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Task Translation and Integration Specification 
in Intelligent Machines 

Fei-Yue Wang, Member, IEEE, and George N. Saridis, Fellow, IEEE 

Abstract- Intelligent machines are defined to be hierarchi- 
cally intelligent control systems composed of three levels: the 
organization level, the coordination level, and the execution level. 
This paper presents an analytical model for the coordination 
level of intelligent machines, which, together with the established 
mathematical formulation for the organization level and the well 
developed control theory for the execution level, completes the 
first step toward a mathematical theory for intelligent machines. 
The framework of the coordination level is a tree structure 
consisting of a dispatcher and a number of coordinators. A 
new type of transducers, Petri net transducers (PNTs), has been 
introduced to serve as the basic module in our analytical model. 
PNTs provide a formal description for the individual processes 
within the dispatcher and coordinators. The concurrence and 
conflict among these processes can be represented by PNTs con- 
veniently. Coordination structures are introduced as a formalism 
for the specification of integration in the coordination level. 
The task precedence relationship in the coordination process 
is presented by the Petri nets derived from the coordination 
structures. These Petri nets also provide us a formal approach of 
using the concepts and analysis methods in the Petri net theory to 
investigate the properties of the coordination structures. A case 
study of' modeling an intelligent assembly robotic system has been 
conducted for the purpose of illustration. 

I. INTRODUCTION 
HE QUEST to build machines that perform anthropo- T morphic tasks autonomously or interactively in structured 

or unstructured environments has a long tradition in the 
history of human beings. The effort along this direction 
has been intensified tremendously by the new advancements 
in modem technology during the past two decades. Such 
machines, called intelligent machines in engineering, will play 
the key role in various modern and future industries, such as 
space exploration, robotic systems, and computer integrated 
manufacturing. 

The design of intelligent machines has brought many new 
challenges to the scientific community. Among them, the 
control problem is one of the most important issues. Since 
theories and technologies in conventional automatic control 
had been known to be inadequate to deal with the diversified 
aspects in the control of intelligent machines, a new discipline, 
called intelligent control, has emerged for this purpose during 
the past decade [21]. 
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The theory of intelligent controls is still in its early stage of 
development. Methodological issues are both open and central. 
Since Fu [8] coined the name of intelligent controls in 1971 as 
the field of interaction of artificial intelligence and automatic 
control systems, different ideas for the formalization of the 
definitions and the structure of intelligent machines have been 
proposed by and debated among various researchers [2], [4], 
[13], [15]. An analytical approach has been proposed and 
pursued by Saridis since the 1970s [15]-[22], which expanded 
the field of intelligent controls to include three components: 
artificial intelligence, operations research, and control theory. 

The structure of intelligent machines has been defined by 
Saridis [ 151-[22] to be the structure of hierarchically intelli- 
gent control systems, composed of three levels hierarchically 
ordered according to the principle of increasing precision with 
decreasing intelligence (IPDI) [ 161, [23], namely: 

The organization level represents the brain of the sys- 
tem with functions dominated by artificial intelligence 
to reason, to plan, and to make decisions about the 
organization of tasks; 
The coordination level defines the interface between high 
and low levels of intelligence with functions dominated 
by operations research that coordinate the activities of 
the hardware; and 
The execution level is the lowest level with high require- 
ment in precision with functions dominated by Control 
Theory to execute the specified tasks. Fig. 1 presents the 
structure of intelligent machines. 

A mathematical formulation for the organization level has 
been developed by Saridis and Valavanis [22], [24]. The 
focus of this paper is on a formal theory for the coordination 
level with a tree topology consisting of a dispatcher as the 
root and a set of coordinators as the subnodes (see Fig. 1). 
The basic requirement for such an analytical model is the 
establishment of an information structure that specifies the 
necessary precedence relationship of the relevant information 
processing for the coordination of the diversified activities 
in this Level. Specifically, the following features should be 
accomplished: 1) a formal description of each individual 
process within each system unit (i.e., dispatcher or coordinator) 
in the Level; 2) a formal specification of the cooperation and 
connection among system units; 3) a mechanism of control 
and communication for task processes in system units. 

We will address those issues based on the linguistic decision 
approach developed by Saridis and Graham 193, [19]. A 
knowledge of basic Petri net theory and formal languages 
has been assumed throughout this paper. The first part of the 
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Fig. 1 .  The structure of intelligent machines. 

paper (Sections 11-111) presents a new type of language trans- 
ducers, Petri net transducers (PNTs), for individual process 
description within a system unit. The second part (Sections 
IV-VII) introduces the theory of coordination structure for 
specification of integration among system units. Since both 
PNTs and coordination structures are Petri net-based models, 
the execution rule of Petri nets therefore provides naturally a 
control and communication mechanism for task processes in 
the coordination level. 

In the linguistic decision approach, task processes of the dis- 
patcher and coordinators have been considered as the process 
of translating the higher level task plans to the lower level 
control actions by using vocabulary decision schemata [ 191. 
Since the decision schemata are grammars, PNTs have been 
introduced to implement them. There are several classic au- 
tomata available as the implementation model for the vocab- 
ulary decision schemata, such as finite state transducers and 
pushdown transducers [ 11. The reason for choosing PNTs over 
the other automata is mainly due to the following facts: First, 
the connection between the dispatcher and coordinators is quite 
an important issue in the modeling of the coordination level; 
however, it is difficult to use the classic automata to specify 
these kinds of connections. Second, it is inadequate to describe 
the concurrence of activities in the coordination level by using 
classic automata. The reason is that the primitive notion of 
states in these automata is intended to represent the status of 
the entire system modeled at a certain instance, whereas the 
notion of places in Petri nets describes only the status of some 
components of the system modeled. Third, there are no conve- 
nient methods currently available to conduct either qualitative 
or quantitative process analysis for systems modeled by these 
automata. All these problems can be overcome by Petri net- 
based models, since it has been shown in both theoretic works 
and applications, especially in the modeling of manufacturing 
processes [3], [lo], [ l l ] ,  [14], [33]-[36], that Petri nets can 
be used to specify connections among the system units, to 

describe concurrence and conflict in the system processes, and 
to perform qualitative and quantitative process analysis. 

The specification for the integration of the dispatcher and 
coordinators has been achieved by coordination structures. 
A coordination structure is obtained by connecting a set of 
PNTs with a set of connection points through the connection 
mappings. Specifically, the use of those coordination structures 
can enable us to: 1) describe the task translation of the 
dispatcher and coordinators (through PNTs); 2) represent the 
individual process within the dispatcher and coordinators 
(through PNTs); 3) specify the cooperation and connection 
among the dispatcher and coordinators; 4) perform the process 
analysis and evaluation; and 5) provide a control and commu- 
nication mechanism for the real-time monitor or simulation 
of coordination process. A case study for a primitive intel- 
ligent robotic system has been conducted in Section VI11 to 
demonstrate those concepts. 

The results presented in this paper are further development 
of our previous studies on this topic [25], [27]-[31]. They also 
can be used for the integration specification of other kinds 
of distributed systems, for example, the software system for 
the manufacturing message specification (MMS) [25], [32]. 
The major difference between our linguistic and analytical 
approach and the traditional programming approach [7] for 
coordination problem is that our model provides a formal 
framework for task verification, analysis, synthesis and perfor- 
mance evaluation. The work of using Petri nets to formalize 
the decision structure of human organizations by Levis and 
his colleagues [6], [12] is similar to ours, however, their focus 
is on representation and performance evaluation whereas ours 
on integration and process analysis. 

11. TASK TRANSLATION AND PETRI NET TRANSDUCERS 

The task process in the coordination level of intelligent 
machines is the process of task translation: LO -+ LC -+ L E ,  
where LO represents the set of task plans generated by the 
task organizer in the organization level, LC describes the 
set of control actions in the coordination level, and L E  
gives the set of real-time operations to be executed in the 
execution level. The dispatcher receives the task plans from 
the organizer, decomposes the plans into coordinator-oriented 
control actions and dispatches them to the corresponding 
coordinators. Upon obtaining the control commands from the 
dispatcher, a coordinator then translates the commands into the 
operation instructions and sends them down to the appropriate 
execution devices in the lowest level for real-time execution. 

