
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 3, JUNE 1993 257

Task Translation and Integration Specification
in Intelligent Machines

Fei-Yue Wang, Member, IEEE, and George N. Saridis, Fellow, IEEE

Abstract- Intelligent machines are defined to be hierarchi-
cally intelligent control systems composed of three levels: the
organization level, the coordination level, and the execution level.
This paper presents an analytical model for the coordination
level of intelligent machines, which, together with the established
mathematical formulation for the organization level and the well
developed control theory for the execution level, completes the
first step toward a mathematical theory for intelligent machines.
The framework of the coordination level is a tree structure
consisting of a dispatcher and a number of coordinators. A
new type of transducers, Petri net transducers (PNTs), has been
introduced to serve as the basic module in our analytical model.
PNTs provide a formal description for the individual processes
within the dispatcher and coordinators. The concurrence and
conflict among these processes can be represented by PNTs con-
veniently. Coordination structures are introduced as a formalism
for the specification of integration in the coordination level.
The task precedence relationship in the coordination process
is presented by the Petri nets derived from the coordination
structures. These Petri nets also provide us a formal approach of
using the concepts and analysis methods in the Petri net theory to
investigate the properties of the coordination structures. A case
study of' modeling an intelligent assembly robotic system has been
conducted for the purpose of illustration.

I. INTRODUCTION
HE QUEST to build machines that perform anthropo- T morphic tasks autonomously or interactively in structured

or unstructured environments has a long tradition in the
history of human beings. The effort along this direction
has been intensified tremendously by the new advancements
in modem technology during the past two decades. Such
machines, called intelligent machines in engineering, will play
the key role in various modern and future industries, such as
space exploration, robotic systems, and computer integrated
manufacturing.

The design of intelligent machines has brought many new
challenges to the scientific community. Among them, the
control problem is one of the most important issues. Since
theories and technologies in conventional automatic control
had been known to be inadequate to deal with the diversified
aspects in the control of intelligent machines, a new discipline,
called intelligent control, has emerged for this purpose during
the past decade [21].

Manuscript received September 10, 1990; revised May 27, 1992. This work
was supported by NASA through the NASA Center for Intelligent Robotic
Systems for Space Exploration under Grant #NAGW-1333.

F.-Y. Wang is with the Department of Systems and Industrial Engineering,
The University of Arizona, Tucson, Arizona, 85721.

G. N. Saridis is with the Department of Electrical, Computer, and Systems
Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180.

IEEE Log Number 9208250.

The theory of intelligent controls is still in its early stage of
development. Methodological issues are both open and central.
Since Fu [8] coined the name of intelligent controls in 1971 as
the field of interaction of artificial intelligence and automatic
control systems, different ideas for the formalization of the
definitions and the structure of intelligent machines have been
proposed by and debated among various researchers [2], [4],
[13], [15]. An analytical approach has been proposed and
pursued by Saridis since the 1970s [15]-[22], which expanded
the field of intelligent controls to include three components:
artificial intelligence, operations research, and control theory.

The structure of intelligent machines has been defined by
Saridis [151-[22] to be the structure of hierarchically intelli-
gent control systems, composed of three levels hierarchically
ordered according to the principle of increasing precision with
decreasing intelligence (IPDI) [161, [23], namely:

The organization level represents the brain of the sys-
tem with functions dominated by artificial intelligence
to reason, to plan, and to make decisions about the
organization of tasks;
The coordination level defines the interface between high
and low levels of intelligence with functions dominated
by operations research that coordinate the activities of
the hardware; and
The execution level is the lowest level with high require-
ment in precision with functions dominated by Control
Theory to execute the specified tasks. Fig. 1 presents the
structure of intelligent machines.

A mathematical formulation for the organization level has
been developed by Saridis and Valavanis [22], [24]. The
focus of this paper is on a formal theory for the coordination
level with a tree topology consisting of a dispatcher as the
root and a set of coordinators as the subnodes (see Fig. 1).
The basic requirement for such an analytical model is the
establishment of an information structure that specifies the
necessary precedence relationship of the relevant information
processing for the coordination of the diversified activities
in this Level. Specifically, the following features should be
accomplished: 1) a formal description of each individual
process within each system unit (i.e., dispatcher or coordinator)
in the Level; 2) a formal specification of the cooperation and
connection among system units; 3) a mechanism of control
and communication for task processes in system units.

We will address those issues based on the linguistic decision
approach developed by Saridis and Graham 193, [19]. A
knowledge of basic Petri net theory and formal languages
has been assumed throughout this paper. The first part of the

1042-296X/93$03.00 0 1993 IEEE

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

258 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 3, JUNE 1993

4

I 1

I Disp:tcher I
Coordinator

- A A A
T v T

I

I 1

Fig. 1 . The structure of intelligent machines.

paper (Sections 11-111) presents a new type of language trans-
ducers, Petri net transducers (PNTs), for individual process
description within a system unit. The second part (Sections
IV-VII) introduces the theory of coordination structure for
specification of integration among system units. Since both
PNTs and coordination structures are Petri net-based models,
the execution rule of Petri nets therefore provides naturally a
control and communication mechanism for task processes in
the coordination level.

In the linguistic decision approach, task processes of the dis-
patcher and coordinators have been considered as the process
of translating the higher level task plans to the lower level
control actions by using vocabulary decision schemata [191.
Since the decision schemata are grammars, PNTs have been
introduced to implement them. There are several classic au-
tomata available as the implementation model for the vocab-
ulary decision schemata, such as finite state transducers and
pushdown transducers [11. The reason for choosing PNTs over
the other automata is mainly due to the following facts: First,
the connection between the dispatcher and coordinators is quite
an important issue in the modeling of the coordination level;
however, it is difficult to use the classic automata to specify
these kinds of connections. Second, it is inadequate to describe
the concurrence of activities in the coordination level by using
classic automata. The reason is that the primitive notion of
states in these automata is intended to represent the status of
the entire system modeled at a certain instance, whereas the
notion of places in Petri nets describes only the status of some
components of the system modeled. Third, there are no conve-
nient methods currently available to conduct either qualitative
or quantitative process analysis for systems modeled by these
automata. All these problems can be overcome by Petri net-
based models, since it has been shown in both theoretic works
and applications, especially in the modeling of manufacturing
processes [3], [lo], [l l] , [14], [33]-[36], that Petri nets can
be used to specify connections among the system units, to

describe concurrence and conflict in the system processes, and
to perform qualitative and quantitative process analysis.

The specification for the integration of the dispatcher and
coordinators has been achieved by coordination structures.
A coordination structure is obtained by connecting a set of
PNTs with a set of connection points through the connection
mappings. Specifically, the use of those coordination structures
can enable us to: 1) describe the task translation of the
dispatcher and coordinators (through PNTs); 2) represent the
individual process within the dispatcher and coordinators
(through PNTs); 3) specify the cooperation and connection
among the dispatcher and coordinators; 4) perform the process
analysis and evaluation; and 5) provide a control and commu-
nication mechanism for the real-time monitor or simulation
of coordination process. A case study for a primitive intel-
ligent robotic system has been conducted in Section VI11 to
demonstrate those concepts.

The results presented in this paper are further development
of our previous studies on this topic [25], [27]-[31]. They also
can be used for the integration specification of other kinds
of distributed systems, for example, the software system for
the manufacturing message specification (MMS) [25], [32].
The major difference between our linguistic and analytical
approach and the traditional programming approach [7] for
coordination problem is that our model provides a formal
framework for task verification, analysis, synthesis and perfor-
mance evaluation. The work of using Petri nets to formalize
the decision structure of human organizations by Levis and
his colleagues [6], [12] is similar to ours, however, their focus
is on representation and performance evaluation whereas ours
on integration and process analysis.

11. TASK TRANSLATION AND PETRI NET TRANSDUCERS

The task process in the coordination level of intelligent
machines is the process of task translation: LO -+ LC -+ L E ,
where LO represents the set of task plans generated by the
task organizer in the organization level, LC describes the
set of control actions in the coordination level, and L E
gives the set of real-time operations to be executed in the
execution level. The dispatcher receives the task plans from
the organizer, decomposes the plans into coordinator-oriented
control actions and dispatches them to the corresponding
coordinators. Upon obtaining the control commands from the
dispatcher, a coordinator then translates the commands into the
operation instructions and sends them down to the appropriate
execution devices in the lowest level for real-time execution.

