosted by a Sun 31260 workstation with
8 Mbytes main memory, 280 Mbytes of Hard disk. A MVP-
VME and a TAAC-1 boards are connected to the Sun-3 VME
bus through a bidirectional host bus interface. Two Javelin
cameras are employed by the coordinator. Fig. 5 gives the
architecture of the vision system.

The Matrox MVP-VME board is used as a frame grabber
and to perform basic image processing operations such as
filtering, edge detection, thinning, thresholding, etc. Since it
is assumed to use the convex polyhedra hulls to describe
the various objects, an algorithm was developed to process
their visual information. A Hough transformation is per-
formed to map the straight lines of the Cartesian space to
points in the parameter space, thus facilitating the tracking
of the moving objects in a fast mode [l], (61. A stereo
matching algorithm has been developed that matches object’s
features (edges and vertices) extracted from the left and
right view. Since the information on the moving points is
computed with noise, a Kalman filter has been added to
yield optimal estimates of tracking. The Hough transforma-
tion, stereo matching of the features and model construc-
tion are all performed on the TAAC-1 at a speed of 10
MIPS.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

WANG et al.: PETRI-NET COORDINATION MODEL FOR AN INTELLIGENT MOBILE ROBOT 785

1 - T U C - I I

Fig. 5. Vision system coordinator.
L

The Disoalcher

Fig. 6. Coordination structure for the mobile robot system

In the case of terrain exploration, similar operations have
to be performed for the static environment. This information
is used for the world map update. The features of the "new"
static objects, are compared to those included already in the
cartographic memory map. Decision is made on whether or
not these objects should be incorporated into the map.

The result of this coordinator is transmitted to the path
planning coordinator or the obstacle avoidance and tracking
control coordinator.

2) Petri Net Model: The tasks to be processed by this co-
ordinator are C, =sendinfo, detection, terrain. The Petri-net
of the vision coordinator is given in Fig. 9. The transitions of
the coordinator are as follows:

initialize the coordinator and pass task related
information.
calibrate the coordinate systems and find the
transformations.
set to the terrain exploration mode with the
requirements mmo; and art; (defined in Section

perform the terrain exploration operations.
Depending on the input (Fig. 9), either it updates
the map with information coming from the vision
system, or it searches the map for information
requested by the path planning coordinator.

t ,

teal

tcte

111-A).
tote

Fig. 7. Petri net model for the PPC.

set to the moving object detection mode. with the
requirements ptci and ardi (defined in Section

grab frames using both cameras and perform edge
detection, thinning, thresholding, and dilation.
These operations can be performed in parallel for
the right and left images.
calculate the analytic representation of the object's
features (edges, vertices) using Hough transform, on
each image.
match the features extracted from the right and left
image using stereo matching and calculate the range
by triangulation.
use Kalman filter to obtain the translational and
rotational kinematic parameters of the moving
object.
extend filtering process to predict the motion of the
objects in order to focus, rotate and elevate the
cameras to track the object, and move processing
window in image processing level.
acknowledge availability of extracted parameters of
moving object so as to continue to track object
(bidirectional arc).
report information to the dispatcher.

111-A).

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

786 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4, JULYIAUGUST 1991

I q p' p3 I

Fig. 8. Petri net model for the OATC

3) Task Translation and Specification: The translation map-
pings for this coordinator are

o(tcte, terrain) = { A }

o(t , ,d, detection) = { A }
o(tmp, sendinfo) = { SockSequentPacket}

o(tote, A) = (ExtractEdges.Form0bject .Matchobject}

o(ttpo, A) = { GrabFrame.Convolve.Threshold}
o(tsm. A) = {StereoMatch.Triangulation}

where ExtractEdges, Formobject, Matchobject, GrabFrame,
Convolve, Threshold, StereoMatch, Triangulation, SockSe-
quentPacket are executable programs.