Those translation processes performed by the dispatcher and 
coordinators can be described by using PNTs as their models. 
A PNT is a language translator that translates an input task 
plan into an output plan. Formally, 

Dejnition 1: A Petri net transducer (PNT), M ,  is a 6-tuple, 

M = ( N ,  C, A,  0, p,  F )  where 

1) N = (P,  T ,  I, 0) is a Petri net with an initial marking 

2) C is a finite input alphabet; 
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3) A is a finite output alphabet; 
4) a is a translation mapping from T x (C U {A}) to finite 

5 )  F 
sets of A*; 

R(p )  is a set of final markings. 
where A is the empty string and A* the set of all possible 
strings over A. In applications, C may represent the set of 
primitive tasks for task planning, and A the set of primitive 
operations for task execution. A PNT has three parts: an 
input rape to read input plans (strings over C) in, a Petri net 
controller to control the translation process, and an output tape 
to write output plans (strings over A) on. The behavior of a 
PNT can be conveniently described in terms of configurations 
of the PNT. A configuration of PNT M is defined as a triple 
(m, z, y) where m E R(p)  (i.e., the reachability set of N with 
initial marking p ) is the current state (or marking) of the net 
N ;  z E C* is the input string remaining on the input tape with 
the leftmost character of z under the input head; y E A* is 
the output string emitted up to this point. 

A move by PNT M is reflected by a binary relation JM 

(or +, when M is clear) on configurations. Specifically, for 
all m E R ( p ) , t  E T , a  E C U  {A},z E C* and y E A* such 
that b(m, t) is defined and a(t, a )  contains z E A*, we write 

(m1 ax,  Y) =+- (b(m, t ) ,  2, YZ) 
where b(m, t) is the state transition of Petri nets. We will use 
J* to denote the transitive and reflexive closure of *. The 
translation of M is defined to be the set: 

T ( M )  = {(z, y) I ( p ,  z, A) e-* (m, A, y) for some m E F} 

T ( M )  will be called a Petri net translation or a Petri trans- 
ducer mapping. A string y is said to be an output of a string 
z or z is the input of y iff (2, y) E T ( M ) .  The input language 
and the output language of M are defined to be the following 
two sets: 

a ( M )  = 1% I 3Y E A*, (5 ,  Y) E T ( M )  
and w(M)  = {y I 3% E C*, (z, y) E T ( M ) }  

Note that in Definition 1, translation mapping a is allowed to 
generate string instead of only single alphabet at one instance 
of translation. However, it is easy to show that string and 
alphabet translations are mathematically equivalent, and in 
general, the restriction of single alphabet translation would 
lead to a much larger Petri net controller. 

Example 1: Consider a PNT M = (N, E, A, a, p, F) with 
the following specification: 

C = { e } ; A  = { a , b , c } ; ( i ( t l , e )  = {a},( i ( tz,A) = { b }  
4 t 3 ,  A) = { c } ;  P = (1,070); F = {Pf = (O,O, 1)). 
The Petri net N is given in Fig. 2. When an input string 
e2 = e.e is issued to M ,  it will be translated into an output 
string a2cb2. The detailed translation process is, 

(PI e2 ,  A) +- (Pl = b(P,tl) = (171, O),  e,  a )  
* ( P 2  = b ( P l , t l )  = ( L 2 ,  O) ,  A, a2) 

* (P3 = b(P2, t 3 )  = (0,2,1), A, a2c) 

* (P5 = b(P4, t 2 )  = (O,O, I>, A, a2cb2) 
* (P4 = b(P37 t 2 )  = (0,1, I), A, a2cb) 

~ 
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Fig. 2. An example of PNT. 

that is, 

It is easy to show that in this case 

a ( M )  = {e" I n 2 O},w(M) = {ancbn I n 2 0) 

and 

T ( M )  = {(e", a"cb") 1 n 2 0). 

A PNT halts at configuration (m, uz, y) when no transitions, 
for which o(t, a) is defined, are enabled at the current marking 
m. We call m the deadlock marking of the PNT. When a 
deadlock marking occurs, the input string will be rejected. 
Note that a deadlock marking of a PNT is not necessarily a 
deadlock marking of its Petri net. 

As in the Petri net language literature, PNTs can be classified 
according to the following three kinds of translation mappings 
and four kinds of final marking sets: 

Definition 2: For a PNT M = (N, C, A, (i, p, F), its trans- 
lation mapping a is 

1) free translation mapping if a(t ,  U) is defined then a # A. 
If both a ( t 1 , a )  and a(t2,b) are defined, then a # b if 

2) Agree translation mapping if a(t ,  U) is defined then 

3) A-transition translation mapping if no restriction on CY. 

1) L-type if F is a finite set of markings in R ( p ) ;  
2) G-type if F = {m E R(p)lm 2 mi for some i , i  = 

3) T-type if F = {m E R(p)lm is a deadlock marking of 

4) P-type if F = R(p) .  
The PNT M in Example 1 has a L-type final marking 

set with a A-transition translation mapping. Assume now that 
F is a G-type set, say, F = {m E R(p)lm 2 (O,O,l)}, 
and the translation mapping is unchanged, then, T ( M )  = 
{ (en ,ancbk)(n  2 k 2 0). When F is T-type, the result 
is the same as that for L-type, since (0, 0, 1) is the only 
deadlock marking of N .  When F is P-type, we have, T(M) = 
{(e",  an), (e", ancbk)))n 2 Ic 2 o}. 

t l  # t 2 ;  

a # A; 

Its final marking set F is classified as 

1,. . . , n } ;  

N }  ; 
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A PNT with a free translation mapping will be called afree 
PNT; a PNT with a L-type final marking set will be called a L- 
type PNT, and so on. There exist 12 classes of PNTs resulting 
from the cross product of the four types of the final markings 
and the three types of translation mappings. Since the language 
properties of L-type PNTs can be easily determined and their 
expression power is sufficient for task translation in intelligent 
machines, we will consider only L-type PNTs in this paper, and 
from now on by PNTs we mean L-type PNTs. 

To discuss the language properties of PNTs, i.e., the problem 
of what kinds of task plans may be translated or produced by 
PNTs, we begin with the following special class of PNTs. 

Dejinition 3: A PNT M = ( N , C , A , a , p , F )  with N = 
(P, T, I, 0) is called a simple PNT (SPNT) iff: 

1) Vt  E T there exists one and only one a E C U { A }  such 

2) Vt  E T and a E C U {A}, if a(t ,a)  is defined, then 

Condition 1) implies that in a SPNT, a transition of its Petri net 
is responsible for translating one and only one input character; 
and condition 2) implies that each transition has only one 
output string to translate its input character. Therefore, once a 
transition is located, a SPNT is deterministic in the emitting 
of the output string. The following theorem indicates the 
importance of this type of PNTs. 

Theorem 1: For any PNT M ,  there exists a SPNT M’ such 
that T(M’) = T ( M ) .  

All the proofs in this paper are given in the Appendix at 
the end of the paper. 

This theorem indicates that as far as language property is 
concerned, SPNTs and PNTs are equivalent. However, like 
the colored Petri nets versus the ordinary Petri nets, a general 
PNT sometimes offers us a more compact description than a 
SPNT does. 

Based on Theorem 1, it is easy to show that the language 
property of PNTs can be characterized by the following 
theorem: 

Theorem 2: The input and output languages of a PNT are 
both Petri net languages. 

This theorem guarantees that PNTs can be used as the 
consistent models for the dispatcher and coordinators, i.e., it is 
always possible to construct coordinators to process the tasks 
issued by a dispatcher, if they are to be described by PNTs. 
Since Petri net language takes regular language as its proper 
sub-language, the theorem also indicates that the set of PNTs 
include the set of finite state transducers as its proper subset. 

that a( t ,a )  is defined; 

la(t,a)l = 1. 

111. SYNCHRONIZATION OF PETRI NET TRANSDUCERS 

The synchronous composition operator is a mechanism used 
to coordinate the operations of several PNTs. The basic idea 
is to let PNTs read a common input tape and to synchronize 
their translation processes by using common input characters 
(or input tasks). The need for such synchronization rises 
in various situations where system units have to cooperate 
in order to accomplish some common tasks. For example, 
consider an assembly robotic system consisting of two arms 
with independent controllers. The tasks for the robotic system 

are to move parts from one position to the other. To move 
small parts, the two arms can perform the tasks independently. 
However, to move large parts, the two arms have to perform 
the tasks together, which requires the coordination of their 
individual actions. Thus, when a PNT is used as the motion 
coordinator for each of the two arms, the operations of the 
two PNTs have to be synchronized. 

