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Abstract-A Petri net model of the coordination level of an 
intelligent mobile robot system (IMRS) is presented. The purpose 
of this model is to specify the integration of the individual efforts 
on path planning, supervisory motion control, and vision system 
that are necessary for the autonomous operation of the mobile 
robot in a structured dynamic environment. This is achieved by 
analytically modeling the various units of the system as Petri 
net transducers and, explicitly representing the task precedence 
and information dependence among them. The model can also be 
used to simulate the task processing and evaluate the efficiency of 
operations and the responsibility of decisions in the coordination 
level of the intelligent mobile robot system. Some simulations 
results of the task processing and learning are presented in the 
paper. 

I. INTRODUCTION 
URING THE PAST DECADE, considerable research D effort has been focused on various problems related to 

mobile robots, such as control [5], path planning [9], [20], 
navigation [8], [26], obstacle avoidance [2], vision [16] and 
architectures [3] ,  [17], [25]. However, little effort has been 
reported on the integration of the above areas and especially on 
the formal specification of the entire architecture of the mobile 
robot systems. As a result, the task priorities and information 
dependence among the principal parts of a system are not 
clear and therefore the problems of synchronization and delay 
analysis among them cannot be well addressed. 

A two robotic arm platform with primary purpose assembly 
operations is currently under development in the NASA- 
Center of Intelligent Robotic Systems for Space Exploration 
(CIRSSE) at Rensselaer Polytechnic Institute. This test bed 
is going to be assisted by mobile robots, fetching assembly 
parts and/or providing additional visual information at the 
assembly regions using cameras that are mounted on them. 
Such an environment will contain a number of moving entities 
(arms, mobile robots, parts, etc.). Therefore the need for an 
autonomous intelligent mobile robot system (IMRS) that can 
efficiently and safely perform the assisting tasks is eminent. 
The IMRS should be therefore provided with a sensing system 
and a local decision making unit that will enable it to plan its 
motion and avoid obstacles. 
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Fig. 1. The structure of intelligent machines. 

Such capabilities require the integration of the sensing activ- 
ities with the decision making processes related to path plan- 
ning, supervisory motion control, navigation, etc. The frame- 
work of IMRS, based on the theory of hierarchical intelligent 
control [21], [23], [24], consists of the three major levels, the 
organization, coordination and execution shown in Fig. 1. 

The organization level (the task organizer) generates higher 
level motion tasks for IMRS to accomplish the required task. 

The coordination level serves as an interface between the 
organization and execution level. This level consists of one 
dispatcher and several coordinators. The dispatcher receives 
the task plans from the organizer, decomposes the tasks of a 
plan into coordinator-oriented control actions with qualitative 
requirements and then dispatches them to the corresponding 
coordinators. The coordinators translate the control commands 
further into the operation instructions and load them down to 
the appropriate execution devices in the execution level for 
real-time execution. 

The execution level executes the instructions coming from 
the coordination level and reports the results to it. 

In CIRSSE, several projects have been conducted on the in- 
dividual areas related to mobile robots, and that are integrated 
in this work. 

1) The Extended VGraph Algorithm [4] has been suggested 
for path planning. 
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The Hough Transform has been implemented [27] for 
visual detection and kinematic estimation of moving 
objects, 
The Supervisory Control Strategy for Navigation of Mo- 
bile Robots in Dynamic Environments [12] has been 
developed to integrate path planning with vision and 
tracking control, and 
The Coordination Theory for Intelligent Machines [30] 
has been established to integrate the above individual 
efforts efficiently to form the final IMRS. 
formalize the integration of the IMRS, one has first 

to select a proper model as the basic module. Finite states 
machines (FSM's) have already been used by Brooks [3] to 
describe the basic modules of the mobile robot system that 
he proposed. However, since the connection of several FSM's 
is no longer a FSM, the communication specification between 
modules can not be achieved using the FSM framework. To 
accommodate this, Brooks [3] has recently endowed his FSM's 
with registers and timers. Since Petri nets were originally 
introduced to describe the communications of finite state 
machines, we believe that Petri nets are more suitable to 
specify mobile robot systems. The primary purpose of this 
paper is to develop a Petri net model for coordination of IMRS 
based on the coordination theory of intelligent machines [31]. 

The coordination level of IMRS is composed of one dis- 
patcher and three coordinators: a path planning coordinator, 
an obstacle avoidance and tracking control coordinator, and a 
vision system coordinator. The dispatcher and the coordinators 
have been modeled as Petri net transducers and the coordina- 
tion structure constructed by those transducers has been used 
to represent the task dependence in the coordination level. The 
task processing and learning in the coordination level of IMRS 
has been simulated using this model. The main contribution 
of this work is to show that, 

1) Petri nets can be used as basic modules of a mobile 
robot system. 

2) The communication or connection of modules can be 
efficiently specified within the Petri net framework. 

3) A control and communication mechanism for task co- 
ordination of a mobile robot system can be established 
based on a Petri net model. 

Section I1 introduces the Petri net model for coordination of 
intelligent machines and some coordination process properties. 
A layout of the architecture of the coordination level of 
IMRS and a description of its units, along with their Petri 
net transducer models is presented in Section 111. The system 
integration and task execution procedure based the Petri net 
model are also specified in this section. The task simulation is 
performed and the results are presented in Sections IV and V. 
Finally, Section VI concludes the paper. 

11. COORDINATION THEORY OF INTELLIGENT MACHINES 

The coordination level of intelligent machines is composed 
of one dispatcher and a number of coordinators (Fig. 1). 
The dispatcher receives the task plans (i.e., the sequences of 
tasks) from the Organizer, translates the plans into coordinator- 
oriented control actions and then dispatches them to the 

corresponding coordinators. A coordinator, just after it gets the 
control commands from the dispatcher, translates them into the 
operation instructions and sends them down to the appropriate 
execution devices of the execution level for real-time execu- 
tion. The process of task translation is continued until the job 
issued by the Organizer is completed. A coordination theory 
for such operation has been developed [30] based on a formal 
model of the coordination level of Intelligent Machines that is 
called coordination structure. 