E. Integration and Execution

The final coordination structure for IMRS is obtained by
integrating the PNT's for the dispatcher and the coordinators
through the sending and receiving mappings, which have
already been specified in the individual PNT's (Fig. 6-9).
The input point (I) , input semaphore (I S) , output point (0),
and output semaphore (OS) are physically realized through
common memory located on the Sun 4/260.

For each of PNT's for the dispatcher and coordinators, the
following execution procedure has been used to control its
operation:

Task Execution Procedure
1) Receive a task plan 'U = ' ~ 1 . . .'U,;
2) Use SP to find an executable task wi and a sequence of

3) For IC = i l to i, do:
transitions til . . . t,, to execute it;

Call D P to select a translation (subtask plan) U k

among o (t k ; wi) for the execution of t k ;

Remove tokens from the input places and displace
tokens to the output places of t k according to
the input and output functions, the sending and
receiving mappings;
Send U k to the input point of the coordinator
specified by the sending mapping;
Evaluate the execution result of U k based on the
feedback from the output points of c k ;

.
Fig. 9. Petri net model for the vision controller.

e) Update the performance estimates and subjective
probability for t k according to the learning algo-
rithms used;

4) Remove vi if it has been successfully executed;
5) Stop if no task left, go to step 2 otherwise.

where scheduling procedure S P and decision rule D R have
been described in Section 11.

IV. TASK SIMULATION SCENARIO

The purpose of this section is to simulate the task process
using the Petri net transducer model of the coordination level
of IMRS described in the previous section. The dynamics of
task process in IMRS have been simulated through traveling of
tokens in the places of the coordination structure. The motion
of tokens is controlled by the SP. The information associated
with the tokens is determined by the DR and execution
results. A linear refinement learning algorithm has been used
in the simulation to improve the performance estimates and
subjective probabilities in DR.

A simple scenario has been proposed for the simulation (Fig.
10): A mobile robot in a structured environment, is asked to
move from a starting position A to a final B. While it moves,
it should be able to avoid unexpected moving obstacles. The
environment is divided into two regions, R, i = 1,2. In the
region R,, it is assumed that a moving obstacle may come
with probability p:, through any of the entrances and at any
instant during the motion of the robot. A n obstacle appearing
at R, will move randomly toward one of the inside doors in
the same region, with either a "slow" or a "fast" speed. The
probability that a moving object in R, moves slowly is p:.
Note that only one moving obstacle may be allowed to show
up in a region during the one motion task.

The model described in Section 111-C has been used to
represent the dynamics of the robot Labmate in this simulation.
Input to the vision system is the simulated images created
by setting intensity values contaminated with white noise to
all the points of the image plane that correspond to objects
(represented by convex polyhedral hulls). The origin of the
vision coordinate system is taken at the center of the left image
plane. The vision coordinator is asked to extract the edges of
objects and to calculate their 3-D representation. Output of this
coordinator is the coordinate information of moving objects
required by obstacle avoidance and tracking control.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

WANG et al.: PETRI-NET COORDINATION MODEL FOR AN INTELLIGENT MOBILE ROBOT

-

787

TABLE I
EVENTS, A V ~ R A G E MOTIOh TIMES. ,\ND RtLIABLlTlTES FROM SIMULATION

X i 8 2 RI U RZ
Number of Motion Tasks 38 12 50
Number of Predicted Collisions 28 10 38
Number of Collisions 2 1 3
Average Motion Times (s) 9.89 11.64 10.30
Estimated Motion Reliabiltiies 0.764 0.366 0.671

unpredictable I I object,
unpredictable

Fig. 10. Layout of the work cell for motion task simulation.