Dejinition 4: The synchronous composition of two PNTs: 

Mi = (Ni,Ci,Ai,ai,~i,Fi), 
Ni = (Pi,Ti,Ii,Oi),Pl n Pz = 0,Tl n Tz = 0,Z = 1 ,2 ,  

is a PNT, denoted by MI I IMz, specified as the followings, 

Mi I M z  = ( N ,  E, A, 0, P, F ) ,  N = (P, T ,  I , O )  

with 

P = P , U P z ,  

T = Ti1 U Ti2 U Tzz, 
C = c1 U Cz, 
A = A1 U A2 

where 

T11 = {ti I ti E Tl&there exista E C1 - CZ 

Tz2 = {ti I ti E Tz&there existsa E CZ - C1 

T12 = { t i j  I there existsti E Tl&tj E Tz&a E C1 n CZ 

such that 01 (ti, U )  is defined} 

such that az(ti, U )  is defined} 

such that a1 (t i ,  a)&a2( t j  , U )  is defined} 

I ( t )  = 

O(t) = 

the initial marking is 
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With this definition, it is not difficult to show that a move 
by M = MI 11 M2 can be represented as 

((m, m2)r a$, Y) * 
((S(ml,ta),ma),$,Yzi) 
((m1, b(m2, t j ) ) ,  2, Y.j> 

if a E C1-  C2 
if a E C2 - C1 { ((S(ml,ti),6(mz,tj)),$,yzjz;) i f a  E E1 E2 

((b(m1, ti), qm2, t j ) ) ,  2, YZiZj )  or 

where ti E TI and t j  E T2, zi E al ( t i ,a )  and z j  E az(tj ,a) .  
That is, the input characters in the alphabet of one PNT, but not 
the alphabet of the other, are translated by that PNT alone, and 
the input characters in the alphabet of two PNTs are translated 
by both the PNTs simultaneously in an arbitrary order. 

Consider the example mentioned in the be- 
ginning of this section. Petri nets for motion processes of the 
two arms are given in Fig. 3(a). The corresponding PNTs are 
specified as 

Exumple2: 

Ci = { Gi , GBi , GRi , MSPi, RSP;, MLP, RLP}, 
C1 n C2 = {MLP,RLP} 

Ai = {motion control algorithms 
and grasping algorithms}, i = 1,2; 

where G means go to the grasp position; GB means go back to 
home position; GR means grasp a part; MSP means move with 
a small part; RSP means release a small part; MLP: move with 
a large part; RLP means release a large part. The translation 
mapping is 

ai(ti1, Gi) = ai(ti2,GRi) = ai(ti3,MSPi) 
= ai(ti3,MLP) = c~i(ti4,RSPi) 
= ai(ti4, FUP) = ai(&, GBi) = Ai 

That is, a general task cycle for an arm is to go to the grasp 
position; to grasp a part; to move with the part; to release the 
part; and to go back to home position. 

Fig. 3(b) gives the PNT that resulted from the synchronous 
composition of two PNTs for the two arms. Two new transi- 
tions are introduced in the synchronous composition and their 
translation mappings are specified as 

a(t33,MLP) = a(t44,RLP) = A1 x A, 

From the synchronous composition, we see that when 
a task for moving a small part is issued, say, a 
task G1G2 GR2 MSP2 GR1 MSPl RSP2 RSPl GB2 GB1, 
the composition will be exactly the same as if the two 
arms work independently. For example, arm two can move 
with its part before arm one has grasped its part. However, 
when a task for moving large parts is issued, say a task, 
G I G ~ G R ~ G R ~ M L P  RLP GBzGBl, then the composition will 
force two arms to work synchronously for the common actions. 
For example, transition t33 for task MLP cannot be enabled 
until both of its input places have a token, i.e., moving with 
the part cannot be executed until both arms have grasped the 
same large part. A similar situation happens to the transition 
t44 for task RLP. 

I 

t ' 4  7- 

t'* - A 

(b) 

of two PNTs for two arms. 
Fig. 3. (a) Individual PNTs for two arms. (b) The synchronous composition 

Since the synchronous composition of two PNTs is still a 
PNT, the synchronous composition can be directly generalized 
to more than two PNTs by defining 

MlllM2ll IIMC-lIIMk = (MlI(MZ(I llMk-1)llMk. 

IV. INTEGRATION SPECIFICATION AND COORDINATTON 
STRUCTURES 

The Petri net transducers describe the individual process 
of task translating in the dispatcher and coordinators. To 
specify the connection among them, we introduce the model of 
coordination structures in this section. A coordination structure 
consists mainly of three parts: a set of system units, a set of 
connection points, and a set of connection mappings from the 
units to the connection points. The connection points represent 
places where the units exchange their information. The con- 
nection mappings describe the links between the units and the 
connection points. Various types of coordination structures can 
be defined by proposing different forms of connection points 
or by designing different patterns of connections mappings. 

For the integration specification in the coordination level of 
intelligent machines, PNTs have been used to describe the 
system units, i.e., the dispatcher and coordinators, and the 
connection mappings are classified into two classes: receiving 
mappings for information acquisition and sending mappings 
for information distribution. Starting from the general cases to 
the more specific cases, we specify four types of coordination 
structures in the sequel. 
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, the process of language translation, i.e., only the dispatcher can 
receive input task strings from the organizer in the organization 
level and the coordinators get their input task strings from 
the dispatcher. An application of the general coordination 
structures has been presented by Wang and Saridis [27]. 

We now consider two important special connection pattems: 
the ring connection and the tree (or star) connection. 

Dejnition 6: A coordination structure CS with a ring con- 
nection is a general coordination structure satisfying the con- 
ditions : 

1) 
2) 

F = Fo U F1 U . . . U F,, 
RD ; Td -+ zFn,  

F; n Fj = 8, i # j ;  
Sp : Td -+ 2F"; 

Fig. 4. The configuration of the coordination structures. 3 )  R& : TA -+ 2 F i - 1 ,  S& : Tk -+ 2Fi,i  = l , . - . , n ;  

where FO is called the output connection points of the dis- 
patcher D; F, is called the input connection points of the 
dispatcher D; Fi-1 is the input connection points of coordi- 
nator C;; and, F; the output connection points of coordinator 
Ca. 

Dejnition 7: A coordination structure CS with a tree con- 

&$nition 5: A coordination structure cs with an arbitrary 
connection is defined to be a 7-tuple, 

CS = ( D ,  C, F, RD,  So ,  R c ,  S c )  where 

1) Dispatcher: D = (Nd, E,, A,, (Td,  pd, Fd) is a PNT with 

2) Coordinators: C = { C l ,  C2, . . . , C,} is a set of coordi- 
nators, n> 1, 

C; = (N:, E,!, Ai,  a,!, p,!, F:) is a PNT with a Petri net 
N: = (Pi ,  T:, I:, O,!), i = 1,. . . , n; 

a Petri net Nd = (Pd,Td,Id,Od); 

3 )  F = { f l  , . . . , fs} is a set of connection points, s 2 1;  
4) RD and SD are mappings from Td to finite subsets of 

F,  i.e., 

RD ; Td -+ 2 F ,  SD : Td -+ 2F 

RD and SD are called the dispatcher receiving and 
sending mappings, respectively. The RD indicates how 
information can be received by the dispatcher from the 
connection points. The SD indicates how information can 
be sent from the dispatcher to the connection points. 

5 )  R c  = { R & , - . . , R E }  and SC = {S&,.-.,SE}. RL and 
S& are mappings from TA to finite subsets of F, i.e., 

R& : T& -+ 2 F ,  5'; : TA -+ 2F 

R c  and SC are called the coordinator receiving and 
sending mappings, respectively. The meanings of RL and 
S& are similar to that of RD and SD for i = 1 ,  . . . , n. 

The configuration of the coordination structures is shown 
in Fig. 4. A coordination structure CS with an arbitrary 
connection is called a general coordination structure. 

In Definition 5 ,  no restriction has been imposed on the 
receiving and sending mappings; therefore, arbitrary con- 
nections between the dispatcher and coordinators may be 
assigned. Although this gives the coordination structures the 
greatest power for connection description, it makes any kind 
of analysis for system properties extremely difficult. Another 
fact is that the role of the dispatcher is no different than 
that of the coordinators in the configuration of connections. 
They all have equal positions. The only way in which the 
dispatcher distinguishes itself from the coordinators is through 

nection is a general coordination structure satisfying the con- 
ditions: 

1) 
2) 
3) RL :TA -+ 2", 

where F; is the connection points of coordinator C;. 
The following simple examples provide illustrations for 

the coordination structures with ring connection and tree 
connection, respectively. 