A. The Coordination Structure (CS) 

The basic construction module for coordination structures is 
Petri net (PN). A Petri net N = (P, T ,  I ,  0 )  consists of a finite 
set of places P ,  a finite set of transitions T,  an input function I ,  
and an output function 0. The set of places describes the states 
of the system, and the set of transitions defines events that can 
change the states of the system. The input function specifies the 
preconditions for each event to occur and the output function 
gives the effects of the occurrence of each event. A place 
may contain a nonnegative integer number of tokens. The 
state of a Petri net is represented by its markings, i.e., the 
distribution of tokens among its places. Petri net has been 
proved to be an excellent tool for system modeling, especially 
when concurrency and conflict are involved [18]. 

However, the ordinary Petri net model is incapable of 
describing language translation. Therefore, in order to use 
Petri net to implement the linguistic decision schemata [22] for 
describing the task translation processes in the dispatcher and 
the coordinators, the Petri net transducer (PNT) is introduced 
[28]. A PNT= ( N ,  C, A, u, ,xl F )  is a language translator that 
translates a given input task plan into an output task plan. 
The Petri net N = (P, T ,  I ,  0)  of PNT is the controller of 
translation. p is the initial marking of N, i.e., the initial state 
of PNT. C is the input alphabet represented input tasks, and 
A is the output alphabet represented the output tasks. u, the 
translation mapping from T x (C U {A} )  to finite sets of A* 
(where X is the empty string and A* is the set of all finite 
length strings over A), specifies for a given input task the 
processing transitions in N as well as the output subtask plans 
that may be used for that task. Finally, F is a set of final 
markings indicating the termination of the task translation. 
Two PNT's can be combined together to perform the task 
translation according to the rule of synchronous composition. 

A coordination structure (CS) is then constructed by inte- 
grating the Petri net transducer models of the dispatcher and 
coordinators of the coordination level using a set of connection 
points, formally, 

CS = (0, C, F,  RD,  SO,  Rc, Sc) 
where 

the dispatcher D = (Nd,  E,, A,, U d ,  p d ,  Fd) is a PNT 
with a Petri net Nd = (Pd. T d ,  Id. od); 
the coordinators C = {C,, C2, . . . , Cn},  n 2 1. Each 
coordinator C, is a PNT C, = ( N i ,  E:, A:, a:, p:, F,") 
with Petri net N," = (E',", T,", I:, 0:); 
the connection points F = u:="=,f;, f h I ,  fh ,  fro}. 
f ; ,  f& and fi0 are the inputpoint, inputsemaphore, 
output point, and output semaphores of C,, respectively. 
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4) the dispatcher receiving mapping RD and sending map- 
ping So: mappings from T d  to subsets of F that satisfy 
the following connection constraints: 

a) (t ,fi) E S D  * ( t , f h ~ )  E RD,( t , f&)  E R D  @ 

(t,f&) E SO; 
b) ( t 3 . f ; )  f R D , ( t , f & )  e R D I ( ~ , ~ & )  $ 

S D ,  ( t ,  & I )  $ S D ;  
c) for any firing sequence s of transitions in Nd, 

o ~ # { t  I t in s, ( t ,  fj) E SO)- 
#{t’ I t’ in s, (t’, f&) E &) I n; + 1 

where R; 2 1; 
for any fj and f&, there exist t and t’ E Td such 
that (t ,  fj) E SD and (t’, f&) E RD. 

5 )  The coordinator receiving mapping Rc and sending 
mapping Sc:  mappings from T, = U&l T: to subsets 
of F that satisfy the following connection constraints: 

d) 

a) ( t ,f&) E sc @ (t,fio) E Rc (tlfhI) E 

b) (t,f&) e R c , ( t , . f & )  e R c , ( t , f j )  e SC ; 

sc, (6 fho) sc. 
The receiving mappings RD and Rc specify the way in 

which the dispatcher and coordinators receive information 
from the connection points F .  The sending mappings SD 
and SC specify the way in which the dispatcher and coor- 
dinators send information to F .  Therefore, they define the 
configuration of the connection between the dispatcher and 
the coordinators of the coordination structure. The connection 
constraints guarantee that each coordinator Ci is bidirection- 
ally connected with the dispatcher D. D can issue tasks 
to Ci only when Ci is available and Ci can report the 
execution result to D only when the communication facility 
is ready. The number ni represents the task buffer capacity 
of c;. 

Various connection patterns can be designed by using dif- 
ferent receiving and sending mappings. A simple connection 
configuration has been selected for the coordination level of 
IMRS by imposing the following additional conditions: 1) Ci 
only accesses its own connection points; 2) there is only one 
initially enabled transition, ti: in Ci with ( t i , f j )  E Rc; 3)  
there is only one transition, t i ,  in C; with ( t > , f & )  E Sc;  4) 
only t )  has its output place as the input place of ti. A CS 
with these properties is called a simple coordination structure. 

A coordination structure CS is operated by applying the 
standard execution rule of Petri nets to a Petri net derived 
from CS.  This Petri net, called the Petri net underlying CS,  
specifies the precedence relationships of the task activities in 
the dispatcher and coordinators and therefore defines the infor- 
mation structure of the entire coordination level. The formal 
specification of the underlying Petri net is the following: 

Od(t) u{f I (t ,  f )  E SO) if t E Td 
o:(t) U{f I ( t ,  f )  E SC} if t E T,; 

~ ( p )  or pt(p) for P E Pd or P 6 f‘: 

O(t )  = 

and the initial marking of N is 

P ( P )  = ni for p = fkI or fk0 
i 0  otherwise. 

The underlying Petri net N also provides a way to use 
concepts and analysis methods of Petri net theory to study 
the process properties of the coordination level, such as 
liveness, boundedness, reversibility, consistency, repetitive- 
ness, etc. The following two theorems give the results about 
the boundedness and liveness of the simple coordination 
structures. 

Theorem 1: The Petri net N ,  underlying the CS,  is bounded 
if all Petri nets Nd, N,!, i = 1, . . . , n are bounded. 