Those translation processes performed by the dispatcher and
coordinators can be described by using PNTs as their models.
A PNT is a language translator that translates an input task
plan into an output plan. Formally,

Dejnition 1: A Petri net transducer (PNT), M , is a 6-tuple,

M = (N , C, A, 0, p, F) where

1) N = (P, T , I, 0) is a Petri net with an initial marking

2) C is a finite input alphabet;

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

I

WANG AND SARIDIS: TASK TRANSLATION AND INTEGRATION SPECIFICATION

3) A is a finite output alphabet;
4) a is a translation mapping from T x (C U {A}) to finite

5) F
sets of A*;

R(p) is a set of final markings.
where A is the empty string and A* the set of all possible
strings over A. In applications, C may represent the set of
primitive tasks for task planning, and A the set of primitive
operations for task execution. A PNT has three parts: an
input rape to read input plans (strings over C) in, a Petri net
controller to control the translation process, and an output tape
to write output plans (strings over A) on. The behavior of a
PNT can be conveniently described in terms of configurations
of the PNT. A configuration of PNT M is defined as a triple
(m, z, y) where m E R(p) (i.e., the reachability set of N with
initial marking p) is the current state (or marking) of the net
N ; z E C* is the input string remaining on the input tape with
the leftmost character of z under the input head; y E A* is
the output string emitted up to this point.

A move by PNT M is reflected by a binary relation JM

(or +, when M is clear) on configurations. Specifically, for
all m E R (p) , t E T , a E C U {A},z E C* and y E A* such
that b(m, t) is defined and a(t, a) contains z E A*, we write

(m1 ax, Y) =+- (b(m, t) , 2, YZ)
where b(m, t) is the state transition of Petri nets. We will use
J* to denote the transitive and reflexive closure of *. The
translation of M is defined to be the set:

T (M) = {(z, y) I (p , z, A) e-* (m, A, y) for some m E F}

T (M) will be called a Petri net translation or a Petri trans-
ducer mapping. A string y is said to be an output of a string
z or z is the input of y iff (2, y) E T (M) . The input language
and the output language of M are defined to be the following
two sets:

a (M) = 1% I 3Y E A*, (5 , Y) E T (M)
and w(M) = {y I 3% E C*, (z, y) E T (M) }

Note that in Definition 1, translation mapping a is allowed to
generate string instead of only single alphabet at one instance
of translation. However, it is easy to show that string and
alphabet translations are mathematically equivalent, and in
general, the restriction of single alphabet translation would
lead to a much larger Petri net controller.

Example 1: Consider a PNT M = (N, E, A, a, p, F) with
the following specification:

C = { e } ; A = { a , b , c } ; (i (t l , e) = {a},(i (tz,A) = { b }
4 t 3 , A) = { c } ; P = (1,070); F = {Pf = (O,O, 1)).
The Petri net N is given in Fig. 2. When an input string
e2 = e.e is issued to M , it will be translated into an output
string a2cb2. The detailed translation process is,

(PI e2 , A) +- (Pl = b(P,tl) = (171, O), e, a)
* (P 2 = b (P l , t l) = (L 2 , O) , A, a2)

* (P3 = b(P2, t 3) = (0,2,1), A, a2c)

* (P5 = b(P4, t 2) = (O,O, I>, A, a2cb2)
* (P4 = b(P37 t 2) = (0,1, I), A, a2cb)

~

259

P1 p3

Fig. 2. An example of PNT.

that is,

It is easy to show that in this case

a (M) = {e" I n 2 O},w(M) = {ancbn I n 2 0)

and

T (M) = {(e", a"cb") 1 n 2 0).

A PNT halts at configuration (m, uz, y) when no transitions,
for which o(t, a) is defined, are enabled at the current marking
m. We call m the deadlock marking of the PNT. When a
deadlock marking occurs, the input string will be rejected.
Note that a deadlock marking of a PNT is not necessarily a
deadlock marking of its Petri net.

As in the Petri net language literature, PNTs can be classified
according to the following three kinds of translation mappings
and four kinds of final marking sets:

Definition 2: For a PNT M = (N, C, A, (i, p, F), its trans-
lation mapping a is

1) free translation mapping if a(t , U) is defined then a # A.
If both a (t 1 , a) and a(t2,b) are defined, then a # b if

2) Agree translation mapping if a(t , U) is defined then

3) A-transition translation mapping if no restriction on CY.

1) L-type if F is a finite set of markings in R (p) ;
2) G-type if F = {m E R(p)lm 2 mi for some i , i =

3) T-type if F = {m E R(p)lm is a deadlock marking of

4) P-type if F = R(p) .
The PNT M in Example 1 has a L-type final marking

set with a A-transition translation mapping. Assume now that
F is a G-type set, say, F = {m E R(p)lm 2 (O,O,l)},
and the translation mapping is unchanged, then, T (M) =
{ (en ,ancbk)(n 2 k 2 0). When F is T-type, the result
is the same as that for L-type, since (0, 0, 1) is the only
deadlock marking of N . When F is P-type, we have, T(M) =
{(e", an), (e", ancbk)))n 2 Ic 2 o}.

t l # t 2 ;

a # A;

Its final marking set F is classified as

1,. . . , n } ;

N } ;

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

I

260 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 3, JUNE 1 9 3

A PNT with a free translation mapping will be called afree
PNT; a PNT with a L-type final marking set will be called a L-
type PNT, and so on. There exist 12 classes of PNTs resulting
from the cross product of the four types of the final markings
and the three types of translation mappings. Since the language
properties of L-type PNTs can be easily determined and their
expression power is sufficient for task translation in intelligent
machines, we will consider only L-type PNTs in this paper, and
from now on by PNTs we mean L-type PNTs.

To discuss the language properties of PNTs, i.e., the problem
of what kinds of task plans may be translated or produced by
PNTs, we begin with the following special class of PNTs.

Dejinition 3: A PNT M = (N , C , A , a , p , F) with N =
(P, T, I, 0) is called a simple PNT (SPNT) iff:

1) Vt E T there exists one and only one a E C U { A } such

2) Vt E T and a E C U {A}, if a(t ,a) is defined, then

Condition 1) implies that in a SPNT, a transition of its Petri net
is responsible for translating one and only one input character;
and condition 2) implies that each transition has only one
output string to translate its input character. Therefore, once a
transition is located, a SPNT is deterministic in the emitting
of the output string. The following theorem indicates the
importance of this type of PNTs.

Theorem 1: For any PNT M , there exists a SPNT M’ such
that T(M’) = T (M) .

All the proofs in this paper are given in the Appendix at
the end of the paper.

This theorem indicates that as far as language property is
concerned, SPNTs and PNTs are equivalent. However, like
the colored Petri nets versus the ordinary Petri nets, a general
PNT sometimes offers us a more compact description than a
SPNT does.

Based on Theorem 1, it is easy to show that the language
property of PNTs can be characterized by the following
theorem:

Theorem 2: The input and output languages of a PNT are
both Petri net languages.

This theorem guarantees that PNTs can be used as the
consistent models for the dispatcher and coordinators, i.e., it is
always possible to construct coordinators to process the tasks
issued by a dispatcher, if they are to be described by PNTs.
Since Petri net language takes regular language as its proper
sub-language, the theorem also indicates that the set of PNTs
include the set of finite state transducers as its proper subset.

that a(t ,a) is defined;

la(t,a)l = 1.

111. SYNCHRONIZATION OF PETRI NET TRANSDUCERS

The synchronous composition operator is a mechanism used
to coordinate the operations of several PNTs. The basic idea
is to let PNTs read a common input tape and to synchronize
their translation processes by using common input characters
(or input tasks). The need for such synchronization rises
in various situations where system units have to cooperate
in order to accomplish some common tasks. For example,
consider an assembly robotic system consisting of two arms
with independent controllers. The tasks for the robotic system

are to move parts from one position to the other. To move
small parts, the two arms can perform the tasks independently.
However, to move large parts, the two arms have to perform
the tasks together, which requires the coordination of their
individual actions. Thus, when a PNT is used as the motion
coordinator for each of the two arms, the operations of the
two PNTs have to be synchronized.