Example 3: Fig. 5 presents an example of the coordination 
structures with ring connection, where an arc with arrow 
from a transition to a connection point indicates a sending 
relationship between the transition and the point, while an arc 
with arrow from a connection point to a transition indicates a 
receiving relationship. The formal specification for connection 
is, 

F = F1 U . - . U  F,, 
RD : Td -+ 2 F ,  

F; n Fj = 8, i  # j ;  
s? : Td -+ 2 F ;  
5'2 : T& -+ 2",i = l , . . . , n ;  

Fi = { f z l ,  . f i 2 } ,  i = o , 1 , 2 ;  
RD(td2) = F27 S D  (tdl) = FO; 

R & ( t C l k )  = {fok}, s & ( t C l k )  = { f l k } ,  IC = 1, 2;  
R ; ( t C 2 k )  = { f l k } ,  s&( tC2k)  = { f 2 k } ,  IC = 2* 

Consider this coordination structure as a Petri net: it is 
easy to see that, in order to take the dispatcher from the 
initial marking back to the initial marking (a complete cycle of 
execution), the transitions in the coordination structure have 
to be fired according to one of the following firing sequences: 

tdl ' tcll . tc12 ' tc21 ' tc22 ' td27 

tdl ' tcll ' tc21 ' tc12 ' tc22 ' td2 

Therefore, the coordination structure defines the task prece- 
dence relationship (the execution order) among the tasks in 
the dispatcher and coordinators. 

In a coordination structure with ring connection, a system 
unit receives information from only one of the remaining 
units, and transfers the information to only one of the other 
units. The coordinators can communicate among themselves 
in a sequential fashion. The dispatcher and coordinators still 
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Fig. 5. A coordination structure with ring connection. 
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Fig. 6. A coordination structure with tree connection. 

hold equal position in the connection configuration as in the 
case of the general coordination structures. As described in 
the begining of Section 11, however, only the dispatcher can 
receive input tasks from the higher level, the task process will 
then start from and end at the dispatcher. 

Example 4: Fig. 6 gives a coordination structure with tree 
connection. The formal specification for the connection is 

Again, consider the coordination structure as a Petri net. By 
listing all possible firing sequences, we can find that, in one 
complete cycle of execution, the transitions in the coordination 
structure have to be fired in according to one of the following 

263 

firing sequences: 

In a coordination structure with tree connection, the dis- 
patcher occupies a dominant position in the connection con- 
figuration. No direct communication among the coordinators 
is allowed, and the coordinators have to exchange information 
with each other through the dispatcher. Considering the role 
played by the dispatcher in the task translation, we see that 
the dispatcher serves as both a task control center and an 
information communication center. When direct connctions 
are permitted only between the dispatcher and a coordinator, 
the coordination structures with the tree connection are the 
appropriate model for the coordination level. 

The coordination structures with tree connection defined by 
4.3 are still too complex to allow us to perform system analysis 
easily for the coordination level. To compensate the analysis 
aspect, we impose some further restrictions on the coordination 
structures with tree connection and introduce the model of 
simple coordination structures. 

DeJnition 8: A simple coordination structure CS with a 
tree connection (simple coordination structure, for short) is 
a coordination structure with a tree connection satisfying the 
conditions: 

1) Fi = {I;, f i r ,  f&, f&} : f; is called the input point 
of f i r  the input semaphore of f& the output point, and 
fio the output semaphore of Ci, respectively; 

2) RD and SD satisfy the following connection constraints: 
a) <t ,f i)  E SD * (t,f&) E R ~ , ( t , f ; )  E RD * 

(t,f$o) E S D ;  
b) ( t 7 . f ; )  # R D , ( t , f i o )  # R D , ( t , f & )  $ SD, 

( t , f i r )  # SD; 
c) Each C; has an integer n; 2 1, called the task 

buffer capacity, such that V firing sequence s of 
transitions in N d :  

3) R& and S& satisfy the following connection constraints: 
a) ( 4  f$) E s& p ( t ,  f&) E R$+(t, f&) E S& ; 
b) (t,fi) # S & ( t , f i o )  # S&,(t,f&) $ R&, 

( t , f i r )  # &; 
c) only one initially enabled transition ti in Ci with 

d) only one transition t i  in C, with (ti,  f;) E S&; 
e) only transition ti, has its output places being the 

( t i ,  f;) E R& 

input places of ti. 
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1-1 
- . -  . . .  rig. 1 .  A simple cooroinauon structure. 

The conditions in 1)-3) of the simple coordination structures 
represent a set of formal specifications for a simple control 
protocol, i.e., before the dispatcher sends a new task to a 
coordinator, the dispatcher must check whether the coordinator 
is capable of receiving more tasks (through the number of to- 
kens left in the input semaphore), whereas before a coordinator 
reports the result of a task execution back to the dispatcher, 
the coordinator must check whether its output buffer is capable 
of holding more task reports (through the number of tokens 
left in the output semaphore). Physically, this protocol is 
designed based upon the assumption that only limited memory 
space and communication network access are available to a 
coordinator. Specifically, the connection constraints on RD 
and SD indicate that: a) the dispatcher must check the input 
semaphore fiI before it sends information to Ci, and reset 
the output semaphore f!jo after information has been received 
from C;; b) the dispatcher cannot receive information from 
the coordinators through fj or f&, or send information to the 
coordinators through f& or f&; c) before a transition receives 
the execution result from a coordinator, there must be other 
transitions which activate the coordinator a sufficient number 
of times (but bounded by the buffer capacity ni);  d) every 
coordinator is connected with the dispatcher bidirectionally. 
The connection constraints on S& and R& imply that: a) 
Ci must check the output semaphore fi0 before it sends 
information to others, and reset the input semaphore fiI after 
information has been sent; b) Ci cannot receive information 
through f& or f&, or send information through fj or fro; 
c) only one initially enabled transition, t;, in C; can receive 
tasks from the dispatcher; d) only one transition, t i ,  in Ci 
can send information to the dispatcher; e) Ci can receive a 
new task only after it reports the result of the previous task 
execution. 

Fig. 7 presents a simple coordination structure. In the 
following sections, we will concentrate on the analysis of 
simple coordination structures. 

v. FROM COORDINATION STRUCTURES TO PETRI NETS 
From the examples given in the previous section, we have 

already seen that Petri nets can be naturally obtained from the 
coordination structures by considering the connection points 
as places, and the receiving and sending mappings as the 
input and output functions, respectively. We formally define 
the Petri nets which underlie the simple coordination structures 
and show how they can be used to describe the operations of 
the coordination structures. Similar procedures can be applied 
to derive the Petri nets which underlie the other types of 
coordination structures. It should be pointed out that once these 
Petri nets have been obtained, then all the concepts, methods, 
and tools developed in Petri net theory for system analysis 
and synthesis [14] can be used to address various analysis and 
synthesis issues of the coordination structures. 

Dejinition 9: The Petri net N underlying a simple coordina- 
tion structure CS is a Petri net, specified as N = (P ,  T ,  I ,  0), 
where 

In terms of the Petri net N ,  a token in the input point 
of a coordinator indicates that a task has been issued to the 
coordinator. The dispatcher can send a task command to a 
coordinator when there is a token in the input semaphore 
of the coordinator indicating the coordinator is available for 
task execution. A token in the output point of a coordinator 
indicates that a task has been completed by that coordinator, 
and the feedback information of the task execution has been 
contained in that token. A coordinator can send feedback of 
task execution to its output point when there is a token in 
its output semaphore, which implies that the communication 
facility is ready for information transferring between the 
dispatcher and coordinator. Once a transition in the dispatcher 
takes the feedback information from the output point, it will 
reset the output semaphore of the coordinator. The overall 
operation of a coordination structure can be described below. 

To start operation, a CS receives a task plan from the 
organizer, puts it on the input tape of the dispatcher D, and the 
D begins the process of dispatching. Once a transition t of D, 
with fil , . . . , fp as its output places in F, has been fired with 
respect to the current marking of N to execute a primitive 
task a, it will send the selected control string z E ad( t ,a )  
to the coordinators Ci, , . . . , Cis, and activate the synchronous 
composition 
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for the processing of z. Upon to the completion of a task by 
a Cik, transition t? will put a token (feedback) to fz, if it 
was enabled with respect to the current marking of N .  The 
feedback will be read by the dispatcher to continue the task 
process, and Ci, will become idle again. Once the dispatcher 
reaches its final markings and the coordinators are either in 
the initial marking (i.e., no task processing for a while) or the 
final marking, the entire task process is completed, and the 
requested job is accomplished successfully. 