Proof: Reminding that R ( N ,  p)  represents the reacha- 
bility set of N and from the definition of the receiving and 
sending mappings we obtain that Vm E R ( N ,  p)  e m(p) 5 
1zi if p E F .  Since Petri nets Nd, N:, i = 1,. . . , n are closed 
subnets of N ,  it follows immediately that the restriction of 
R ( N ,  ,U) on Pd is a subset of R(Nd, , U d )  and the restriction 
of R ( N ,  ,U) on P: is a subset of R(N,!, p i ) .  Therefore, 
the boundedness of Nd, N,!, i = 1,. . . , n guarantees the 
boundedness of the underlying Petri net N .  It is also easy 
to show that when ni = 1, i = 1, .  . . , n, the safeness of Nd, 
N,!, i = 1,. , , , R will guarantee the safeness of N .  Note that 
the boundedness of N guarantees the structural stability of the 
coordination level. Q.E.D. 

Theorem 2: The Petri net N ,  underlying the CS,  is live if 
all Petri nets Nd, N:, i = 1, . . . , n are live. 

Proof: By connection constraint (4d), for each Ci there 
exist transitions in Nd that take fj and f& as their input and 
output places in F ,  respectively. From the definition of simple 
coordination structures and constraint (Section V-A), t )  takes 
both f& and fiI as its output places. Since only t )  has its 
output place being the input place oft”, ,  it is guaranteed that if 
a number of tokens is displaced into fj, the same number of 
tokens will appear in f& when N,! is live. Therefore, in order 
to show N is live, we only need to show that Nd as a subnet 
of N is a live Petri net. 

Let m E R ( N ,  p)  be an arbitrary marking; R ( N ,  m, k )  be 
the set of markings reached from m by firing at most k transi- 
tions in T d .  Let md and & ( N ,  m, k )  be the restrictions of m 
and R ( N ,  m, k )  on Pd, respectively; and R(Nd, md, k )  be the 
set of markings reached from md by firing at most k transitions 
in Td when Nd is considered as an independent Petri net. Let 
T ( k )  be the set of transitions in Td that are enabled under 
R ( N , m , k )  and T’(k)  be the set of transitions in Td that 
are enabled under R(Nd, md, k )  when Nd is considered to be 
independent. We first prove that Rd(N,  m, I C )  = R(Nd, md, k )  
and T ( k )  = T’(k)  for any k 2 0. 

When k = 0, Rd(N,m,O) = m d  = R(Nd,md,O), and, 
obviously, T’(0) 2 T(0) .  Let t E T’(0) be an enabled 
transition with respect to Nd. If ( t ,  f;) $ SD and ( t ,  f&) $ RD 
for all i, then it is clear that t is also enabled by m, therefore 
t E T(0) in this case. When (t. f j )  E So,  let s be the firing 
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sequence of transitions from p to m, k i  be the number of 
transitions t’ in s such that (t’, f j )  E So,  k i  be the number 
of transitions t” such that (t”, f & )  E RD, p i s  be the number 
of tokens in f j s ,  p& be the number of tokens in f & ,  and k i  
be the number of firings by transition t;. Since there are ni 
initial tokens in f j s  and fhS,  respectively, we have 

p i s  = n; - k i  + k> 
kk 5 k )  5 min{ki,ni  + kk}. 

However, by connection constraint (4c), in this case: 

o 5 k i  - kk 5 ni 

that imlpies min{ki,  ni + k k }  = k i .  Therefore, t )  can be 
fired enough times such that p i s  > 0, which indicates that t 
is enabled under m, i.e., t E T(0).  Similarly, when ( t ,  fh)  
E RD, we have 

p b  = k> - k k  

The constraint (Section IV-C) indicates in this case 

1 2  k i  - k i  5 n; + 1 

which implies min{kk, ni + k k }  2 k k  + 1. Therefore, t )  can 
be fired enough times such that p b  > 0, hence t E T(0) .  In 
all the cases, t E T’(0) + t E T(O), therefore T/(O) = T(0) .  

Assume that Rd(N, m, k )  = R(Nd, md, k),T’(k) = 
T(k)fork 5 q.  Clearly, Rd(N, m, q + 1) = R(Nd, md, q + 1) 
follows immediately from T’(q) = T(q) .  Since T’(q + 1) 2 
T(q + l), by the same procedure used in the proof of “(0) = 
T’(O), we can show that T(q + 1) 2 T’(q + 1). Hence 
Rd(N,m,k) = R(Nd,md,k) and T ( k )  = T’(k)  for any 
k 2 0. 

Since Nd is live, every transition can be enabled by firing 
some transitions from md in Nd. Since Rd(N,m,k) = 
R(Nd, md, k )  and T ( k )  = T’(k)  for any k 2 0, we see that 
the same transition can also be enabled after the same number 
of firings of transitions from m in N .  Therefore, N is live. 

Q.E.D. 
The liveness of N insures the absence of deadlock in the 

coordination level. 

B. Decision Making in the Coordination Structure 

The decision makihg in the coordination level is achieved 
in three steps: task scheduling, task translation, and task 
formulation. Task scheduling is the process of identifying the 
appropriate tasks to be executed for the requested job. Once 
a task is located, task translation takes place by decomposing 
the task into a subtask sequence and, after assigned with real- 
time information through task formulation, executing subtasks 
or sending them to the corresponding infimal units. In terms 
of PNT, the problem of task scheduling and translation for a 
given task a is to find an enabled transition t such that the 
translation mapping a(t ,  a) is defined and then select the right 
translation string from a(t ,  a) for t. 