V. RELIABILITY MEASURES AND LEARNING PROCESS
The only learning performed in the task process is to let

the dispatcher decide the preferred region RI or Rz in which
the path planner should find a path. This decision is made by
the transition tpp of the dispatcher (i.e., by setting p r p = 1 or
2) . Let p; be the subjective probability to select R,, 1 = 1 . 2
@: + p: = 1). To learn the optimal decision, a reliability
function has been used as the performance criterion [15]. The
reliability of the decision made by t,, is defined to be the
probability for the robot to move from A to B within the
planned time T f . The reliability of the decision is estimated
and updated by the following algorithm:

R , (k , + 1) = R , (k ,) + p (k , + 1) . [R o b s (k i- 1) - @ k)]

where Robs is the observed value for reliability, Robs = 1
when the motion is succeed within T f , Robs = 0, otherwise. n the reliability estimate, and k, the number of times region
R, has been chosen. After updating the performance estimate,
the subjective probability is updated by the algorithm:

Pt(k + 1) = Pi (IC) + r(k + 1) . [€z(k) - Pk(k11.

1
0 otherwise

if R, = maxJ ri, & (k) = {
where k is the number of times the transition tpp has been fired.
The p (k) and y(k) are any series that satisfy Dvoretsky's
convergence condition [22].

The environment in the simulation has been assumed to
be py = 0.5 ,~" 2 - - 0.8, ps = 0.8, p ; = 0.2. Unitary initial
reliability estimates, uniform initial subjective probabilities

0.85, I

I
0 5 10 15 20 25 30 35 40 45 50

0.5 '
Number of Modon Task

Fig. 11. Learning cuwe of region RI

and P(n) = ~ (n) = 1/(10 + n) have been used. The motion
task from A to B within Tf=10.02 s has been repeated 50
times in the simulation. The simulation results are described
in Figs. 11 and 12 and Table I. The learning curve in Fig. 11
(i.e., the subjective decision probability p i versus the number
of motion tasks performed) indicates that the optimal region
for the motion is region RI , agrees with the observation that
RI > R p . Fig. 12 presents the distribution of the motion
times from A to B over the 50 motion tasks. Table I gives
the average motion times from A to B in the two regions,
the estimated reliabilities of accomplishment of motion tasks
within the specified time T f , and enumeration of events that
occurred during the simulation. Such events are motion tasks
performed on each region, collisions predicted and collisions
happened on each regions.

VI. CONCLUSION

This paper has presented an application example of the
general coordination theory for intelligent machines developed
by Wang and Saridis [30] in the area of intelligent robots.
The effort here has been focused on the specification and
integration of path planning, control, and vision systems that
are necessary for the autonomous operation of an intelligent
mobile robot. The goal guiding this work is to use the
formal model to explicitly represent the task precedency and
information dependency among the individual systems in the
coordination level of the IMRS. This work is only the first step
toward the completion of the IMRS at the NASA Center for
Intelligent Robotic Systems for Space Exploration (CIRSSE)
at Rensselaer Polytechnic Institute.

The Petri net model established has provided an analytic
framework for not only task simulation, but also performance

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

788 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4, JULYIAUGUST 1991

st

r

Motion Times (se)

Fig. 12. Distribution of motion times in simulation.

evaluation. The task simulation can be used to test and verify
the correctness and other qualitative properties of the system
softwares and control algorithms. The performance evaluation
can be employed to improve the system performance and
to guide the hardware selection. The simulation program
developed here will be expanded to include a Monte Carlo
work cell generator to model the environment uncertainty
and the SILMA CimStation to visualize the task process.
The performance evaluation can be conducted by associating
execution time with transitions of Petri net. The timed Petri net
obtained for the coordination structure can be used to evaluate
various performance indices to measure the efficiency of op-
erations and the responsibility of decisions in the coordination
level of IMRS, as have been demonstrated [13], [19].

REFERENCES

[1] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary
shapes,” Pattern Recog., vol. 13, pp. 111-122, 1980.

[2] S. Banner and R. B. Kelley, “Planning 3-D collision-free paths, CIRSSE
Tech. Rep. 29, Rensselaer Polytechnic Inst., Troy, NY 1989

[3] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE J. Robotics Automat., vol. RA-2, Mar. 1986.