Clearly, the synchronous composition provides the dis- 
patcher a mechanism of synchronizing the task execution of 
the coordinators, and the Petri net N specifies the precedence 
relation of the activities in the dispatcher and coordinators, and 
therefore, defines the information structure of the CS. From the 
point of view of the execution of N, a task plan issued by the 
organization level can be considered as a path specification 
in the Nd, and, in turn, the control actions selected by the 
transitions of D can be thought of as the path specifications in 
the Petri nets of the coordinators. This fact demonstrates again 
that a PNT provides a mechanism to control the executions of 
Petri nets. 

VI. SOME REQUIREMENTS FOR TASK PROCESSING 

In the model of coordinate structures, the input alphabet 
E, of the dispatcher represents the set of primitive events in 
the organization level [22]; the input alphabets, CL of the 
coordinators, i = 1, . . . , n, are the set of primitive control 
actions in the coordination level; and the output alphabets A& 
of the coordinators, i = 1, . . . , n, give the set of primitive 
operations in the execution level. To ensure the continuity of 
the task translating process, the following relationship must 
exist between the output alphabet of the dispatcher and the 
input alphabet of the coordinators, 

n 

A, = C c  E U E:. 
i=l 

The behavior of the dispatcher and coordinators are 
specified by the transition sequence sets L(Nd ,pd)  and 
L(N& &), i = 1, . . . , n, respectively. As in the theory of 
program verification, where the behavior (i.e., all possible 
routine sequences) of a program is used to prove the 
correctness of the program and to guide the implementation, 
the transition sequence sets L ( N d , p d )  and L(N&,&) can 
also be employed for the design , analysis, implementation and 
simulation of the models for the dispatcher and coordinators. 

A coordinator must have the capability to process (or 
translate) all the possible tasks issued by the dispatcher. 
In terms of input language of the coordinator, these task 
processing capability requirements can be specified formally 

. .  

as, 

4 C i )  2 U @ d ( t ,  a )  T(Ti)' I t E T; 
and a E CO}, i = 1,.  . . , n, where 

T; = {t I t E T d  and ( t ,  fj) E so} 
By the closure property of Petri net languages under the union 
operation and Theorem 2, this requirement is guaranteed to 
be satisfiable. 

A task plan s E At; is said to be executable by a coordina- 
tion structure CS if the following final configurations can be 
reached by the dispatcher and coordinators: 

It should be pointed out that the A-moves (the firings of 
transitions caused by a(t ,  A)) have a special interpretation. 
They may represent the internal operations occumng in the 
dispatcher or the coordinators which are activated to provide 
the necessary information or resource for the continuity of the 
coordination process. 

VII. PROCESS PROPERTIES OF THE COORDINATION 
STRUCTURES 

One of the merits offered by modeling the coordination level 
with the coordination structures is that the underlying Petri nets 
can provide us a way to use Petri net concepts and analysis 
methods to investigate the properties of the processes in the 
coordination level, such as liveness, boundedness, reversibility, 
consistency, repetitiveness, etc. In this section, we present three 
theorems on the boundedness, liveness, and reversibility of the 
coordination structures. 

Theorem 3: The Petri net N underlying a simple coordina- 
tion structure CS is bounded if all the Petri nets Nd,N,! , i  = 
1, . . . , n are bounded. 

It is also easy to show that when n; = 1, the safeness 
of Nd,N,!,i  = I , . . .  ,n, will guarantee the safeness of N .  
The boundedness of the underlying Petri net guarantees the 
structural stability of the coordination structure CS. It can be 
shown, however, that for a PNT M with a bounded Petri net, 
we can define an equivalent finite state transducer M' using 
the reachability set of the bounded net such that T ( M ' )  = 
T ( M ) .  This implies that the input and output languages ofrhe 
bounded PNT are regular languages. This fact indicates that 
the language complexity of PNTs with the bounded Petri nets 
is very simple. Therefore, for some cases, the unbounded PNTs 
in the coordination structures are required if the express power 
of regular languages is inadequate. 

Theorem 4: The Petri net N underlying a simple coordi- 
nation structure CS is live if all the Petri nets Nd, N i ,  i = 
l , . . . , n  are live. 

It is clear from the proof that a transition in T d  can be 
enabled through the same number of firings of transitions in 
both Petri nets N and Nd from the same marking. However, 
the firing sequences in N and Nd may be different. Especially, 
two transitions in Td that are parallel in Nd may no longer be 
parallel in N, since they may require inputs from the same 
coordinator with the task buffer capacity equals one. 

The liveness of N ensures the absence of deadlock in the 
coordination structures. The following example shows that 
the connection constraint c) 2) is necessary to guarantee the 
liveness of N .  

Example 5: Consider the coordination structure CS shown 
in Fig. 8. Obviously, the Petri nets for the dispatcher and 
coordinator are live nets. The possible firing sequences of 
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Fig. 8. A coordination structure with deadlocks. 

transitions in Nd is, 

Clearly for any finite number K, we have 

V M  2 [$] + 1. Therefore, 2c) is violated here when the 
task buffer capacity n1 = 1. It is easy to check that after the 
firing sequence 

the net N will be in deadlock. Thus, the underlying Petri net 
N is not a live net. Actually, for any finite n1, we can find an 
firing sequence which leads N to a deadlock state. 

Finally, the following theorem gives the reversibility of the 
underlying Petri net N with respect to its component nets. 

Theorem 5: If all the Petri nets ~ d ,  N:, i = 1, . . . , n, are 
individually reversible, then Nd, and N:,i = 1, ... ,n, as the 
subnets of the Petri net N underlying the simple coordination 
structure CS, are still reversible. 

Therefore, the dispatcher and coordinators in a simple 
coordination structure are always capable of re-initializing 
themselves. 

Unlike in the previous two theorems, no conclusion has been 
made about the state of the connection points in this theorem. 
It is not clear whether the underlying Petri net N is still 
reversible when the connection points are included. However, 
this is not an important issue since the theorem already 
guarantees the reversibility of the states of the dispatcher and 
coordinators. 

I D ,  I 

Fig. 9. The layout of the assembly workcell. 

Manipulator Assembly Table 

Fig. 10. The Petri net model for the dispatcher. 

VIII. CASE STUDY: A PROTOTYPE INTELLIGENT 
ROBOTIC SYSTEM 

To demonstrate the application of the coordination structures 
for the integration specification in intelligent machines, a case 
study of modeling an intelligent assembly robotic system 
(IARS) for assembly tasks has been conducted. The major 
components of the IARS include: 1) a general-purpose manip- 
ulator with a gripper; 2) a vision system with several cameras; 
3) a sensor system with touch, crossfire, and forcehorque sen- 
sors; 4) a communication network for information exchange; 
5 )  a high-level digital computer for control and communication 
activities. The particular assembly job considered here is to 
move parts from a conveyer into the slots on an assembly 
table. Fig. 9 presents the layout of the assembly workcell. 

The coordination structure for the coordination level of 
the IARS consists of a dispatcher (D), a vision coordinator 
(VC), a sensor coordinator (SC), a path planning coordinator 
(PC), a motion coordinator (MC), and a gripper coordinator 
(GC). Individual PNTs for the dispatcher and coordinators are 
presented in the sequel. 

A. The Dispatcher (0) 

The input alphabet is CO = {el, e2, e3, e4}, where el, e2, e3 
are task primitives involved with the vision, motion, and sensor 
coordinators, respectively; e4 is a task primitive of grasping 
or releasing parts. The task plans from the organization level 
have been assumed to be generated by the grammar 

G = ( N ,  CO, p, S )  
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where N = {S, M ,  Q ,  H }  is the set of non-terminal symbols, 
C, = { e l ,  ez, e3, e4} the set of terminal symbols, and P = 
{S + e l M ,  M -+ ezSlezQ, Q -, e3H, H ---t e4Qle4Sle4) 
the set of production rules. 

The output alphabet is A, = C, U C, U C, U C, U E,, where 
E,, E,, E,, E,, and C, are, respectively, the input alphabets 
for the VC, SC, PC, MC, and GC: 

E,, = {contr,, proc,,, analy,, sendvp, sendpvm, finish} 

C, = {contr,, procs, analys, sendsg, move-sendgs, finish} 

C, = {path, sendvp,  sendpvm,finish) 

C, = {move ,  send,,,,finish} and 

C, = {sendsg,  move-send,,,finish}. 

The meanings of these control instructions are given in the 
descriptions for the corresponding coordinators. 

Fig. 10 gives the Petri net model for the dispatcher. The 
translation mapping a d  for the D is specified as: 

a d ( t 1 ,  e l )  = {A, contr,.proc,.analy,.finish} 
a d ( t 2 ,  ez)  = {(contr,.proc,.anaZy,.send,,.path 

sendpvm. move)+ .finish} 
a d ( & ,  e3) = {A, contr,.proc,.unaly,.finish}, 
ad&, e4) = {(contr,.proc,.analy,.sendsg 

. move_send,,)+.finish) 

where s+ = { sn, n _> l}. All other transitions of the 
dispatcher are internal operations. 