Let QT and Q D  be two queues to be used to store 
the unexecuted tasks and the delayed tasks, respectively. 
Let ZI = a1a2..  .a, be a task plan to be executed. Based 
on the execution rule of Petri nets, a simple and uniform 

. . -~ 

scheduling procedure for task scheduling of the dispatcher and 
coordinators can be defined: 

Scheduling procedure (SP): 
1) QT := a1.a2,. . . , a,, 
2)  IF QT is empty THEN STOP; 

4) IF there exists a t E T(u)  and t is enabled by firing t ,  

5) IF there exists an internal operation sequence e E T,* 
such that a t E T ( u )  is enabled by firing e, THEN firing 
e.t, GO TO 7; 

6) ~ ( Q D ,  U ) ,  IF QT is empty THEN QT := QD and N ( Q D ) ,  

7 )  IF Q D  is not empty THEN QT := U ( Q D , Q T )  and 

where F ( Q )  returns and deletes the first element of Q; I ( Q ,  U )  

inserts U to Q at the end of Q; U(Q1 ,  Q2) unifies Q1 and Q2 
by placing Q2 at the end of Q1; and N ( Q )  empties Q; Q, Q1, 
and Q2 are queue variables. T(u)  = { t  : a(t ,u)  is defined} 
is the set of transitions that are capable of processing task U .  

TO = { t  : a(t ,  A) is defined or a(t ,  .) is not defined}, called the 
set of internal operations, are the transitions that can be called 
to change the internal state of a transducer without processing 
any input task. 

The information for task translation of a transition includes 
the task to be executed as by the translation mapping a, the 
current relevant status of the transducer as specified by the 
input function I ,  and the feedback from the infimal units 
through the receiving mapping R. The transition will notify 
its task translation decision to those transitions specified by 
the output function 0, and send it to the other units through 
the sending mapping S .  

A passive approach for task translation has been adapted in 
the present work, i.e., a fixed number of different translations 
for a transition are predetermined and the translation is just 
to select one of them according to the situation encountered. 
Since it is impossible to get analytic formulas required for per- 
formance evaluation, a random strategy and learning approach 
have used for task translation. For a transition t ,  let Mt = 
Ela(t ,a) l  be the number of translations designed for t and 
Nt be the number of situations distinguished by the transition. 
Consider a matrix of subjective probabilities, ( P , ~ ) M ~  x ~ t .  The 
decision rule of the task translation for choosing a translation is 

Decision Rule (DR): When situation j ,  j = 1,. . . , Nt, 
is observed, choose a translation string s, using a random 
strategy with the subjective probability p t 3 ,  i = 1, . . . , Mt. 

A random cost function is associated with each translation. 
After each execution of the action specified by s, for situation 
j ,  the cost estimates and the subjective probabilities will be 
updated according to certain learning algorithm. This issue 
will be discussed in detail in the task simulation of Section V. 

Using the execution rule of Petri nets, the scheduling 
procedure SP,  and the decision rule DR,  we can establish 
a uniform task execution procedure for the dispatcher and 
coordinators to manipulate the control and communication 
among them during the task processing of the coordination 
level [31]. 

QD := 4; 

3) U := F ( Q T ) ;  

GO TO 7; 

GO TO 2; 

N ( Q D ) ,  GO TO 2. 
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Fig. 2. Implementation of IMRS. 

111. SYSTEM DESCRIPTION AND PETRI NET 
MODEL OF THE COORDINATION LEVEL 

The mobile robot used for the IMRS is a Labmate of TRC. 
The robot will be able to perform motion tasks with the 
ability of avoiding unexpected moving objects in a structured 
environment. The SMRS is composed of three main levels 
namely, the organization level, the coordination level, and the 
execution level. The Organizer, in the organization level, issues 
higher level task plans in the form of ordered strings of tasks 
to the coordination level to accomplish the tasks assigned 
for IMRS. After receiving task plans from the Organizer, 
the coordination level translates them to real-time operation 
instructions and then gives these instructions interactively to 
the devices of the execution level. The execution level will 
execute the instructions and report the execution results to the 
coordination level. 

The focus of this paper is on the coordination level, which 
consists of one dispatcher (DSP) and three coordinators: a 
path planning coordinator (PPC), an obstacle avoidance and 
tracking control coordinator (OATC), and a vision system 
coordinator (VSC), as depicted in Fig. 2. Since only task plans 
from the Organizer are concerned here, these plans have been 
generated by a given task grammar. 

To facilitate the design and implementation of the mobile 
robotic system, the system specifications have been divided 
into two levels of abstraction. At the higher level of ab- 
straction, the qualitative aspects of behavior of the system 
are represented by considering only the set of possible se- 
quences of tasks and the precedence relationships among them. 
At the lower level, the quantitative aspects of behavior of 
the system are described by providing all the operational 
procedures invoked with the specific parameters. Since the 
interest here is focused on the coordination level of IMRS, 
only the higher level specification has been considered. The 
coordination structure described in Section IS is used to specify 
the coordination level. 

Four tasks for the coordination level have been defined: 1) 
wmu:3-D world memory update; 2) mod: moving obstacles 
detection; 3) pp:  path planning; 4) moac: moving obstacle 
avoidance and tracking control. The one-step task plans from 
the Organizer have been generated by the grammar 

G = ( S ,  N ,  Eo, f‘) 
where CO = {wmu,  m o d , p p ,  moac} is the set of terminal 
symbols; S is the start symbol; N = {S, A ,  B ,  C, D} is the 
set of nonterminal symbols; and 

P = { S  + wmuA, A -+ p p B ,  B + modC, C + 

moacD I moac, D + B I S }  

is the set of production rules. 
In order to be able to concurrently execute the present 

motion task and do path planning for the next motion task, 
two-step task plans are constructed using one-step plans by 

T S  = L(G)(JL(G) 

where L(G) is the language generated by grammar G and 1 1  
is the concurrent operator between two languages [18]: T S  is 
the set of task plans to be processed by the dispatcher. 

A. The Dispatcher (DSP) 

1) Unit Description: The dispatcher deals with the control 
and communication of the three coordinators. It is mainly con- 
cerned with the problem of which coordinator should be called 
for a given task (task sharing) and/or be informed by the result 
of recently completed execution (result sharing). The control 
and communication is achieved by translating a given task 
plan to a sequence of control commands with the necessary 
information and dispatching it to coordinators. The process of 
translating and dispatching is performed interactively between 
the dispatcher and the coordinators. After the completion of all 
the required tasks, the dispatcher will formulate the feedback 
information to the Organizer. 