[4] C. H. Chung and G. N. Saridis, “Obstacle avoidance path planning by
the Extended VGraph algorithm,” CIRSSE Tech. Rep. 12, Rensselaer
Polytechnic Inst., Troy, NY 1989.

[SI J. L. Crowley, “Asynchronous control of orientation and displacement
in a robot vehicle,” I989 Int. Con5 Robotics Automat., Scottsdale, AZ,
1989.

[6] R. 0. Duda and P. E. Hart, “Use of the Hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol. 15, no. 1, Jan. 1972.

[7] E. G. Gilbert and D. W. Johnson, “Distance functions and their appli-
cation to robot path planning in the presence of obstacles,” IEEE J.
Robotics Automat., vol. RA-1, Mar. 1985

[8] C. Isik and A. M. Meystel, “Pilot level of a hierarchical controller for
an unmanned mobile robot,” IEEE J. Robotics Automat., vol. RA-4, no.
3, June 1988.

[9] Y. Kanayama and S. Yuta, “Vehicle path specification by a sequence of
straight lines,’’ IEEE J. Robotics Automat., vol. RA-4, June 1988.

[lo] K. J. Kyriakopoulos and G. N. Saridis, “An efficient minimum distance
and collision estimation technique for on-line motion planning of robotic
manipulators,” NASA-CIRSSE Tech. Rep. 19, Rensselaer Polytechnic
Inst., Troy, NY, 1989.

[11] -, “Minimum distance estimation and collision prediction under
uncertainty for on-line robotic motion planning,” IFAC’90 Tallin Con-
gress, 1989.

[12] -, “A supervisory control strategy for navigation of mobile robots
in dynamic environments,” Ph.D. thesis, Rensselaer Polytechnic Inst.,
Troy, NY, Mar. 1991.

[13] A. H. Levis, “Human organizations as distributed intelligence systems,”
IFAC DIS’88, 1988.

[14] T. Lozano-Perez and M. Wesley, “An algorithm for planning collision
free paths among polyhedral obstacles,” Commun. ACM, vol. 22, no.
10, 1979.

[15] J. E. McInroy and G. N. Saridis, “Reliability analysis in intelligent
machines,” NASA-CIRSSE Tech. Rep. 39, Rensselaer Polytechnic Inst.,
Troy, NY, and accepted for publication by IEEE Trans. Syst., Man,
Cybern.

[16] H. P. Moravec, “Rover visual obstacle avoidance,” in Proc. 7th Int. Joint
Con5 Artificial Intell., Vancouver, BC, Canada, 1981.

[17] F. R. Noreils and R. G. Chatila, “Control of mobile robot actions,”IEEE
I989 Intern. Con5 Robotics Automat., Scottsdale, AZ, 1989.

[18] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 1981.

[19] J. Robinson and A. A. Desrochers, “Performance analysis of the CIRSSE
testbed control architecture,” NASA-CIRSSE Tech. Rep. 47, Rensselaer
Polytechnic Inst., Troy, NY, 1989.

[20] A. C. Sanderson and L. S. Homem de Mello, “Real-time planning
and intelligent control,” NASA-CIRSSE Tech. Rep. 31, Rensselaer
Polytechnic Inst., Troy, NY, 1989.

[21] G. N. Saridis, “Foundations of intelligent controls,” Proc. IEEE work-
shop on Intelligent Contr., pp. 23-27, Rensselaer Polytechnic Inst., Troy,
NY, 1985.

1221 G. N. Saridis and J. H. Graham, “Linguistic decision schemata for
intelligent robots,” Automatica, vol. 20, no. 1, pp. 121-126, 1984.

[23] G. N. Saridis and H. E. Stephanou, “A hierarchical approach to the
control of a prosthetic arm,” IEEE Trans. Syst., Man, Cybern., vol.
SMC-7, pp. 407420, 1977.

[24] G. N. Saridis and K. P. Valavanis, “Analytic design of intelligent
machines,” Automatica, vol. 24, pp. 123-133, 1988.