The input language of the dispatcher is exactly the task 
plans issued by the organizer (i.e., grammar G). The empty 
string A in the translation mapping ( ~ d  means no action 
since the required visual or sensory information is already 
available. The interactive motion control strings, (contr,. 
procs. mazy,. sendsg. move_send,,)+.finish,or (contr,. 
proc,. analy, .sendvp .path.send,,,.move)+finish, of the 
dispatcher involve the synchronous composition of two or 
three coordinators, i.e., SCllGC or VCIIPC/(MC. When these 
control strings are issued for the motion or grasping tasks, 
the corresponding coordinators have to work cooperatively to 
achieve the required task. The additional information scripts 
or data files associated with control instructions will not be 
discussed here. 

B. The Msion Coordinator (VC) 
The subtask plans to be processed by the VC are 

{A, contr,. pmc,. anaZy,.finish, (contr,. proc,. analy,. 
sendvp. send,,,)+ .finish}. 

The output alphabet AV of the VC consists of the hardware 
operations for the cameras. Since we are not going to be 

involved with the execution level, we do not specify A, in 
detail and only describe the function of the translation mapping 
a, for the VC. The Petri net model for the VC is given in Fig. 
11. The translation mapping a,, is specified as: 

0, ( t l ,  contr,) = {instructions to control the camera 

an ( t z ,  proc,) = {algorithms for image processing}, 
devices and to take pictures}, 

a,(t3, andy,) = {algorithms for image analysis 

cu(t5, send,,) = {procedures for sending the 

and fusion}, 

information to the PC}, 

= {procedures for formulating 
the feedback information}, 

information from the PC}. 

aU(t7,finish) = ad(tg,finish) 

au(tcom, send,,) = {procedures for receiving the 

C. The Sensor Coordinator (SC) 

proc, . analy, .finish, 
move_send,,)+. finish}. 

The Petri net model for the SC is the same as that of the 
VC. The places and transitions also have the similar meaning. 
The output alphabet As of the SC consists of the hardware 
operations for the sensor devices. The translation mapping ms 
is similar to the mapping a,. 

The subtask plans to be processed by the SC are {A, contr,. 
( contrs .pmc,. analys .sendsp. 

D. The Path Planning Coordinator (PC) 
The subtask plans to be processed by the PC are { ( sendvp 

.path.send,,,)+.jinish}. The PC is based on the obstacle 
avoidance path planner developed in [5 ] .  Fig. 11 gives the 
Petri net model for this coordinator. 

The translation mapping a, for the path planning coordina- 
tor can be specified as: 

c,(t,, send,,) = {procedures for receiving 
the information from the VC} 

a, ( t  1, path) = {procedures for searching 
the path from memory} 

0, ( t z ,  path) = {algorithms for constructing 
the geometrical path} 
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ap(t5, sendpvm) = {procedures for sending the VC and MC to indicate the termination of execution 
and to fire the transition t 7  for the f in i sh  task. Note 
that this control action guarantees that the PC can always 
received the new information from the VC for its path 
planning. Similarly, the number of iterations of the control 
action ( contr,.proc,.unuly,.send,,.puth.send,,,.move)~ 
finish is determined by the GC as it finds that the required 
task is accomplished. 

the information to the vc and MC) 

the information from the VC} 
ap (t7 , finish) = {procedures for formulating 

the feedback information}. 

ap(t7, send,,) = {procedures for receiving 

E. The Motion Coordinator (MC) 
The subtask plans to be processed by the MC are { ( send,,,,, 

.move)+.finish}. Fig. 11 gives the Petri net model for the 
coordinator. 

The translation mapping a, for the motion coordinator can 
be specified as: 

am (tl , move) = {procedures for evaluating 
the trajectory} , 

cm ( t 5 ,  finish) = {procedures for formulating 
the feedback information}. 

the information from the PC}. 
cm (tcom, sendpvm) = {procedures for receiving 

F. The Gripper Coordinator (GC) 

The subtask plans to be processed by this coordinator are 
{ (send,,.move-send,,)+.finish). 

The Petri net model for the coordinator is same as that of the 
MC. The places and transitions also have the similar meaning, 
except that the transition tl here has to determine the fine 
path to approach the desired object. The translation mapping 
ag for the GC can be specified as 

ag(t l ,  move-send,,) = {procedures for determining 
the fine motion for hand and 
sending information to the SC}. 

feedback information}. 
ag (t,,,, sendsg) = {procedure for receiving information 

from the SC}. 

ag ( t 5  , finish) = {procedures for formulating 

All the unspecified transitions in the coordinators are internal 
operations. 

The coordination structure (CS) for the coordination level of 
the IARS now can be constructed from the individual PNTs 
by introducing the connection points, and the receiving and 
sending mappings (see Fig. 11). Note that the coordination 
structure constructed here is not a simple coordination struc- 
ture since it allows direct connection between coordinators, 
and although the individual PNTs are unbounded, the CS 
obtained by integration, viewed as a Petri net, is bounded. 

The CS is operated according to the execution procedures 
described in Section V. When control (contr, .procv. unuly,. 
send,,,. path.send,,,.move)+.finish is issued by the 
dispatcher, the actual number of iterations is determined 
by the PC as it finds that the desired arm motion is 
completed. In this case, the PC will send a message to 

IX. CONCLUSION 

An analytical theory of coordination for intelligent machines 
has been established in this paper by establishing a formal 
model for the coordination level. It has been demonstrated 
that this model can enable the establishment of an information 
structure in the coordination level. The information structure 
specifies the necessary task precedence relationship in the 
coordination of the diversified activities. 

A new type of transducers, Petri net transducers (PNTs), 
has been introduced to serve as the basic module in our 
analytical model. PNTs provide a formal description for the 
individual processes within the dispatcher and coordinators. 
The concurrence and conflict among these processes can be 
represented by PNTs conveniently. Another application of 
PNTs is to control and to synchronize the operations of Petri 
nets. 

Several coordination structures have been defined as a 
formal tool for specification of the connection and cooperation 
between the dispatcher and the coordinators. The relation 
between the coordination structures and Petri nets is inves- 
tigated in detail. The results of using the concepts and the 
analysis methods in Petri net theory to investigate the process 
properties of the coordination structures present one aspect of 
their advantages as the model for the coordination level. More 
important, the coordination structures provide a structural 
formulation for a mechanism of control and communication for 
task processes in the dispatcher and the coordinators. The use 
of colored Petri nets for modeling the coordination structures 
is a possible direction for future research. 

The coordination theory for the coordination level presented 
here, together with the mathematical formulation for the 
organization level and the well developed control theory for the 
execution level, completes the first step toward a mathematical 
theory for intelligent machines. Such a mathematical theory 
will provide a solid scientific and engineering foundation for 
the design, simulation, verification, and implementation of 
intelligent machines such as the machines in the Intelligent 
Robotic Systems for space exploration or in the Computer 
Integrated Manufacturing Systems for future factories. 

APPENDIX 

Let N be the Petri net of M = 
(N, C, A,  0, p, F ) ,  N = (P, T, I, 0). For any t E T, if there 
exist two different a1 and a2 E CU{X} such that both a(t ,  ul) 
and a(t, u2) are defined, we introduce a new transition t’ with 
I(t’) = I ( t ) ,  O(t’) = O(t )  and modify a in such a way 
that a(t’,u2) = a(t,u2), a(t’,u) is undefined for all other 

PROOFS OF THE THEOREMS 

Proof of Theorem I :  
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a E C U {A}, and a(t, a2) becomes undefined. Similarly, if 
la(t,a)l > 1 for an a E E, we can introduce new transitions 
t ’s such that the transitions t and t’s will have a translation 
mapping with la(t,a)l = 1 or Ia(t’,a)l = 1. Continuing 
this procedure until no transitions have more than one input 
characters in C for which a are defined and la(t,a)l = 1 
for all t E T and a E C, we will finally get a SPNT 
M’ = ( N ’ , C , A , a ’ , p , F )  with N’ = (P,T’,I’,O’). The 
construction of M’ clearly shows that T ( M ’ )  = T ( M ) .  Q.E.D. 

Proof of Theorem 2: For a SPNT M = (N, E, A, a, , p, F), 
a labeling function p associated with a can be defined as: 

p : T + C U {A},  and P( t )  = a if a(t, a) is defined 

and we the labeled Petri net y = ( N , C , P , p , F )  [14] as 
labeled Petri net underlying M .  