Dejinition 4: The synchronous composition of two PNTs:

Mi = (Ni,Ci,Ai,ai,~i,Fi),
Ni = (Pi,Ti,Ii,Oi),Pl n Pz = 0,Tl n Tz = 0,Z = 1 ,2 ,

is a PNT, denoted by MI I IMz, specified as the followings,

Mi I M z = (N , E, A, 0, P, F) , N = (P, T , I , O)

with

P = P , U P z ,

T = Ti1 U Ti2 U Tzz,
C = c1 U Cz,
A = A1 U A2

where

T11 = {ti I ti E Tl&there exista E C1 - CZ

Tz2 = {ti I ti E Tz&there existsa E CZ - C1

T12 = { t i j I there existsti E Tl&tj E Tz&a E C1 n CZ

such that 01 (ti, U) is defined}

such that az(ti, U) is defined}

such that a1 (t i , a)&a2(t j , U) is defined}

I (t) =

O(t) =

the initial marking is

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

WANG AND SARIDIS: TASK TRANSLATION AND INTEGRATION SPECIFICATION 26 1

With this definition, it is not difficult to show that a move
by M = MI 11 M2 can be represented as

((m, m2)r a$, Y) *
((S(ml,ta),ma),$,Yzi)
((m1, b(m2, t j)) , 2, Y.j>

if a E C1- C2
if a E C2 - C1 { ((S(ml,ti),6(mz,tj)),$,yzjz;) i f a E E1 E2

((b(m1, ti), qm2, t j)) , 2, YZiZj) or

where ti E TI and t j E T2, zi E al (t i ,a) and z j E az(tj ,a) .
That is, the input characters in the alphabet of one PNT, but not
the alphabet of the other, are translated by that PNT alone, and
the input characters in the alphabet of two PNTs are translated
by both the PNTs simultaneously in an arbitrary order.

Consider the example mentioned in the be-
ginning of this section. Petri nets for motion processes of the
two arms are given in Fig. 3(a). The corresponding PNTs are
specified as

Exumple2:

Ci = { Gi , GBi , GRi , MSPi, RSP;, MLP, RLP},
C1 n C2 = {MLP,RLP}

Ai = {motion control algorithms
and grasping algorithms}, i = 1,2;

where G means go to the grasp position; GB means go back to
home position; GR means grasp a part; MSP means move with
a small part; RSP means release a small part; MLP: move with
a large part; RLP means release a large part. The translation
mapping is

ai(ti1, Gi) = ai(ti2,GRi) = ai(ti3,MSPi)
= ai(ti3,MLP) = c~i(ti4,RSPi)
= ai(ti4, FUP) = ai(&, GBi) = Ai

That is, a general task cycle for an arm is to go to the grasp
position; to grasp a part; to move with the part; to release the
part; and to go back to home position.

Fig. 3(b) gives the PNT that resulted from the synchronous
composition of two PNTs for the two arms. Two new transi-
tions are introduced in the synchronous composition and their
translation mappings are specified as

a(t33,MLP) = a(t44,RLP) = A1 x A,

From the synchronous composition, we see that when
a task for moving a small part is issued, say, a
task G1G2 GR2 MSP2 GR1 MSPl RSP2 RSPl GB2 GB1,
the composition will be exactly the same as if the two
arms work independently. For example, arm two can move
with its part before arm one has grasped its part. However,
when a task for moving large parts is issued, say a task,
G I G ~ G R ~ G R ~ M L P RLP GBzGBl, then the composition will
force two arms to work synchronously for the common actions.
For example, transition t33 for task MLP cannot be enabled
until both of its input places have a token, i.e., moving with
the part cannot be executed until both arms have grasped the
same large part. A similar situation happens to the transition
t44 for task RLP.

I

t ' 4 7-

t'* - A

(b)

of two PNTs for two arms.
Fig. 3. (a) Individual PNTs for two arms. (b) The synchronous composition

Since the synchronous composition of two PNTs is still a
PNT, the synchronous composition can be directly generalized
to more than two PNTs by defining

MlllM2ll IIMC-lIIMk = (MlI(MZ(I llMk-1)llMk.

IV. INTEGRATION SPECIFICATION AND COORDINATTON
STRUCTURES

The Petri net transducers describe the individual process
of task translating in the dispatcher and coordinators. To
specify the connection among them, we introduce the model of
coordination structures in this section. A coordination structure
consists mainly of three parts: a set of system units, a set of
connection points, and a set of connection mappings from the
units to the connection points. The connection points represent
places where the units exchange their information. The con-
nection mappings describe the links between the units and the
connection points. Various types of coordination structures can
be defined by proposing different forms of connection points
or by designing different patterns of connections mappings.

For the integration specification in the coordination level of
intelligent machines, PNTs have been used to describe the
system units, i.e., the dispatcher and coordinators, and the
connection mappings are classified into two classes: receiving
mappings for information acquisition and sending mappings
for information distribution. Starting from the general cases to
the more specific cases, we specify four types of coordination
structures in the sequel.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

262 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 3, JUNE 1993

, the process of language translation, i.e., only the dispatcher can
receive input task strings from the organizer in the organization
level and the coordinators get their input task strings from
the dispatcher. An application of the general coordination
structures has been presented by Wang and Saridis [27].

We now consider two important special connection pattems:
the ring connection and the tree (or star) connection.

Dejnition 6: A coordination structure CS with a ring con-
nection is a general coordination structure satisfying the con-
ditions :

1)
2)

F = Fo U F1 U . . . U F,,
RD ; Td -+ zFn,

F; n Fj = 8, i # j ;
Sp : Td -+ 2F";

Fig. 4. The configuration of the coordination structures. 3) R& : TA -+ 2 F i - 1 , S& : Tk -+ 2Fi,i = l , . - . , n ;

where FO is called the output connection points of the dis-
patcher D; F, is called the input connection points of the
dispatcher D; Fi-1 is the input connection points of coordi-
nator C;; and, F; the output connection points of coordinator
Ca.

Dejnition 7: A coordination structure CS with a tree con-

&$nition 5: A coordination structure cs with an arbitrary
connection is defined to be a 7-tuple,

CS = (D , C, F, RD, So , R c , S c) where

1) Dispatcher: D = (Nd, E,, A,, (Td, pd, Fd) is a PNT with

2) Coordinators: C = { C l , C2, . . . , C,} is a set of coordi-
nators, n> 1,

C; = (N:, E,!, Ai, a,!, p,!, F:) is a PNT with a Petri net
N: = (Pi , T:, I:, O,!), i = 1,. . . , n;

a Petri net Nd = (Pd,Td,Id,Od);

3) F = { f l , . . . , fs} is a set of connection points, s 2 1;
4) RD and SD are mappings from Td to finite subsets of

F, i.e.,

RD ; Td -+ 2 F , SD : Td -+ 2F

RD and SD are called the dispatcher receiving and
sending mappings, respectively. The RD indicates how
information can be received by the dispatcher from the
connection points. The SD indicates how information can
be sent from the dispatcher to the connection points.

5) R c = { R & , - . . , R E } and SC = {S&,.-.,SE}. RL and
S& are mappings from TA to finite subsets of F, i.e.,

R& : T& -+ 2 F , 5'; : TA -+ 2F

R c and SC are called the coordinator receiving and
sending mappings, respectively. The meanings of RL and
S& are similar to that of RD and SD for i = 1 , . . . , n.

The configuration of the coordination structures is shown
in Fig. 4. A coordination structure CS with an arbitrary
connection is called a general coordination structure.

In Definition 5 , no restriction has been imposed on the
receiving and sending mappings; therefore, arbitrary con-
nections between the dispatcher and coordinators may be
assigned. Although this gives the coordination structures the
greatest power for connection description, it makes any kind
of analysis for system properties extremely difficult. Another
fact is that the role of the dispatcher is no different than
that of the coordinators in the configuration of connections.
They all have equal positions. The only way in which the
dispatcher distinguishes itself from the coordinators is through

nection is a general coordination structure satisfying the con-
ditions:

1)
2)
3) RL :TA -+ 2",

where F; is the connection points of coordinator C;.
The following simple examples provide illustrations for

the coordination structures with ring connection and tree
connection, respectively.

Example 3: Fig. 5 presents an example of the coordination
structures with ring connection, where an arc with arrow
from a transition to a connection point indicates a sending
relationship between the transition and the point, while an arc
with arrow from a connection point to a transition indicates a
receiving relationship. The formal specification for connection
is,

F = F1 U . - . U F,,
RD : Td -+ 2 F ,

F; n Fj = 8, i # j ;
s? : Td -+ 2 F ;
5'2 : T& -+ 2",i = l , . . . , n ;

Fi = { f z l , . f i 2 } , i = o , 1 , 2 ;
RD(td2) = F27 S D (tdl) = FO;

R & (t C l k) = {fok}, s & (t C l k) = { f l k } , IC = 1, 2;
R ; (t C 2 k) = { f l k } , s&(tC2k) = { f 2 k } , IC = 2*

Consider this coordination structure as a Petri net: it is
easy to see that, in order to take the dispatcher from the
initial marking back to the initial marking (a complete cycle of
execution), the transitions in the coordination structure have
to be fired according to one of the following firing sequences:

tdl ' tcll . tc12 ' tc21 ' tc22 ' td27

tdl ' tcll ' tc21 ' tc12 ' tc22 ' td2

Therefore, the coordination structure defines the task prece-
dence relationship (the execution order) among the tasks in
the dispatcher and coordinators.