[25] R. P. Sobek and R. G. Chatila, “Integrated planning and execution
control for an autonomous mobile robot,” Int. J. Artificial Intell. in Eng.
vol. 3, Apr. 1988.

[26] M. Takano, S. Odaka, T. Tsukishima, and K. Sasaki, “Study on mobile
robot navigation control by internal and external sensor data with
ultrasonic sensor,” in Proc. IROS’89, Tsukuba, Japan, 1989.

[27] A. Tsolkas, “Visual motion detection using Hough transform,” Master’s
thesis, Rensselaer Polytechnic Inst., Aug. 1990.

[28] F. Y. Wang and G. N. Saridis, “A formal model for coordination of
intelligent machines using Petri nets,” in Proc. 3rd IEEE Int. Intell.
Contr. Symp., Arlington, VA 1988.

[29] __, “A coordination model for intelligent machines,” CIRSSE-TR-
89-15, Rensselaer Polytechnic Inst., Troy, NY, 1989.

[30] -, “A coordination theory for intelligent machines,” accepted by
IFAC J. Automatica, 1989.

[31] -, “The coordination of intelligent robots: A case study,” in Proc.
4th IEEE Intern. Intell. Contr. Symp., Albany, NY, 1989.

Fei-Yue Wang (S’89-M’90) was born in Qingdao,
China, in November 2, 1961. He received the B.E.
degree in chemical engineering from Shandong In-
stitute of Chemical Engineering, Qingdao, China,
the M.S. degree in mechanics from Zhejiang Uni-
versi:y, Hangzhou, China, and the Ph.D. degree in
computer and systems engineering from Rennselaer
Polytechnic Institute, Troy, New York, in 1981,
1984, and 1990 respectively.

From 1984 to 1986 he was an instructor at
the Department of Mechanics, Zheiiang University,

China. In 1986, he was awarded Pao Yu-Kong and Pao Zao-Long Scholarship
for Chinese Students for his academic achievement, Currently, he is an
Assistant Professor at the Department of Systems and Industrial Engineering,
the University of Arizona, Tucson. In his previous work in mechanics and
applied mathematics, he contributed significantly to the development of
theories of shell, plate, plane, three-dimensional elasticity, and micropolar
elasticity for both isotropic and anisotropic elastic materials. He is the
translator of the book Buckling ofElastic Structures (by J. Roorda) and the
author of more than 50 journal articles, conference papers, and technical
reports in the areas of applied mathematics, mechanics, computer science,
control, communication, robotics, and intelligent machines. His fields of
interest include robotic systems and computer integrated manufacturing,
intelligent control and intelligent machines, and theoretic computer science.

Dr. Wang is a member of Sigma Xi, Chinese Society of Mathematics and
Mechanics, and the ASME.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

WANG er al.: PETRI-NET COORDINATION MODEL FOR AN INTELLIGENT MOBILE ROBOT 789

Konstantinos J. Kyriakopoulos (S’8&M’9GS’91
-M’91) was born in Athens, Greece, on September
19, 1962. He received the Diploma in mechanical
engineering with Honors from the National Techni-
cal University of Athens (TNTUA), Greece in June
1985 .H~ received the M.S. degree and Ph.D. degrees
both in computer and systems engineering, in 1987
and 1991, from Rensselaer Polytechnic Institute,
Troy, NY.

Since 1988 he has been doing research at the
NASA Center of Intellieent Robotic Svstems for

Y

Space Exploration. From 1986 to 1990 he held various teaching and research
assistantship positions. His research interests are in the area of optimization
theory with applications in robotic motion planning and control.

He is a member of the Technical Chamber of Greece. He was awarded
the G. Samaras award of academic excellence from NTUA, the Bodosakis
Foundation fellowship (1986-1989) and the Alexander Onasis Foundation
Fellowship (1989-1990).