By Theorem 1, we only need to consider the case for 
SPNTs. Let M = ( N , C , A , u , p , F )  be a SPNT and y = 
(N, C, p, p, F) be the labelled Petri net underlying M. The 
fact that input language is a Petri net language follows 
immediately from the relation a ( M )  = P(L(N,  p ) )  = L(y). 

Let y’ = (N, C, p’, p, F) be a labelled Petri net with a free 
labeling function p’, and L(y’) be its Petri net language. It 
is clear that w ( M )  can be derived from L(y’) by replacing 
character p’(t) in L(y’) with the character a(t, p’(t)). Since 
Petri net languages are closed under finite substitution, it 
follows that w ( M )  is a Petri net language. Q.E.D. 

Proof of Theorem 3: The proof is very simple. First of all, 
by the connection constraints 2a) and 2b) in Definition 8, for 
any m E R ( N , p ) ,  

m(p)  5 ni for some i, if p E F 

Let Rd(N, p )  be the set of all markings on the net Nd which 
are part of the markings of R ( N ,  p). In other words, Rd(N, p )  
is the restriction of R ( N , p )  on Pd. Since Nd is a closed 
subnet of the net N, it follows immediately that R d ( N , p )  
is a subset of R(Nd,pd). Similarly, one can show that the 
restriction of R ( N ,  p )  on P: is a subset of R(N:,pd) ,  i = 
1,. . . , n. Therefore, the boundedness of Nd, N:, i = 1,. , n 
guarantees the boundedness of the net N .  Q.E.D. 

Proof of Theorem 4: By the connection constraint 2d) for 
simple coordination structures, for each Ci there exist transi- 
tions in Nd which take f j  and f& as their input and output 
places in F, respectively. From connection constraint 3c), t; 
takes both f& and f& as its output places. Since only t )  
has output places being the input places of ti, by 3d), it is 
guaranteed that if a number of tokens is displaced into fj,  the 
same number of tokens will appear in f& when N: is live. 
Therefore, in order to show N is live, we only need to show 
that Nd as a subnet of N is a live Petri net. 

Let m E R ( N , p )  be an arbitrary marking; R ( N , m , k )  
be the set of markings reached from m by firing at most IC 
transitions in Td. Let md and Rd(N, m,  k )  be the restrictions 
of m and R ( N ,  m, k )  on Pd, respectively; and R(Nd, md, k )  
be the set of markings reached from md by firing at most k 
transitions in Td when Nd is considered as an independent 
Petri net. Let T ( k )  be the set of transitions in Td which are 
enabled under R ( N ,  m, k )  and T’(k) be the set of transitions 

- 
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in Td which are enabled under R(Nd, md, k) when Nd is 
considered to be independent. We first prove that for any 
k 2 0, 

Rd(N, m,  k) = R(Nd, md, k) and T ( k )  = T’(k) 

When k = 0, Rd(N,m,O) = md = R(Nd,md,O), and, 
obviously, T’(k) 2 T(k) .  Let t E T’(0) be an enabled 
transition with respect to Nd. If (t, fj) $ S o  and (t,  f&) $ RD 
for all i, then it is clear that t is also enabled by m in N 
in this case, so t E ~ ( 0 ) .  When (t,fj) E S D ,  let s be the 
firing sequence of transitions from m, k i  be the number of 
transitions t’ in s such that (t’, fj) E SO, k i  be the number of 
transitions t” in s such that (t, f;) E RD, p i s  be the number 
of tokens in fist p& be the number of tokens in f&, and k$ 
be the number of firings by transition t;. Since there are ni 
initial tokens in fis and f&, respectively, we have, 

p i s  = ni - k i  + k$ 
kk 5 ki 5 min{ki,ni + kk}. 

However, by the connection constraint 2c) in Definition 8, in 
this case, 

which implies min {ki, ni + k k }  = k:. Therefore, t )  can be 
fired enough times such that p i s  > 0, which indicates that t 
may be enabled under m in N ,  i.e., t E T(0). Similarly, when 
( t , f&)  E RD,  we have, 

p& = k i  - k k  

the constraint 2c) indicates in this case, 

15 kk - kk 5 ni + 1 

which implies min { kg , n, + I C ; }  2 kk + 1. Therefore, t i  can 
be fired enough times such that p b  > 0, hence t E T(0). In 
all the cases, t E T’(0) + t E T(O), therefore T’(0) = T(0). 

Assume that Rd(N, m, I C )  = R(Nd, md, k ) ,  T’(k)  = T(k) ,  
for k 5 q. Clearly, &(N,  m, q + 1) = R( Nd, md, q + 1) 
follows immediately from T’(q) = T(q).  Since T’(q + 1) 2 
T(q + l), by the same procedure used the proof of T(0)  = 
T’(O), we can show that T(q + 1) 2 T’(q + 1). Therefore, 
T(q + 1) = T’(q + 1). So Rd(N,m, k )  = R(Nd,md, k )  and 
T ( k )  = T’(k)  for any k 2 0. 

Since Nd is live, it is possible to fire every transition t from 
md in Nd. However, Rd(N, m, k )  = R(Nd, md, k ) ,  T’(k)  = 
T ( k )  for any k ,  we see that the same transition t is also 
possible to be fired from m in N through the same number of 
firings of transitions. Therefore, N is live. Q.E.D. 

The proof is based on the analysis 
in the proof for liveness. First of all, it is easy to see that 
the reversibility of the Petri nets for the coordinators is still 
held when considering them as the subnets of N .  To show the 
reversibility of the Petri net Nd for the dispatcher, let us use 
the following result from Theorem 4, i.e., 

Proof of Theorem 5: 

Vm E R(N,  P I ,  k 2 0, 
Rd(N, m,  k )  = R(Nd, md, k )  
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Since Nd is reversible, and md E R(Nd,pd), where pd 
is the restriction of p on Pd. then, pd E R(Nd,md), i.e., 
pd E R(Nd, md, q )  for some q 1 0. From the above equation 
it follows that 

for the same q. This shows that Nd as a subnet of N is 
reversible. Q.E.D. 

ACKNOWLEDGMENT 
The authors wish to thank Professors Alan Desrochers 

and Robert McNaughton for their valuable comments and 
suggestions. 

REFERENCES 

[I]  A. V. Aho, and J. D. Ullman, The Theory of Parsing, Translation and 
Compling, Vol. 1. 

[2] J. S .  Albus, “A new approach to manipulation control: The cerebellar 
model articulation controller,” Trans. ASME. J. Dynamic Syst., Meas. 
Control, pp. 220-227, 1975. 

[3] R. Y. AI-Jaar and A. A. Desrochers, “Petri nets in automation and 
manufacturing,” in Advances in Automation and Robotics, G. N. Saridis, 
Ed., vol. 2. Greenwich, CT: JAI, 1990. 

[4] A. Bejczy, “Task driven control,’’ in Proc. IEEE Workshop Intelligent 
Contr. Rensselaer Polytechnic Institute, Troy, NY, 1985, p. 38. 

[5] C. H. Chung, and G. N. Saridis, “Obstacle avoidance path planning 
by extended Vgraph Algorithm,” Tech. Rep. # 12, NASA CIRSSE, 
Rensselaer Polytechnic Institute, Troy, NY, 1989. 

[6] J. J. Demael, and A. H. Levis, “On the generation of a variable structure 
airport surface traffic control system,” in Proc. 4th IEEE Int. Intelligent 
Contr. Symp., 1989, pp. 7481.  

[7] E. H. Durfee, Coordination of Distributed Problem Solvers. Boston, 
MA: Kluwer Academic, 1988. 

[8] K. S.  Fu, “Leaming control systems and intelligent control systems: An 
Intersection of artificial intelligence and automatic control,” IEEE Trans. 
Automat. Contr., Vol. AC-16, p. 70, 1971. 

191 J. H. Graham and G. N. Saridis. “Lineuistic decision structures for 

Englewood Cliffs, NJ: Prentice-Hall, 1972. 