In a coordination structure with ring connection, a system
unit receives information from only one of the remaining
units, and transfers the information to only one of the other
units. The coordinators can communicate among themselves
in a sequential fashion. The dispatcher and coordinators still

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

WANG AND SARIDIS: TASK TRANSLATION AND INTEGRATION SPECIF'ICATION

Fig. 5. A coordination structure with ring connection.

I I I
n
f 1 1

' 1 1

.n
W

I I I 1

Fig. 6. A coordination structure with tree connection.

hold equal position in the connection configuration as in the
case of the general coordination structures. As described in
the begining of Section 11, however, only the dispatcher can
receive input tasks from the higher level, the task process will
then start from and end at the dispatcher.

Example 4: Fig. 6 gives a coordination structure with tree
connection. The formal specification for the connection is

Again, consider the coordination structure as a Petri net. By
listing all possible firing sequences, we can find that, in one
complete cycle of execution, the transitions in the coordination
structure have to be fired in according to one of the following

263

firing sequences:

In a coordination structure with tree connection, the dis-
patcher occupies a dominant position in the connection con-
figuration. No direct communication among the coordinators
is allowed, and the coordinators have to exchange information
with each other through the dispatcher. Considering the role
played by the dispatcher in the task translation, we see that
the dispatcher serves as both a task control center and an
information communication center. When direct connctions
are permitted only between the dispatcher and a coordinator,
the coordination structures with the tree connection are the
appropriate model for the coordination level.

The coordination structures with tree connection defined by
4.3 are still too complex to allow us to perform system analysis
easily for the coordination level. To compensate the analysis
aspect, we impose some further restrictions on the coordination
structures with tree connection and introduce the model of
simple coordination structures.

DeJnition 8: A simple coordination structure CS with a
tree connection (simple coordination structure, for short) is
a coordination structure with a tree connection satisfying the
conditions:

1) Fi = {I;, f i r , f&, f&} : f; is called the input point
of f i r the input semaphore of f& the output point, and
fio the output semaphore of Ci, respectively;

2) RD and SD satisfy the following connection constraints:
a) <t ,f i) E SD * (t,f&) E R ~ , (t , f ;) E RD *

(t,f$o) E S D ;
b) (t 7 . f ;) # R D , (t , f i o) # R D , (t , f &) $ SD,

(t , f i r) # SD;
c) Each C; has an integer n; 2 1, called the task

buffer capacity, such that V firing sequence s of
transitions in N d :

3) R& and S& satisfy the following connection constraints:
a) (4 f$) E s& p (t , f&) E R$+(t, f&) E S& ;
b) (t,fi) # S & (t , f i o) # S&,(t,f&) $ R&,

(t , f i r) # &;
c) only one initially enabled transition ti in Ci with

d) only one transition t i in C, with (ti, f;) E S&;
e) only transition ti, has its output places being the

(t i , f;) E R&

input places of ti.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9. NO. 3, JUNE 1993

I

264

1-1
- . - . . . rig. 1 . A simple cooroinauon structure.

The conditions in 1)-3) of the simple coordination structures
represent a set of formal specifications for a simple control
protocol, i.e., before the dispatcher sends a new task to a
coordinator, the dispatcher must check whether the coordinator
is capable of receiving more tasks (through the number of to-
kens left in the input semaphore), whereas before a coordinator
reports the result of a task execution back to the dispatcher,
the coordinator must check whether its output buffer is capable
of holding more task reports (through the number of tokens
left in the output semaphore). Physically, this protocol is
designed based upon the assumption that only limited memory
space and communication network access are available to a
coordinator. Specifically, the connection constraints on RD
and SD indicate that: a) the dispatcher must check the input
semaphore fiI before it sends information to Ci, and reset
the output semaphore f!jo after information has been received
from C;; b) the dispatcher cannot receive information from
the coordinators through fj or f&, or send information to the
coordinators through f& or f&; c) before a transition receives
the execution result from a coordinator, there must be other
transitions which activate the coordinator a sufficient number
of times (but bounded by the buffer capacity ni); d) every
coordinator is connected with the dispatcher bidirectionally.
The connection constraints on S& and R& imply that: a)
Ci must check the output semaphore fi0 before it sends
information to others, and reset the input semaphore fiI after
information has been sent; b) Ci cannot receive information
through f& or f&, or send information through fj or fro;
c) only one initially enabled transition, t;, in C; can receive
tasks from the dispatcher; d) only one transition, t i , in Ci
can send information to the dispatcher; e) Ci can receive a
new task only after it reports the result of the previous task
execution.

Fig. 7 presents a simple coordination structure. In the
following sections, we will concentrate on the analysis of
simple coordination structures.

v. FROM COORDINATION STRUCTURES TO PETRI NETS
From the examples given in the previous section, we have

already seen that Petri nets can be naturally obtained from the
coordination structures by considering the connection points
as places, and the receiving and sending mappings as the
input and output functions, respectively. We formally define
the Petri nets which underlie the simple coordination structures
and show how they can be used to describe the operations of
the coordination structures. Similar procedures can be applied
to derive the Petri nets which underlie the other types of
coordination structures. It should be pointed out that once these
Petri nets have been obtained, then all the concepts, methods,
and tools developed in Petri net theory for system analysis
and synthesis [14] can be used to address various analysis and
synthesis issues of the coordination structures.

Dejinition 9: The Petri net N underlying a simple coordina-
tion structure CS is a Petri net, specified as N = (P , T , I , 0),
where

In terms of the Petri net N , a token in the input point
of a coordinator indicates that a task has been issued to the
coordinator. The dispatcher can send a task command to a
coordinator when there is a token in the input semaphore
of the coordinator indicating the coordinator is available for
task execution. A token in the output point of a coordinator
indicates that a task has been completed by that coordinator,
and the feedback information of the task execution has been
contained in that token. A coordinator can send feedback of
task execution to its output point when there is a token in
its output semaphore, which implies that the communication
facility is ready for information transferring between the
dispatcher and coordinator. Once a transition in the dispatcher
takes the feedback information from the output point, it will
reset the output semaphore of the coordinator. The overall
operation of a coordination structure can be described below.

To start operation, a CS receives a task plan from the
organizer, puts it on the input tape of the dispatcher D, and the
D begins the process of dispatching. Once a transition t of D,
with fil , . . . , fp as its output places in F, has been fired with
respect to the current marking of N to execute a primitive
task a, it will send the selected control string z E ad(t ,a)
to the coordinators Ci, , . . . , Cis, and activate the synchronous
composition

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

I

WANG AND SARIDIS: TASK TRANSLATION AND INTEGRATION SPECIFICATION

~

265

for the processing of z. Upon to the completion of a task by
a Cik, transition t? will put a token (feedback) to fz, if it
was enabled with respect to the current marking of N . The
feedback will be read by the dispatcher to continue the task
process, and Ci, will become idle again. Once the dispatcher
reaches its final markings and the coordinators are either in
the initial marking (i.e., no task processing for a while) or the
final marking, the entire task process is completed, and the
requested job is accomplished successfully.

Clearly, the synchronous composition provides the dis-
patcher a mechanism of synchronizing the task execution of
the coordinators, and the Petri net N specifies the precedence
relation of the activities in the dispatcher and coordinators, and
therefore, defines the information structure of the CS. From the
point of view of the execution of N, a task plan issued by the
organization level can be considered as a path specification
in the Nd, and, in turn, the control actions selected by the
transitions of D can be thought of as the path specifications in
the Petri nets of the coordinators. This fact demonstrates again
that a PNT provides a mechanism to control the executions of
Petri nets.

VI. SOME REQUIREMENTS FOR TASK PROCESSING

In the model of coordinate structures, the input alphabet
E, of the dispatcher represents the set of primitive events in
the organization level [22]; the input alphabets, CL of the
coordinators, i = 1, . . . , n, are the set of primitive control
actions in the coordination level; and the output alphabets A&
of the coordinators, i = 1, . . . , n, give the set of primitive
operations in the execution level. To ensure the continuity of
the task translating process, the following relationship must
exist between the output alphabet of the dispatcher and the
input alphabet of the coordinators,

n

A, = C c E U E:.
i=l

The behavior of the dispatcher and coordinators are
specified by the transition sequence sets L(Nd ,pd) and
L(N& &), i = 1, . . . , n, respectively. As in the theory of
program verification, where the behavior (i.e., all possible
routine sequences) of a program is used to prove the
correctness of the program and to guide the implementation,
the transition sequence sets L (N d , p d) and L(N&,&) can
also be employed for the design , analysis, implementation and
simulation of the models for the dispatcher and coordinators.