The dispatcher (as well as the Organizer) is physically 
sited on a Sun 41260 workstation based on a 10 MIPS Sparc 
processor (RISC architecture) with 8 Mbytes of main memory 
and 892 Mbytes hard disk at CIRSSE. The command and 
data transmission between the dispatcher and coordinators is 
realized through Thinnet, a local network version of Ethernet. 

2) Petri Net Model: In order to process the task plans gen- 
erated by the grammar G, the dispatcher given by the Petri 
net in Fig. 6 has been designed (the links connected with any 
of the places I ,  I S ,  0, and OS are ignored at this point). A 
description of the individual transitions follows. 

t ,  

t,,, 

tpp 

initialize the dispatcher when a task is received 
from the Organizer. 
issue command to perform “3-D world memory 
update’ ’ process. 
issue command for path planning and provide 
constraints (space, kinematic, dynamic, etc.,) and 
optimization criterion 
issue command for moving obstacle detection 
within the specified space and provide accuracy 
and time requirements. 

tmod 
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t,,,, issue command for moving obstacle avoidance and 
tracking control. 

tmte perform motion task evaluation. In case the 
execution is failed, determine an appropriate 
sequence of transitions to continue the motion 
task. 
formalize feedback required by the Organizer. 
continue motion task along the original path. 
continue motion task along a new path. 
report the result of motion task execution to the 
Organizer. 

t f bo 
t,,, 
t,,, 
tf 

3) Task Translation and Specification: The input alphabel 
of the dispatcher is C O ,  and the output alphabet is 

A, = C, = C, U E, U C, 

where 
C, = {path} 
C, = {freemove, move} 
C, = {sendinfo, detection, terrain} 

are the input alphabets to the path planning, obstacle avoidance 
and tracking control, and vision coordinators. The tasks in 
these alphabets will be defined later in the specification of the 
corresponding coordinators. 

The translation mappings in the dispatcher are: 

o(twmu3 wmu) = {terrain(mmo;, art i)  i = 1 , 2 , .  . .} 
where mmo;: minimum magnitude of the objects to be con- 
sidered. art;: accuracy requirements about detected objects in 
terrain exploration mode: 

4 ~ , , , P P )  = 
{path(mss;,prpi, dct;,gcc;,poc;) i = 1 , 2 , .  . .} 

where mss; is the margin of safe distance from static ob- 
stacles. prp;  is the preferred region for the path. dct; is the 
dynamic constraints of the robot expressed in terms of bounds 
in torque. gcc, is the geometric constraint in terms of bounds in 
curvature of F ( s ) ;  and poc; is the parameters of optimization 
criteria. That is, values for the parameters of the following 
cost function: 

J = L T f ( C t  + c, . 11u112) d t .  

where Ct and C, are weighting factors for time and energy, 
respectively, and U is the control torque: 

o ( t m o d .  mod)  = 

{detection.sendinfo(urdi,ptci), 
sendinfo(ard;,ptc;) i = 1 , 2 , .  . .} 

where urd; is the accuracy requirements about detected objects 
in moving object detection mode and ptc; is the upper bound 
of processing time (results must be reported within that time). 

o ( t m o a c ?  moat) = 

{move(msmi; f t p ; ) ,  freemove(ftp;) i = 1 , 2 , .  . .} 
where msmi: margin of safe distance with moving obstacles 
and f t p i  'is the requirement about final execution time and 
position. 

Mcmcay-Updale 
lnfonnation from 
The Dispatcher 

Commands from 
The Dispatcher 

1) Initial Position 

2) Final Posilion 

Off-Lme 
Chartographic 

(Smtic Environment) Path Planning Unit 

Fig. 3. The path planning coordinator. 

Note that there are two tokens in the initial place p,. This 
will make the dispatcher capable of processing the concurrent 
task sequences specified by T S  = L(G)IJL(G). 

B. The Path Planning Coordinator (PPC) 

I )  Unit Description: The path planning (off-line) coordina- 
tor will solve the problem of finding a path between a start 
point and a goal point, avoiding collisions with the static 
obstacles and optimizing over some criteria (e.g., time) under 
certain constraints (e.g., input constraints). A macroscopic 
structure of this coordinator is given in Fig. 3. The cartographic 
memory stores the geometric description of the environment 
pertinent to the motion tasks. 

A path is specified by its geometry through a configuration 
function 

F ( s )  E R2 s E [O? 11 

and its motion trajectory through a nominal execution function 

sn ( t )  t E [O,Tfl 

where Tf is the total motion time. For reasons explained later, 
it is also necessary to associate F ( s )  with two more functions, 
namely, L ( s )  and R(s),  denoting the distances of the obstacle 
free segment of the line perpendicular to F ( s )  on the left and 
right of F ( s ) ,  respectively, as s goes from 0 to 1. This is done 
in order to have a notion of the free space along F ( s ) .  

Several approaches are available for the calculation of F ( s )  
ands,(t) by the path planning coordinator [4], [7], [9]. The 
2-D version of the Extended VGraph Algorithm by Chung and 
Saridis [4] has been used here. 

After the completion of path planning, the result will be sent 
to the obstacle avoidance and tracking control coordinator for 
execution. 

It is obvious that the complexity of the problem is big and 
the solution is obtained in an off-line fashion. This coordinator 
is physically realized, at CIRSSE, on a Sun Sparc station with 
8 Mbytes of main memory. 
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From PPC 
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From VSC 

Moving Obstacle's 
Kinematic Information 

2) Petri Net Model: The task to be processed by this coor- 
dinator is a single task C p  = {path}. The Petri-net model of 
the Planer is in Fig. 7. The transitions of the coordinator are 
as follows: 

initialize the coordinator. 
choose path from menu when there exists a F ( s )  in 
the menu. of predetermined paths that satisfies the 
imposed requirements mss,, prp, ,  gee, (defined in 
Section 111-A). 
build Grown Space Obstacles. 
construct VGraph. 
find a collision-free configuration function F (s) 
(i.e., a collision free path) from VGraph with the 
requirements mss,, prp, .  gee, (defined in Section 

determine execution function sn( t )  (i.e., motion wrt 
time along F ( s )  ) based on the constraints dct, and 
pot,. 
find an alternate path. In case that no trajectory was 
found to satisfy requirements, perform planning 
with minimum possible loss. 
acknowledge results of path planning to the 
dispatcher and reset the input semaphore and the 
start place p , .  