Athanasios Tsolkas (S’85-A’88) was born in
Athens, Greece, on August 29, 1964. He received
the Diploma in electrical and computer engineering
from the National Technical University of Athens
(NTUA), Greece, in 1988. He received the M.S.
degree in computer and systems engineering in 1990
from Rensselaer Polytechnic Institute, Troy, NY.

During the academic year 1989-1990 he was
a Research Assistant at the NASA Center of
Intelligent Robotic Systems for Space Exploration.
His research interests are in the are of Computer
Vision and Computer Architectures.

He is a member of the Technical Chamber of Greece.

George N. Saridis (M’62-SM’72-F’78) was born
in Athens, Greece. He received the diploma in
mechanical and electrical engineering form the Na-
tional Technical University of Athens, Greece, in
1955, and the M.S.E.E. and Ph.D. degrees from
Purdue University, West Lafayette, IN, in 1962 and
1965, respectively. In 1988 he was certified as a
Manufacturing Engineer for Machine Vision by the
Society of Manufacturing Engineering.

Since September 1981 he has been a Professor
of the Electrical and Computer Science Engineering

Department and Director of the Robotics and Automation Laboratory at
Rensselaer Polytechnic Institute. In 1973 he served as a Program Director of

System Theory and Applications at the Engineering Division of the National
Science Foundation. Since June 1988, he has been the Director of the NASA
Center for Intelligent Robotic Systems for Space Exploration at Rensselaer
Polytechnic Institute, Troy, NY. From 1955 to 1961 he was an instructor
in the Department of Mechanical and Electrical Engineering for the National
Technical University of Athens. From 1963 until 1981, he was with the School
of Electrical Engineering, Purdue University. He was an instructor until 1965,
and Assistant Professor until 1970, an Associate Professor until 1975 and a
Professor of Electrical Engineering until 1981.

Dr. Saridis is a Fellow of the IEEE and a member of Sigma Xi, Tau Beta
Pi, Eta Kappa Nu, the Academy of Sciences of New York, and the American
Association of University Professors, the American Society of Engineering
Education and the American Association for the Advancement of Science.
In 1972-1973 he was the Associate Editor and Chairman of the Technical
Committee on Adaptive Learning Systems and Pattern Recognition of the
Society of Control Systems of the IEEE, Chairman of the 11th Symposium
of Adaptive Processes, IEEE delegate to the JACC in 1973 and 1976, and
Program Chairman of the 1977 JACC. In 1973 and 1979 he was elected as a
member of the ADCOM and in 1986 he was appointed member of the Board
of Governors of the Society of Control Systems of the IEEE. From 1970 to
1981 he was appGinted Chairman of the Education Committee of the above
society. He was the International Program Committee Chairman of the 1982
IFAC Symposium on Estimation and System Parameter Identification as well
as the 1985 IFAC Symposium on Robotic Control. In 1974 and 1981 he was
appointed Vice-chairman of the IFAC International Committee on Education
and from 1981 to 1984 he was the Survey Paper Editor for Automatica, the
IFACJournal. He is the series Editor of the JAI Publications on Annuals on
Advances in Robotics and Automation. In 1986 he was appointed Chairman
of the Control Systems Society’s Committee on Intelligent Controls and
Chairman of the Awards Committee of the Robotics and Automation Society.
From 1983 to 1984 he was the Founding President of IEEE Council of
Robotics and Automation. Dr. Saridis is also the author of the book, Self-
Organizing Control of Stochastic Systems, editor of the book Annual on
Advances in Automation and Robotics, Vol. 1 and 2 and co-editor of the
books, Fuzzy and Decision Processes, Proceedings of the 6th Symposium of
Identification and Systems Parameter Estimation, and Proceedings of the 1985
SYROCO. He has also written more than 300 book chapters, journal articles,
conference papers and technical reports. He is the recipient of the IEEE
Centennial Medal Award in 1984 and the IEEE Control Systems Society’s
Distinguished Member Award in 1989.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:34 from IEEE Xplore. Restrictions apply.