A coordinator must have the capability to process (or
translate) all the possible tasks issued by the dispatcher.
In terms of input language of the coordinator, these task
processing capability requirements can be specified formally

. .

as,

4 C i) 2 U @ d (t , a) T(Ti)' I t E T;
and a E CO}, i = 1,. . . , n, where

T; = {t I t E T d and (t , fj) E so}
By the closure property of Petri net languages under the union
operation and Theorem 2, this requirement is guaranteed to
be satisfiable.

A task plan s E At; is said to be executable by a coordina-
tion structure CS if the following final configurations can be
reached by the dispatcher and coordinators:

It should be pointed out that the A-moves (the firings of
transitions caused by a(t , A)) have a special interpretation.
They may represent the internal operations occumng in the
dispatcher or the coordinators which are activated to provide
the necessary information or resource for the continuity of the
coordination process.

VII. PROCESS PROPERTIES OF THE COORDINATION
STRUCTURES

One of the merits offered by modeling the coordination level
with the coordination structures is that the underlying Petri nets
can provide us a way to use Petri net concepts and analysis
methods to investigate the properties of the processes in the
coordination level, such as liveness, boundedness, reversibility,
consistency, repetitiveness, etc. In this section, we present three
theorems on the boundedness, liveness, and reversibility of the
coordination structures.

Theorem 3: The Petri net N underlying a simple coordina-
tion structure CS is bounded if all the Petri nets Nd,N,! , i =
1, . . . , n are bounded.

It is also easy to show that when n; = 1, the safeness
of Nd,N,!,i = I , . . . ,n, will guarantee the safeness of N .
The boundedness of the underlying Petri net guarantees the
structural stability of the coordination structure CS. It can be
shown, however, that for a PNT M with a bounded Petri net,
we can define an equivalent finite state transducer M' using
the reachability set of the bounded net such that T (M ') =
T (M) . This implies that the input and output languages ofrhe
bounded PNT are regular languages. This fact indicates that
the language complexity of PNTs with the bounded Petri nets
is very simple. Therefore, for some cases, the unbounded PNTs
in the coordination structures are required if the express power
of regular languages is inadequate.

Theorem 4: The Petri net N underlying a simple coordi-
nation structure CS is live if all the Petri nets Nd, N i , i =
l , . . . , n are live.

It is clear from the proof that a transition in T d can be
enabled through the same number of firings of transitions in
both Petri nets N and Nd from the same marking. However,
the firing sequences in N and Nd may be different. Especially,
two transitions in Td that are parallel in Nd may no longer be
parallel in N, since they may require inputs from the same
coordinator with the task buffer capacity equals one.

The liveness of N ensures the absence of deadlock in the
coordination structures. The following example shows that
the connection constraint c) 2) is necessary to guarantee the
liveness of N .

Example 5: Consider the coordination structure CS shown
in Fig. 8. Obviously, the Petri nets for the dispatcher and
coordinator are live nets. The possible firing sequences of

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

I

266 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 3, JUNE 1993

I L D I

Fig. 8. A coordination structure with deadlocks.

transitions in Nd is,

Clearly for any finite number K, we have

V M 2 [$] + 1. Therefore, 2c) is violated here when the
task buffer capacity n1 = 1. It is easy to check that after the
firing sequence

the net N will be in deadlock. Thus, the underlying Petri net
N is not a live net. Actually, for any finite n1, we can find an
firing sequence which leads N to a deadlock state.

Finally, the following theorem gives the reversibility of the
underlying Petri net N with respect to its component nets.

Theorem 5: If all the Petri nets ~ d , N:, i = 1, . . . , n, are
individually reversible, then Nd, and N:,i = 1, ... ,n, as the
subnets of the Petri net N underlying the simple coordination
structure CS, are still reversible.

Therefore, the dispatcher and coordinators in a simple
coordination structure are always capable of re-initializing
themselves.

Unlike in the previous two theorems, no conclusion has been
made about the state of the connection points in this theorem.
It is not clear whether the underlying Petri net N is still
reversible when the connection points are included. However,
this is not an important issue since the theorem already
guarantees the reversibility of the states of the dispatcher and
coordinators.

I D , I

Fig. 9. The layout of the assembly workcell.

Manipulator Assembly Table

Fig. 10. The Petri net model for the dispatcher.

VIII. CASE STUDY: A PROTOTYPE INTELLIGENT
ROBOTIC SYSTEM

To demonstrate the application of the coordination structures
for the integration specification in intelligent machines, a case
study of modeling an intelligent assembly robotic system
(IARS) for assembly tasks has been conducted. The major
components of the IARS include: 1) a general-purpose manip-
ulator with a gripper; 2) a vision system with several cameras;
3) a sensor system with touch, crossfire, and forcehorque sen-
sors; 4) a communication network for information exchange;
5) a high-level digital computer for control and communication
activities. The particular assembly job considered here is to
move parts from a conveyer into the slots on an assembly
table. Fig. 9 presents the layout of the assembly workcell.

The coordination structure for the coordination level of
the IARS consists of a dispatcher (D), a vision coordinator
(VC), a sensor coordinator (SC), a path planning coordinator
(PC), a motion coordinator (MC), and a gripper coordinator
(GC). Individual PNTs for the dispatcher and coordinators are
presented in the sequel.

A. The Dispatcher (0)

The input alphabet is CO = {el, e2, e3, e4}, where el, e2, e3
are task primitives involved with the vision, motion, and sensor
coordinators, respectively; e4 is a task primitive of grasping
or releasing parts. The task plans from the organization level
have been assumed to be generated by the grammar

G = (N , CO, p, S)

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

WANG AND SAUDIS: TASK TRANSLATION AND INTEGRATION SPECIFICATION

‘4 , I f ‘11,
A r r

‘I 5 ‘6 (7 $0

261

J . 0

pz p3 ‘9 p4 , 4dY-w p5 p6 p7 PI

where N = {S, M , Q , H } is the set of non-terminal symbols,
C, = { e l , ez, e3, e4} the set of terminal symbols, and P =
{S + e l M , M -+ ezSlezQ, Q -, e3H, H ---t e4Qle4Sle4)
the set of production rules.

The output alphabet is A, = C, U C, U C, U C, U E,, where
E,, E,, E,, E,, and C, are, respectively, the input alphabets
for the VC, SC, PC, MC, and GC:

E,, = {contr,, proc,,, analy,, sendvp, sendpvm, finish}

C, = {contr,, procs, analys, sendsg, move-sendgs, finish}

C, = {path, sendvp, sendpvm,finish)

C, = {move , send,,,,finish} and

C, = {sendsg, move-send,,,finish}.

The meanings of these control instructions are given in the
descriptions for the corresponding coordinators.

Fig. 10 gives the Petri net model for the dispatcher. The
translation mapping a d for the D is specified as:

a d (t 1 , e l) = {A, contr,.proc,.analy,.finish}
a d (t 2 , ez) = {(contr,.proc,.anaZy,.send,,.path

sendpvm. move)+ .finish}
a d (& , e3) = {A, contr,.proc,.unaly,.finish},
ad&, e4) = {(contr,.proc,.analy,.sendsg

. move_send,,)+.finish)

where s+ = { sn, n _> l}. All other transitions of the
dispatcher are internal operations.

The input language of the dispatcher is exactly the task
plans issued by the organizer (i.e., grammar G). The empty
string A in the translation mapping (~ d means no action
since the required visual or sensory information is already
available. The interactive motion control strings, (contr,.
procs. mazy,. sendsg. move_send,,)+.finish,or (contr,.
proc,. analy, .sendvp .path.send,,,.move)+finish, of the
dispatcher involve the synchronous composition of two or
three coordinators, i.e., SCllGC or VCIIPC/(MC. When these
control strings are issued for the motion or grasping tasks,
the corresponding coordinators have to work cooperatively to
achieve the required task. The additional information scripts
or data files associated with control instructions will not be
discussed here.

B. The Msion Coordinator (VC)
The subtask plans to be processed by the VC are

{A, contr,. pmc,. anaZy,.finish, (contr,. proc,. analy,.
sendvp. send,,,)+ .finish}.

The output alphabet AV of the VC consists of the hardware
operations for the cameras. Since we are not going to be

involved with the execution level, we do not specify A, in
detail and only describe the function of the translation mapping
a, for the VC. The Petri net model for the VC is given in Fig.
11. The translation mapping a,, is specified as:

0, (t l , contr,) = {instructions to control the camera

an (t z , proc,) = {algorithms for image processing},
devices and to take pictures},

a,(t3, andy,) = {algorithms for image analysis

cu(t5, send,,) = {procedures for sending the

and fusion},

information to the PC},

= {procedures for formulating
the feedback information},

information from the PC}.

aU(t7,finish) = ad(tg,finish)

au(tcom, send,,) = {procedures for receiving the

C. The Sensor Coordinator (SC)

proc, . analy, .finish,
move_send,,)+. finish}.