111-A). 

3) Task Translation and Specification: The translation map- 
pings are 

o(tcpm, p a t h )  = { SearchMenu} 
o(tgso, p a t h )  = {BuildGSpacsObstacles} 

o(tug, A) = {BuildVGraph} 
o ( t f p ,  A) = {SearchVGraph] 
o( t e f ,  A) = {Trajectory} 

where SearchMenu, BuildGSpacsObstacle, BuildVGraph, 
SearchVGraph, and Trajectory are executable programs. 

C. The Obstacle Avoidance and Tracking Control 
Coordinator (OATC) 

1) Unit Description: The obstacle avoidance and tracking 
control coordinator supervises the execution of the motion task 
of the robot. The structure of this coordinator can be seen in 
Fig. 4. Three basic operations are involved in the coordinator: 

1) utilization of the sensory input to adjust for local cali- 

2) collision avoidance with the unpredictable objects of the 

3) tracking control of the actual vehicle. 
In order that these operations can be implemented in real 

time the following items must be obtained: 
1) the information from the off-line planning, i.e., func- 

tions F ( s ) ,  sn( t ) ,  L ( s ) ,  R(s) ,  must be available to the 
coordinator, 

bration errors with respect to the world, 

environment. 

Tracking 
Conmoller 

Fig. 4. The obstacle avoidance and tracking control coordinator. 

2) some modeling simplifications, regarding the dynamics 
of the mobile robot and the shape of the objects, have 
to be made for the computation load reduction purpose. 

In order to plan the path and control the vehicle efficiently, 
the dynamics of the mobile robot has to be fully taken into 
account. If the velocity S is bounded at each point of the 
trajectory to avoid sliding and skidding, a complete dynamic 
model of the mobile robot system is of the form [12] 

where M is the mass of the robot, I is the moment of inertia 
of the robot around the axis vertical to the moving plane, f ( s )  
is the curvature of the trajectory, and U is the input force into 
the system that is actually bounded by 

Umin 5 'ZL I umax.  

This dynamic model satisfies the nonholonomic constraints of 
the motion of the robot, because these were considered during 
the off-line planning, when F ( s )  is defined. Furthermore, the 
velocity j. has to be bounded at every point s of the trajectory 
so that skidding is avoided. Rolling without slipping is satisfied 
by appropriately steering of all the wheels of the mobile robot. 
This is assured during the off-line planning stage. 

For the representation of moving objects, it is assumed 
that the shape of objects is satisfactorily described by 
their convex polyhedral hulls [lo], or mathematically, 
by 

A . x I b  

where x E E3.A E Elx3, b E R' and 1 denotes the 
number of planes of the object. Although such a description 
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may be considered as crude, it satisfies the collision avoid- 
ance requirements and assists the reduction of computation 
load. 

The major units in this coordinator are described briefly in 
the sequel: 

The distance prediction unit takes as input from the vision 
system coordinator, the description of the polyhedral hull 
form and the prediction of the rotational and translational 
motion of a detected moving object. Combining them with 
the corresponding information of the robot, it predicts the 
minimum distance 

between the robot C, and the moving object CO, during some 
finite time horizon Th [7]. 

The collision prediction unit determines the likelihood of 
having collision within time Th, as well as the expected 
collision time T,. This is done by an enhanced version of 
the accelerated expanding subinterval random search (AESRS) 

The motion replanning unit calculates a new execution 
function s(t)so that the expected collision can be avoided, 
while s ( t )  stays as close as possible to sn( t ) .  An optimal 
control strategy (OCS) proposed by Kyriakopoulos and Saridis 
[12] has been used by this unit for motion replanning. Fur- 
thermore, to enable the on-line implementation of OCS and 
to accelerate its convergence, a strategy that is based on 
the heuristic notion of either accelerate or deccelerate so 
that avoidance is guaranteed, was implemented. This strategy, 
the minimum interference strategy (MIS), is used to find an 
initial guess for the new motion function. Generally, MIS is 
computationally efficient and in most of the cases gives a close 
to optimal solution. Its output can be used as an initial guess 
to ocs. 

When replanning of s ( t )  does not guarantee collision avoid- 
ance, a local perturbation on F ( s )  within the bounds L(s )  and 
R(s) ,  will be performed by the path replanning unit. 

This coordinator is implemented, at CIRSSE, on a Sun Sparc 
workstation. 

2) Petri Net Model: The tasks to be processed by this co- 
ordinator are C, = {freemove, move}. The Petri-net is given 
in Fig. 8. The transitions of the coordinator are as follows: 

[111* 

initialize coordinator. 
execute nominal plan with the specification f tpi  
(defined in Section III-A) in case of no moving 
obstacle. 
combine the motion information about a moving 
obstacle and the robot and determine the time 
horizon Th of interest during which the predicted 
minimum distance between the object and the robot 
is sought. 
predict collision and estimate the collision time T,, 
by the accelerated expanding subinterval random 
search (AESRS). 

t d m p  perform motion replanning with the specifications 
msmi and ftp; (defined in Section III-A). Combine 
information about geometry F ( s )  of path, current 
execution function s ( t ) ,  predicted minimum distance 
d ( t ) ,  expected collision time T, and moving objects’ 
predicted trajectory, determine s ( t )  that can prevent 
collision. First execute MIS to get a collision, free 
initial guess and then feed the result to OCS. 
perform path replanning with the specification 
msm;. If there is no s ( t )  that prevents collision, 
alter locally the geometry F ( s )  of the path. ttc: 
optimally track the desired trajectory, as expressed 
by both F ( s )  and s ( t ) .  t f :  report execution results 
to the dispatcher. 
report execution results to the dispatcher. 

tpr 

t f  

3) Task Translation and Specification: The translation map- 
pings are: 

o(tnp, freemove) = {DownloadCurrentTraj} 
o(t,, A) = { A E S R S }  

o(tdp, move) = {DetermineTimeHor.PredictDistance} 
o(tmrp, A) = {MIs.ocs} 

o(tpr, A) = {GetFeasSpace.Replan} 
o(ttc, A) = {InvKinematics.Trackangles} 

where DownloadCurrentTraj etc., are are executable programs. 