The Petri net model for the SC is the same as that of the
VC. The places and transitions also have the similar meaning.
The output alphabet As of the SC consists of the hardware
operations for the sensor devices. The translation mapping ms
is similar to the mapping a,.

The subtask plans to be processed by the SC are {A, contr,.
(contrs .pmc,. analys .sendsp.

D. The Path Planning Coordinator (PC)
The subtask plans to be processed by the PC are { (sendvp

.path.send,,,)+.jinish}. The PC is based on the obstacle
avoidance path planner developed in [5] . Fig. 11 gives the
Petri net model for this coordinator.

The translation mapping a, for the path planning coordina-
tor can be specified as:

c,(t,, send,,) = {procedures for receiving
the information from the VC}

a, (t 1, path) = {procedures for searching
the path from memory}

0, (t z , path) = {algorithms for constructing
the geometrical path}

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

268 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 3, JUNE 1993

ap(t5, sendpvm) = {procedures for sending the VC and MC to indicate the termination of execution
and to fire the transition t 7 for the f in i sh task. Note
that this control action guarantees that the PC can always
received the new information from the VC for its path
planning. Similarly, the number of iterations of the control
action (contr,.proc,.unuly,.send,,.puth.send,,,.move)~
finish is determined by the GC as it finds that the required
task is accomplished.

the information to the vc and MC)

the information from the VC}
ap (t7 , finish) = {procedures for formulating

the feedback information}.

ap(t7, send,,) = {procedures for receiving

E. The Motion Coordinator (MC)
The subtask plans to be processed by the MC are { (send,,,,,

.move)+.finish}. Fig. 11 gives the Petri net model for the
coordinator.

The translation mapping a, for the motion coordinator can
be specified as:

am (tl , move) = {procedures for evaluating
the trajectory} ,

cm (t 5 , finish) = {procedures for formulating
the feedback information}.

the information from the PC}.
cm (tcom, sendpvm) = {procedures for receiving

F. The Gripper Coordinator (GC)

The subtask plans to be processed by this coordinator are
{ (send,,.move-send,,)+.finish).

The Petri net model for the coordinator is same as that of the
MC. The places and transitions also have the similar meaning,
except that the transition tl here has to determine the fine
path to approach the desired object. The translation mapping
ag for the GC can be specified as

ag(t l , move-send,,) = {procedures for determining
the fine motion for hand and
sending information to the SC}.

feedback information}.
ag (t,,,, sendsg) = {procedure for receiving information

from the SC}.

ag (t 5 , finish) = {procedures for formulating

All the unspecified transitions in the coordinators are internal
operations.

The coordination structure (CS) for the coordination level of
the IARS now can be constructed from the individual PNTs
by introducing the connection points, and the receiving and
sending mappings (see Fig. 11). Note that the coordination
structure constructed here is not a simple coordination struc-
ture since it allows direct connection between coordinators,
and although the individual PNTs are unbounded, the CS
obtained by integration, viewed as a Petri net, is bounded.

The CS is operated according to the execution procedures
described in Section V. When control (contr, .procv. unuly,.
send,,,. path.send,,,.move)+.finish is issued by the
dispatcher, the actual number of iterations is determined
by the PC as it finds that the desired arm motion is
completed. In this case, the PC will send a message to

IX. CONCLUSION

An analytical theory of coordination for intelligent machines
has been established in this paper by establishing a formal
model for the coordination level. It has been demonstrated
that this model can enable the establishment of an information
structure in the coordination level. The information structure
specifies the necessary task precedence relationship in the
coordination of the diversified activities.

A new type of transducers, Petri net transducers (PNTs),
has been introduced to serve as the basic module in our
analytical model. PNTs provide a formal description for the
individual processes within the dispatcher and coordinators.
The concurrence and conflict among these processes can be
represented by PNTs conveniently. Another application of
PNTs is to control and to synchronize the operations of Petri
nets.

Several coordination structures have been defined as a
formal tool for specification of the connection and cooperation
between the dispatcher and the coordinators. The relation
between the coordination structures and Petri nets is inves-
tigated in detail. The results of using the concepts and the
analysis methods in Petri net theory to investigate the process
properties of the coordination structures present one aspect of
their advantages as the model for the coordination level. More
important, the coordination structures provide a structural
formulation for a mechanism of control and communication for
task processes in the dispatcher and the coordinators. The use
of colored Petri nets for modeling the coordination structures
is a possible direction for future research.

The coordination theory for the coordination level presented
here, together with the mathematical formulation for the
organization level and the well developed control theory for the
execution level, completes the first step toward a mathematical
theory for intelligent machines. Such a mathematical theory
will provide a solid scientific and engineering foundation for
the design, simulation, verification, and implementation of
intelligent machines such as the machines in the Intelligent
Robotic Systems for space exploration or in the Computer
Integrated Manufacturing Systems for future factories.

APPENDIX

Let N be the Petri net of M =
(N, C, A, 0, p, F) , N = (P, T, I, 0). For any t E T, if there
exist two different a1 and a2 E CU{X} such that both a(t , ul)
and a(t, u2) are defined, we introduce a new transition t’ with
I(t’) = I (t) , O(t’) = O(t) and modify a in such a way
that a(t’,u2) = a(t,u2), a(t’,u) is undefined for all other

PROOFS OF THE THEOREMS

Proof of Theorem I :

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

I

WANG AND SARIDIS: TASK TRANSLATION AND INTEGRATION SPECIFICATION

a E C U {A}, and a(t, a2) becomes undefined. Similarly, if
la(t,a)l > 1 for an a E E, we can introduce new transitions
t ’s such that the transitions t and t’s will have a translation
mapping with la(t,a)l = 1 or Ia(t’,a)l = 1. Continuing
this procedure until no transitions have more than one input
characters in C for which a are defined and la(t,a)l = 1
for all t E T and a E C, we will finally get a SPNT
M’ = (N ’ , C , A , a ’ , p , F) with N’ = (P,T’,I’,O’). The
construction of M’ clearly shows that T (M ’) = T (M) . Q.E.D.

Proof of Theorem 2: For a SPNT M = (N, E, A, a, , p, F),
a labeling function p associated with a can be defined as:

p : T + C U {A}, and P(t) = a if a(t, a) is defined

and we the labeled Petri net y = (N , C , P , p , F) [14] as
labeled Petri net underlying M .

By Theorem 1, we only need to consider the case for
SPNTs. Let M = (N , C , A , u , p , F) be a SPNT and y =
(N, C, p, p, F) be the labelled Petri net underlying M. The
fact that input language is a Petri net language follows
immediately from the relation a (M) = P(L(N, p)) = L(y).

Let y’ = (N, C, p’, p, F) be a labelled Petri net with a free
labeling function p’, and L(y’) be its Petri net language. It
is clear that w (M) can be derived from L(y’) by replacing
character p’(t) in L(y’) with the character a(t, p’(t)). Since
Petri net languages are closed under finite substitution, it
follows that w (M) is a Petri net language. Q.E.D.

Proof of Theorem 3: The proof is very simple. First of all,
by the connection constraints 2a) and 2b) in Definition 8, for
any m E R (N , p) ,

m(p) 5 ni for some i, if p E F

Let Rd(N, p) be the set of all markings on the net Nd which
are part of the markings of R (N , p). In other words, Rd(N, p)
is the restriction of R (N , p) on Pd. Since Nd is a closed
subnet of the net N, it follows immediately that R d (N , p)
is a subset of R(Nd,pd). Similarly, one can show that the
restriction of R (N , p) on P: is a subset of R(N:,pd) , i =
1,. . . , n. Therefore, the boundedness of Nd, N:, i = 1,. , n
guarantees the boundedness of the net N . Q.E.D.

Proof of Theorem 4: By the connection constraint 2d) for
simple coordination structures, for each Ci there exist transi-
tions in Nd which take f j and f& as their input and output
places in F, respectively. From connection constraint 3c), t;
takes both f& and f& as its output places. Since only t)
has output places being the input places of ti, by 3d), it is
guaranteed that if a number of tokens is displaced into fj, the
same number of tokens will appear in f& when N: is live.
Therefore, in order to show N is live, we only need to show
that Nd as a subnet of N is a live Petri net.