D. The Vision System Coordinator (VSC) 
1)  Unit Description: The vision system coordinator (on- 

line) performs two basic operations: detection of obstacles, 
and description of the detected obstacles as convex polyhedra. 

This coordinator is hosted by a Sun 31260 workstation with 
8 Mbytes main memory, 280 Mbytes of Hard disk. A MVP- 
VME and a TAAC-1 boards are connected to the Sun-3 VME 
bus through a bidirectional host bus interface. Two Javelin 
cameras are employed by the coordinator. Fig. 5 gives the 
architecture of the vision system. 

The Matrox MVP-VME board is used as a frame grabber 
and to perform basic image processing operations such as 
filtering, edge detection, thinning, thresholding, etc. Since it 
is assumed to use the convex polyhedra hulls to describe 
the various objects, an algorithm was developed to process 
their visual information. A Hough transformation is per- 
formed to map the straight lines of the Cartesian space to 
points in the parameter space, thus facilitating the tracking 
of the moving objects in a fast mode [l], (61. A stereo 
matching algorithm has been developed that matches object’s 
features (edges and vertices) extracted from the left and 
right view. Since the information on the moving points is 
computed with noise, a Kalman filter has been added to 
yield optimal estimates of tracking. The Hough transforma- 
tion, stereo matching of the features and model construc- 
tion are all performed on the TAAC-1 at a speed of 10 
MIPS. 
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1 -  T U C - I  I 

Fig. 5. Vision system coordinator. 
L 

The Disoalcher 

Fig. 6.  Coordination structure for the mobile robot system 

In the case of terrain exploration, similar operations have 
to be performed for the static environment. This information 
is used for the world map update. The features of the "new" 
static objects, are compared to those included already in the 
cartographic memory map. Decision is made on whether or 
not these objects should be incorporated into the map. 

The result of this coordinator is transmitted to the path 
planning coordinator or the obstacle avoidance and tracking 
control coordinator. 

2) Petri Net Model: The tasks to be processed by this co- 
ordinator are C, =sendinfo, detection, terrain. The Petri-net 
of the vision coordinator is given in Fig. 9. The transitions of 
the coordinator are as follows: 

initialize the coordinator and pass task related 
information. 
calibrate the coordinate systems and find the 
transformations. 
set to the terrain exploration mode with the 
requirements mmo; and art; (defined in Section 

perform the terrain exploration operations. 
Depending on the input (Fig. 9), either it updates 
the map with information coming from the vision 
system, or it searches the map for information 
requested by the path planning coordinator. 

t ,  

teal 

tcte 

111-A). 
tote 

Fig. 7. Petri net model for the PPC. 

set to the moving object detection mode. with the 
requirements ptci and ardi (defined in Section 

grab frames using both cameras and perform edge 
detection, thinning, thresholding, and dilation. 
These operations can be performed in parallel for 
the right and left images. 
calculate the analytic representation of the object's 
features (edges, vertices) using Hough transform, on 
each image. 
match the features extracted from the right and left 
image using stereo matching and calculate the range 
by triangulation. 
use Kalman filter to obtain the translational and 
rotational kinematic parameters of the moving 
object. 
extend filtering process to predict the motion of the 
objects in order to focus, rotate and elevate the 
cameras to track the object, and move processing 
window in image processing level. 
acknowledge availability of extracted parameters of 
moving object so as to continue to track object 
(bidirectional arc). 
report information to the dispatcher. 

111-A). 
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I q p' p3 I 

Fig. 8. Petri net model for the OATC 

3) Task Translation and Specification: The translation map- 
pings for this coordinator are 

o(tcte, terrain) = { A }  

o(t , ,d,  detection) = { A }  
o(tmp, sendinfo) = { SockSequentPacket} 

o(tote, A) = (ExtractEdges.Form0bject .Matchobject} 

o(ttpo, A) = { GrabFrame.Convolve.Threshold} 
o(tsm. A) = {StereoMatch.Triangulation} 

where ExtractEdges, Formobject, Matchobject, GrabFrame, 
Convolve, Threshold, StereoMatch, Triangulation, SockSe- 
quentPacket are executable programs. 

E. Integration and Execution 

The final coordination structure for IMRS is obtained by 
integrating the PNT's for the dispatcher and the coordinators 
through the sending and receiving mappings, which have 
already been specified in the individual PNT's (Fig. 6-9). 
The input point ( I ) ,  input semaphore ( I S ) ,  output point (0), 
and output semaphore (OS)  are physically realized through 
common memory located on the Sun 4/260. 

For each of PNT's for the dispatcher and coordinators, the 
following execution procedure has been used to control its 
operation: 

Task Execution Procedure 
1) Receive a task plan 'U = ' ~ 1  . . .'U,; 
2) Use SP to find an executable task wi and a sequence of 

3) For IC = i l  to i, do: 
transitions til . . . t,, to execute it; 

Call D P  to select a translation (subtask plan) U k  

among o ( t k ;  wi) for the execution of t k ;  

Remove tokens from the input places and displace 
tokens to the output places of t k  according to 
the input and output functions, the sending and 
receiving mappings; 
Send U k  to the input point of the coordinator 
specified by the sending mapping; 
Evaluate the execution result of U k  based on the 
feedback from the output points of c k ;  

. 
Fig. 9. Petri net model for the vision controller. 

e) Update the performance estimates and subjective 
probability for t k  according to the learning algo- 
rithms used; 

4) Remove vi if it has been successfully executed; 
5) Stop if no task left, go to step 2 otherwise. 

where scheduling procedure S P  and decision rule D R  have 
been described in Section 11. 

IV. TASK SIMULATION SCENARIO 

The purpose of this section is to simulate the task process 
using the Petri net transducer model of the coordination level 
of IMRS described in the previous section. The dynamics of 
task process in IMRS have been simulated through traveling of 
tokens in the places of the coordination structure. The motion 
of tokens is controlled by the SP. The information associated 
with the tokens is determined by the DR and execution 
results. A linear refinement learning algorithm has been used 
in the simulation to improve the performance estimates and 
subjective probabilities in DR. 