Let m E R (N , p) be an arbitrary marking; R (N , m , k)
be the set of markings reached from m by firing at most IC
transitions in Td. Let md and Rd(N, m, k) be the restrictions
of m and R (N , m, k) on Pd, respectively; and R(Nd, md, k)
be the set of markings reached from md by firing at most k
transitions in Td when Nd is considered as an independent
Petri net. Let T (k) be the set of transitions in Td which are
enabled under R (N , m, k) and T’(k) be the set of transitions

-

269

in Td which are enabled under R(Nd, md, k) when Nd is
considered to be independent. We first prove that for any
k 2 0,

Rd(N, m, k) = R(Nd, md, k) and T (k) = T’(k)

When k = 0, Rd(N,m,O) = md = R(Nd,md,O), and,
obviously, T’(k) 2 T(k) . Let t E T’(0) be an enabled
transition with respect to Nd. If (t, fj) $ S o and (t, f&) $ RD
for all i, then it is clear that t is also enabled by m in N
in this case, so t E ~ (0) . When (t,fj) E S D , let s be the
firing sequence of transitions from m, k i be the number of
transitions t’ in s such that (t’, fj) E SO, k i be the number of
transitions t” in s such that (t, f;) E RD, p i s be the number
of tokens in fist p& be the number of tokens in f&, and k$
be the number of firings by transition t;. Since there are ni
initial tokens in fis and f&, respectively, we have,

p i s = ni - k i + k$
kk 5 ki 5 min{ki,ni + kk}.

However, by the connection constraint 2c) in Definition 8, in
this case,

which implies min {ki, ni + k k } = k:. Therefore, t) can be
fired enough times such that p i s > 0, which indicates that t
may be enabled under m in N , i.e., t E T(0). Similarly, when
(t , f&) E RD, we have,

p& = k i - k k

the constraint 2c) indicates in this case,

15 kk - kk 5 ni + 1

which implies min { kg , n, + I C ; } 2 kk + 1. Therefore, t i can
be fired enough times such that p b > 0, hence t E T(0). In
all the cases, t E T’(0) + t E T(O), therefore T’(0) = T(0).

Assume that Rd(N, m, I C) = R(Nd, md, k) , T’(k) = T(k) ,
for k 5 q. Clearly, &(N, m, q + 1) = R(Nd, md, q + 1)
follows immediately from T’(q) = T(q). Since T’(q + 1) 2
T(q + l), by the same procedure used the proof of T(0) =
T’(O), we can show that T(q + 1) 2 T’(q + 1). Therefore,
T(q + 1) = T’(q + 1). So Rd(N,m, k) = R(Nd,md, k) and
T (k) = T’(k) for any k 2 0.

Since Nd is live, it is possible to fire every transition t from
md in Nd. However, Rd(N, m, k) = R(Nd, md, k) , T’(k) =
T (k) for any k , we see that the same transition t is also
possible to be fired from m in N through the same number of
firings of transitions. Therefore, N is live. Q.E.D.

The proof is based on the analysis
in the proof for liveness. First of all, it is easy to see that
the reversibility of the Petri nets for the coordinators is still
held when considering them as the subnets of N . To show the
reversibility of the Petri net Nd for the dispatcher, let us use
the following result from Theorem 4, i.e.,

Proof of Theorem 5:

Vm E R(N, P I , k 2 0,
Rd(N, m, k) = R(Nd, md, k)

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

270 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 9, NO. 3, JUNE 1993

Since Nd is reversible, and md E R(Nd,pd), where pd
is the restriction of p on Pd. then, pd E R(Nd,md), i.e.,
pd E R(Nd, md, q) for some q 1 0. From the above equation
it follows that

for the same q. This shows that Nd as a subnet of N is
reversible. Q.E.D.

ACKNOWLEDGMENT
The authors wish to thank Professors Alan Desrochers

and Robert McNaughton for their valuable comments and
suggestions.

REFERENCES

[I] A. V. Aho, and J. D. Ullman, The Theory of Parsing, Translation and
Compling, Vol. 1.

[2] J. S . Albus, “A new approach to manipulation control: The cerebellar
model articulation controller,” Trans. ASME. J. Dynamic Syst., Meas.
Control, pp. 220-227, 1975.

[3] R. Y. AI-Jaar and A. A. Desrochers, “Petri nets in automation and
manufacturing,” in Advances in Automation and Robotics, G. N. Saridis,
Ed., vol. 2. Greenwich, CT: JAI, 1990.

[4] A. Bejczy, “Task driven control,’’ in Proc. IEEE Workshop Intelligent
Contr. Rensselaer Polytechnic Institute, Troy, NY, 1985, p. 38.

[5] C. H. Chung, and G. N. Saridis, “Obstacle avoidance path planning
by extended Vgraph Algorithm,” Tech. Rep. # 12, NASA CIRSSE,
Rensselaer Polytechnic Institute, Troy, NY, 1989.

[6] J. J. Demael, and A. H. Levis, “On the generation of a variable structure
airport surface traffic control system,” in Proc. 4th IEEE Int. Intelligent
Contr. Symp., 1989, pp. 7481.

[7] E. H. Durfee, Coordination of Distributed Problem Solvers. Boston,
MA: Kluwer Academic, 1988.

[8] K. S. Fu, “Leaming control systems and intelligent control systems: An
Intersection of artificial intelligence and automatic control,” IEEE Trans.
Automat. Contr., Vol. AC-16, p. 70, 1971.

191 J. H. Graham and G. N. Saridis. “Lineuistic decision structures for

Englewood Cliffs, NJ: Prentice-Hall, 1972.

I

hierarchical systems,” IEEE Trans. Syst., Man, Cybern., vol. SMC-12,

A. W. Holt, “Coordination technology and Petri nets,” Advances in
Petri Nets, G. Rozenberg, Ed. New York Springer-Verlag, 1984, pp.
278-296.
N. Komoda, K. Kera, and T. Kubo, “An automated decentralized control
system for factory automation,” IEEE Comput., vol. 17, pp. 73-83, 1984.
A. H. Levis, “Human organizations as distributed intelligence systems,’’
in Proc. IFAC/IMACS Int. Symp. Distributed In telligence Systems: Meth-
ods and Applications, Varna, Bulgaria, 1988, pp. 13-19.
A. Meystel, “Nested hierarchical control: Theory of team control applied
to autonomous robots,” Lab. Appl. Machine Intell. and Robotics, Dept.
ECE, Drexel Univ., 1986.
J. L. Peterson, Petri Net Theory ans The Modeling of Systems. Engle-
wood Cliffs, NJ: Prentice-Hall Intemational, 1981.
G. N. Saridis, Self-Organizafion Controls of Stochastic Systems. New
York Marcel Dekker, 1977.
G. N. Saridis and H. E. Stephanou, “A hierarchical approach to the
control of a prosthetic arm,” IEEE Trans. Syst., Man, Cybern., vol.

G. N. Saridis, ‘Toward realization of intelligent control,” Proc. IEEE,
vol. 67, 1979.
-G. N. Saridis, “Intelligent robotic control,” IEEE Trans. Automat.
Contr., vol. AC-28, no. 5, pp. 547-557, 1983.
G. N. Saridis and J. H. Graham, “Linguistic decision schemata for
intelligent robots,” IFAC J. Automatica, vol. 20, no. 1, pp. 121-126,
1984.
G. N. Saridis, “Foundations of intelligent controls,” in Proc. IEEE
Workshop on Intelligent Confr., Rensselaer Polytechnic Institute, Troy,

G. N. Saridis, “Intelligent control,” IEEE Contr. Syst. Mag./, vol. 7, no.
3, pp. 4849. 1986.
G. N. Saridis and K. P. Valavanis, “Analytic design of intelligent
machines,” IFAC J. Automatica, vol. 24, no. 2, pp 123-133, 1988.

pp. 323-333, 1982.

SMC-7, pp. 407420, 1977.

NY, 1985, pp. 23-27.

1231 G. N. Saridis, “Analytic formulation of the principle of increasing
precision with decreasing intelligence for intelligent machines,” IFAC
J. Automatica, Vol. 25, no. 3, pp. 461-467, 1989.

[24] K. P. Valavanis, A Mathematical Formularion for the Analytical Design
of Intelligent Machines, RAL Rep. #85, Rensselaer Polytechnic Institute,
Troy, NY, 294 pp., 1986.

[25] F. Y. Wang and G. N. Saridis, “A formal model for coordination of
intelligent machines using Petri nets,” in Proc. 3rd IEEE Int. Intelligent
Contr. Symp., Arlington, VA, 1988.

[26] F. Y. Wang and K. Gildea, “A colored Petri net model for connection
management services in mms,” Computer Commun. Rev., vol. 19, no.
3.. pp. 76-98, 1989.

[27] F. Y. Wang and G. N. Saridis, ‘The coordination of intelligent robots: A
case study,” in Proc. Fourrh IEEE Int. Intelligent Contr. Symp., Albany,
NY, 1989, pp. 506-512.