A simple scenario has been proposed for the simulation (Fig. 
10): A mobile robot in a structured environment, is asked to 
move from a starting position A to a final B. While it moves, 
it should be able to avoid unexpected moving obstacles. The 
environment is divided into two regions, R, i = 1,2.  In the 
region R,, it is assumed that a moving obstacle may come 
with probability p:, through any of the entrances and at any 
instant during the motion of the robot. A n  obstacle appearing 
at R, will move randomly toward one of the inside doors in 
the same region, with either a "slow" or a "fast" speed. The 
probability that a moving object in R, moves slowly is p:. 
Note that only one moving obstacle may be allowed to show 
up in a region during the one motion task. 

The model described in Section 111-C has been used to 
represent the dynamics of the robot Labmate in this simulation. 
Input to the vision system is the simulated images created 
by setting intensity values contaminated with white noise to 
all the points of the image plane that correspond to objects 
(represented by convex polyhedral hulls). The origin of the 
vision coordinate system is taken at the center of the left image 
plane. The vision coordinator is asked to extract the edges of 
objects and to calculate their 3-D representation. Output of this 
coordinator is the coordinate information of moving objects 
required by obstacle avoidance and tracking control. 
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TABLE I 
EVENTS, A V ~ R A G E  MOTIOh TIMES. ,\ND RtLIABLlTlTES FROM SIMULATION 

X i  8 2  RI  U RZ 
Number of Motion Tasks 38 12 50 
Number of Predicted Collisions 28 10 38 
Number of Collisions 2 1 3 
Average Motion Times (s) 9.89 11.64 10.30 
Estimated Motion Reliabiltiies 0.764 0.366 0.671 

unpredictable I I object, 
unpredictable 

Fig. 10. Layout of the work cell for motion task simulation. 

V. RELIABILITY MEASURES AND LEARNING PROCESS 
The only learning performed in the task process is to let 

the dispatcher decide the preferred region RI or Rz in which 
the path planner should find a path. This decision is made by 
the transition tpp of the dispatcher (i.e., by setting p r p  = 1 or 
2 ) .  Let p;  be the subjective probability to select R,, 1 = 1 . 2  
@: + p: = 1). To learn the optimal decision, a reliability 
function has been used as the performance criterion [15]. The 
reliability of the decision made by t,, is defined to be the 
probability for the robot to move from A to B within the 
planned time T f .  The reliability of the decision is estimated 
and updated by the following algorithm: 

R , ( k ,  + 1) = R , ( k , )  + p ( k ,  + 1) .  [ R o b s ( k  i- 1) - @ k ) ]  

where Robs is the observed value for reliability, Robs = 1 
when the motion is succeed within T f ,  Robs = 0, otherwise. n the reliability estimate, and k, the number of times region 
R, has been chosen. After updating the performance estimate, 
the subjective probability is updated by the algorithm: 

Pt(k + 1) = Pi (IC) + r(k + 1) . [€z(k) - Pk(k11. 

1 
0 otherwise 

if R, = maxJ ri, & ( k )  = { 
where k is the number of times the transition tpp has been fired. 
The p ( k )  and y(k) are any series that satisfy Dvoretsky's 
convergence condition [22]. 

The environment in the simulation has been assumed to 
be py  = 0.5 ,~"  2 -  - 0.8, ps  = 0.8, p ;  = 0.2. Unitary initial 
reliability estimates, uniform initial subjective probabilities 

0.85, I 

I 
0 5 10 15 20 25 30 35 40 45 50 

0.5 ' 
Number of Modon Task 

Fig. 11. Learning cuwe of region RI 

and P(n) = ~ ( n )  = 1/(10 + n)  have been used. The motion 
task from A to B within Tf=10.02 s has been repeated 50 
times in the simulation. The simulation results are described 
in Figs. 11 and 12 and Table I. The learning curve in Fig. 11 
(i.e., the subjective decision probability p i  versus the number 
of motion tasks performed) indicates that the optimal region 
for the motion is region RI ,  agrees with the observation that 
RI > R p .  Fig. 12 presents the distribution of the motion 
times from A to B over the 50 motion tasks. Table I gives 
the average motion times from A to B in the two regions, 
the estimated reliabilities of accomplishment of motion tasks 
within the specified time T f ,  and enumeration of events that 
occurred during the simulation. Such events are motion tasks 
performed on each region, collisions predicted and collisions 
happened on each regions. 

VI. CONCLUSION 

This paper has presented an application example of the 
general coordination theory for intelligent machines developed 
by Wang and Saridis [30] in the area of intelligent robots. 
The effort here has been focused on the specification and 
integration of path planning, control, and vision systems that 
are necessary for the autonomous operation of an intelligent 
mobile robot. The goal guiding this work is to use the 
formal model to explicitly represent the task precedency and 
information dependency among the individual systems in the 
coordination level of the IMRS. This work is only the first step 
toward the completion of the IMRS at the NASA Center for 
Intelligent Robotic Systems for Space Exploration (CIRSSE) 
at Rensselaer Polytechnic Institute. 

The Petri net model established has provided an analytic 
framework for not only task simulation, but also performance 
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st  

r 

Motion Times (se) 

Fig. 12. Distribution of motion times in simulation. 

evaluation. The task simulation can be used to test and verify 
the correctness and other qualitative properties of the system 
softwares and control algorithms. The performance evaluation 
can be employed to improve the system performance and 
to guide the hardware selection. The simulation program 
developed here will be expanded to include a Monte Carlo 
work cell generator to model the environment uncertainty 
and the SILMA CimStation to visualize the task process. 
The performance evaluation can be conducted by associating 
execution time with transitions of Petri net. The timed Petri net 
obtained for the coordination structure can be used to evaluate 
various performance indices to measure the efficiency of op- 
erations and the responsibility of decisions in the coordination 
level of IMRS, as have been demonstrated [13], [19]. 
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