[28] F. Y. Wang and G. N. Saridis, “A coordination theory for intelligent
machines,” IFAC J. Automatica, vol. 26, no. 9, 1990.

[29] F. Y. Wang, K. Kyriakopoulos, A. Tsolkas, and G. N. Saridis, “A Petri
net coordinatiun model for an intelligent mobile robot,” IEEE Trans.
Syst., Man, Cybern., vol. 21, pp. 777-789, 1991.

[30] F. Y. Wang, M. Mittmann, and G. N. Saridis, “Coordination specification
for CIRSSE robotic platform using Petri net transducers,” to be appear
in J. Intelligent Robofic Syst., 1992.

[31] F. Y. Wang and G. N. Saridis, Coordination Theory of Intelligent
Machines: Aplications in Intelligent Robotic Systems and CIM Systems,
To be published by Kluwer Academic Publishers, Boston, MA, 1993.

[32] F. Y. Wang and K. Gildea, “MMS design and implementation using
Petri nets,” in Proc. First Int. Workshop on Formal Methods in Engi.
Design, Manut, and Assembly, pp. 184201, 1990.

[33] M. C. Zhou and F. DiCesare, “Adaptive design of Petri Net controllers
for error recovery in automated manufacturing systems,” IEEE Trans.
Syst., Man, Cybern., vol. 19, pp. 963-973, 1989.

1341 M. C. Zhou, F. DiCesare, and A. A. Desrochers, “A hybrid methodology
for synthesis of Petri net for manufacturing systems,” IEEE Trans.
Robotics Automat., vol. 8, no. 3, 1992.

[35] M. C. Zhou and F. DiCesare, “Parallel and sequential mutual exclusions
for Petri net modeling for manufacturing systems with shared resources,”
IEEE Trans. Robotics Automat., vol. 7, pp. 515-527, 1991.

[36] M. C. Zhou and F. DiCesare, Petri Net Synthesis for Discrefe Event
Control of Manufacturing Systems. Boston, MA: Kluwer Academic,
1992.

Fei-Yue Wang (S’89-M’90) was bom in Qingdao,
China, in November 2, 1961. He received the B.E.
degree in chemical engineering 1981 from Shan-
dong Institute of Chemical Technology, Qingdao,
China, the M.S. degree in mechanics from Zhejiang
University, Hangzhou, China, and the Ph.D. degree
in computer and systems engineering from Rensse-
laer Polytechnic Institute, Troy, New York, in 1984
and 1990, respectively.

From 1984 to 1986 he was an instructor at the
Department of Mechanics, Zhejiang University. In

1986, he was awarded Pa0 Zao-Kong and Pa0 Zao-Long Scholarshp for
Chinese Students for his academic achievements. From 1988 to 1990 he
was with the NASA Center for Intelligent Robotic Systems for Space
Exploration at Rensselaer Polytechnic Institute. He jointed the University
of Arizona, Tucson, Arizona, in 1990, where he is presently an Assistant
Professor of the Systems and Industrial Engineering. In his previous work
in mechanics and applied mathematics, he contributed significantly to the
theoretical development of shells, plates, planes, three-dimensional elasticity,
and micropolar elasticity for both isotropic and anisotropic materials. He is
the CO- author of the forthcoming book Coordination Theory of Intelligent
Machines: Applications in Intelligent Robotic Systems and CIM Systems, and
the translator of the book Buckling of Elastic Structures by J. Roorda. He
has published more than 40 refereed joumal articles and book chapters, and
about 50 conference papers and technical reports in the areas of applied
mathematics, mechanics, mechatronics, artificial intelligence, control theory,
communication, robotics and automation, computer-integrated manufacturing,
fuzzy logic, neural networks, and intelligent machines. He is the co-editor
of the special issue on fuzzy logic and neural networks for Journal of
Intelligent and Fuuy Systems. He is the founder of Synergetic Systems, Inc.
His fields of interest include mechatronics, robotics and automation, computer
vision, computer-integrated manufacturing, intelligent controls and intelligent
systems.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

WANG AND SAFUDIS: TASK TRANSLATION AND INTEGRATION SPECIFICATION 27 1

Dr. Wang is a member of Sigma Xi, Chinese Society of Mathematics
and Mechanics, Association for Computing Machinery (ACM), and American
Society of Mechanical Engineers (ASME).

George N. Saridis (M’62-SM’72-F‘78) was born
in Athens, Greece. He received the Diploma in me-
chanical and electrical engineering in 1955 from the
National Technical University of Athens, Athens,
Greece, the MSEE and Ph.D. degrees from Purdue
University, West Lafayette, IN, in 1962 and 1965,
respectively. In 1988, he was certified as Manufac-
turing Engineer for Machine Vision by the Society
of Manufacturing Engineers. From 1955 to 1963 he
was an instructor in the Department of Mechanical
and Electrical Engineering of the National Technical

University of Athens, Greece. From 1963 until 1981 he was with the School of
Electrical Engineering of Purdue University. He was an Instructor until 1965,
Assistant Professor until 1970, Associate Professor until 1975 and Professor
of Electrical Engineering until 1981. Since September 1981, he has been
Professor of the Electrical, Computer and Systems Engineering Department
and Director of the Robotics and Automation Laboratories at the Rensselaer
Polytechnic Institute, in Troy NY. In 1973 he served as Program Director of
System Theory and Applications of the Engineering Division of the National
Science Foundation, Washington DC. From 1988 till 1992, he was the Director
of the NASA Center for Intelligent Robotic Systems for Space Exploration
at Rensselaer Polytechnic Institute. In 1972-1973 he served as the Associate
Editor and Chairman of the Technical Committee on Adaptive and Learning
Systems and Pattem Recognition of the Control Systems Society of IEEE,
Chairman of the 11th Symposium of Adaptive Processes, IEEE delegate to
the 1973 and 1976 JACC, and Program chairman of the 1977 JACC. In
1973 and 1979 he was elected member of the ADCOM and in 1986 he was
appointed member of the Board of Govemors of the IEEE Control Systems
Society. In 1979-81 he was appointed chairman of the Education Committee,
and in 1986-89 chairman of the Committee on intelligent controls of the

same Society. He was the International Program Committee chairman of the
1982 JFAC Symposium on Identification and Parameter System Estimation,
in Washington DC, and the 1985 JFAC Symposium on Robotic Control in
Barcelona, Spain. In 1974 and 1981 he was appointed Vice-chairman of the
IFAC International Committee on Education and in 1981-84 the Survey Paper
Editor of Automatica, the JFAC journal. In 1983-1984 he was the Founding
President of the IEEE Council of Robotics and Automation, and was elected
member of the ADCOM of the IEEE Robotics and Automation Society in 1989
and 1990. He is also chairman of the Awards Committee of the same Society.
In 1989 he served as member of the Panel on Intelligent Manufacturing of the
National Research Council. In 1988 he was the General Cochairman of the
International Workshop on Intelligent Robots and Systems IROS ‘88 in Tokyo,
Japan, Honorary Chairman of IPC of the 9th IFAUIFORS Symposium on
Identification, Budapest Hungary 1991, and Organizing Committee Chairman
of the IROS ‘92, Raleigh NC, 1992. He is the Editor of the series Annuals
on Advances in Robotics and Automation of JAI Publications since 1982.
He is also member of the editorial board of IEEE Press in 1988, Journal
of Robotic Systems since 1984, Systems Control Encyclopedia since 1984,
Journal of Intelligent and Robotic Systems since 1988, and the Journal of
IMPACT of the Society of Machine Intelligence since 1987. He is the author of
the book Self-Organizing Control of Stochastic Systems, coauthor of the book
Intelligent Robotic Systems, editor of the book Advances in Automation and
Robotics, volumes 1 (1985) and 2 (1990), and coeditor of the books, Fuuy
and Decision h c e s s e s , Proceedings of the 6th Symposium of Ideratifcation
and System Parameter Estimation, Proceedings of the 1985 SYROCO and
Knowledge Based Robotic Control. He has written more than 350 book
chapters, journal articles, conference papers and technical reports. He has
also presented more than 100 invited lectures. He is the recipient of the IEEE
Centennial Medal Award in 1984, and the IEEE Control Systems Society’s
Distinguished Member Award in 1989.
Dr. Saridis is a Fellow of IEEE and a member of Sigma Xi, Eta Kappa

Nu, the New York Academy of Science, the American Society of Mechanical
Engineers, the Society of Photo-Optical Engineers, the American Society of
Engineering Education, the American Society for the Advancement of Science,
the American Assocition of University Professors and Amnesty International.
He is also Senior member of the Robotics International and Charter member
of Machine Vision of the Society of Manufacturing Engineers.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