I 

hierarchical systems,” IEEE Trans. Syst., Man, Cybern., vol. SMC-12, 

A. W. Holt, “Coordination technology and Petri nets,” Advances in 
Petri Nets, G. Rozenberg, Ed. New York Springer-Verlag, 1984, pp. 
278-296. 
N. Komoda, K. Kera, and T. Kubo, “An automated decentralized control 
system for factory automation,” IEEE Comput., vol. 17, pp. 73-83, 1984. 
A. H. Levis, “Human organizations as distributed intelligence systems,’’ 
in Proc. IFAC/IMACS Int. Symp. Distributed In telligence Systems: Meth- 
ods and Applications, Varna, Bulgaria, 1988, pp. 13-19. 
A. Meystel, “Nested hierarchical control: Theory of team control applied 
to autonomous robots,” Lab. Appl. Machine Intell. and Robotics, Dept. 
ECE, Drexel Univ., 1986. 
J. L. Peterson, Petri Net Theory ans The Modeling of Systems. Engle- 
wood Cliffs, NJ: Prentice-Hall Intemational, 1981. 
G. N. Saridis, Self-Organizafion Controls of Stochastic Systems. New 
York Marcel Dekker, 1977. 
G. N. Saridis and H. E. Stephanou, “A hierarchical approach to the 
control of a prosthetic arm,” IEEE Trans. Syst., Man, Cybern., vol. 

G. N. Saridis, ‘Toward realization of intelligent control,” Proc. IEEE, 
vol. 67, 1979. 
-G. N. Saridis, “Intelligent robotic control,” IEEE Trans. Automat. 
Contr., vol. AC-28, no. 5, pp. 547-557, 1983. 
G. N. Saridis and J. H. Graham, “Linguistic decision schemata for 
intelligent robots,” IFAC J. Automatica, vol. 20, no. 1, pp. 121-126, 
1984. 
G. N. Saridis, “Foundations of intelligent controls,” in Proc. IEEE 
Workshop on Intelligent Confr., Rensselaer Polytechnic Institute, Troy, 

G. N. Saridis, “Intelligent control,” IEEE Contr. Syst. Mag./, vol. 7, no. 
3, pp. 4849.  1986. 
G. N. Saridis and K. P. Valavanis, “Analytic design of intelligent 
machines,” IFAC J. Automatica, vol. 24, no. 2, pp 123-133, 1988. 

pp. 323-333, 1982. 

SMC-7, pp. 407420, 1977. 

NY, 1985, pp. 23-27. 

1231 G. N. Saridis, “Analytic formulation of the principle of increasing 
precision with decreasing intelligence for intelligent machines,” IFAC 
J. Automatica, Vol. 25, no. 3, pp. 461-467, 1989. 

[24] K. P. Valavanis, A Mathematical Formularion for the Analytical Design 
of Intelligent Machines, RAL Rep. #85, Rensselaer Polytechnic Institute, 
Troy, NY, 294 pp., 1986. 

[25] F. Y. Wang and G. N. Saridis, “A formal model for coordination of 
intelligent machines using Petri nets,” in Proc. 3rd IEEE Int. Intelligent 
Contr. Symp., Arlington, VA, 1988. 

[26] F. Y. Wang and K. Gildea, “A colored Petri net model for connection 
management services in mms,” Computer Commun. Rev., vol. 19, no. 
3.. pp. 76-98, 1989. 

[27] F. Y. Wang and G. N. Saridis, ‘The coordination of intelligent robots: A 
case study,” in Proc. Fourrh IEEE Int. Intelligent Contr. Symp., Albany, 
NY, 1989, pp. 506-512. 

[28] F. Y. Wang and G. N. Saridis, “A coordination theory for intelligent 
machines,” IFAC J. Automatica, vol. 26, no. 9, 1990. 

[29] F. Y. Wang, K. Kyriakopoulos, A. Tsolkas, and G. N. Saridis, “A Petri 
net coordinatiun model for an intelligent mobile robot,” IEEE Trans. 
Syst., Man, Cybern., vol. 21, pp. 777-789, 1991. 

[30] F. Y. Wang, M. Mittmann, and G. N. Saridis, “Coordination specification 
for CIRSSE robotic platform using Petri net transducers,” to be appear 
in J. Intelligent Robofic Syst., 1992. 

[31] F. Y. Wang and G. N. Saridis, Coordination Theory of Intelligent 
Machines: Aplications in Intelligent Robotic Systems and CIM Systems, 
To be published by Kluwer Academic Publishers, Boston, MA, 1993. 

[32] F. Y. Wang and K. Gildea, “MMS design and implementation using 
Petri nets,” in Proc. First Int. Workshop on Formal Methods in Engi. 
Design, Manut, and Assembly, pp. 184201, 1990. 

[33] M. C. Zhou and F. DiCesare, “Adaptive design of Petri Net controllers 
for error recovery in automated manufacturing systems,” IEEE Trans. 
Syst., Man, Cybern., vol. 19, pp. 963-973, 1989. 

1341 M. C. Zhou, F. DiCesare, and A. A. Desrochers, “A hybrid methodology 
for synthesis of Petri net for manufacturing systems,” IEEE Trans. 
Robotics Automat., vol. 8, no. 3, 1992. 

[35] M. C. Zhou and F. DiCesare, “Parallel and sequential mutual exclusions 
for Petri net modeling for manufacturing systems with shared resources,” 
IEEE Trans. Robotics Automat., vol. 7, pp. 515-527, 1991. 

[36] M. C. Zhou and F. DiCesare, Petri Net Synthesis for Discrefe Event 
Control of Manufacturing Systems. Boston, MA: Kluwer Academic, 
1992. 

Fei-Yue Wang (S’89-M’90) was bom in Qingdao, 
China, in November 2, 1961. He received the B.E. 
degree in chemical engineering 1981 from Shan- 
dong Institute of Chemical Technology, Qingdao, 
China, the M.S. degree in mechanics from Zhejiang 
University, Hangzhou, China, and the Ph.D. degree 
in computer and systems engineering from Rensse- 
laer Polytechnic Institute, Troy, New York, in 1984 
and 1990, respectively. 

From 1984 to 1986 he was an instructor at the 
Department of Mechanics, Zhejiang University. In 

1986, he was awarded Pa0 Zao-Kong and Pa0 Zao-Long Scholarshp for 
Chinese Students for his academic achievements. From 1988 to 1990 he 
was with the NASA Center for Intelligent Robotic Systems for Space 
Exploration at Rensselaer Polytechnic Institute. He jointed the University 
of Arizona, Tucson, Arizona, in 1990, where he is presently an Assistant 
Professor of the Systems and Industrial Engineering. In his previous work 
in mechanics and applied mathematics, he contributed significantly to the 
theoretical development of shells, plates, planes, three-dimensional elasticity, 
and micropolar elasticity for both isotropic and anisotropic materials. He is 
the CO- author of the forthcoming book Coordination Theory of Intelligent 
Machines: Applications in Intelligent Robotic Systems and CIM Systems, and 
the translator of the book Buckling of Elastic Structures by J. Roorda. He 
has published more than 40 refereed joumal articles and book chapters, and 
about 50 conference papers and technical reports in the areas of applied 
mathematics, mechanics, mechatronics, artificial intelligence, control theory, 
communication, robotics and automation, computer-integrated manufacturing, 
fuzzy logic, neural networks, and intelligent machines. He is the co-editor 
of the special issue on fuzzy logic and neural networks for Journal of 
Intelligent and Fuuy Systems. He is the founder of Synergetic Systems, Inc. 
His fields of interest include mechatronics, robotics and automation, computer 
vision, computer-integrated manufacturing, intelligent controls and intelligent 
systems. 

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore.  Restrictions apply.



WANG AND SAFUDIS: TASK TRANSLATION AND INTEGRATION SPECIFICATION 27 1 

Dr. Wang is a member of Sigma Xi, Chinese Society of Mathematics 
and Mechanics, Association for Computing Machinery (ACM), and American 
Society of Mechanical Engineers (ASME). 

George N. Saridis (M’62-SM’72-F‘78) was born 
in Athens, Greece. He received the Diploma in me- 
chanical and electrical engineering in 1955 from the 
National Technical University of Athens, Athens, 
Greece, the MSEE and Ph.D. degrees from Purdue 
University, West Lafayette, IN, in 1962 and 1965, 
respectively. In 1988, he was certified as Manufac- 
turing Engineer for Machine Vision by the Society 
of Manufacturing Engineers. From 1955 to 1963 he 
was an instructor in the Department of Mechanical 
and Electrical Engineering of the National Technical 

University of Athens, Greece. From 1963 until 1981 he was with the School of 
Electrical Engineering of Purdue University. He was an Instructor until 1965, 
Assistant Professor until 1970, Associate Professor until 1975 and Professor 
of Electrical Engineering until 1981. Since September 1981, he has been 
Professor of the Electrical, Computer and Systems Engineering Department 
and Director of the Robotics and Automation Laboratories at the Rensselaer 
Polytechnic Institute, in Troy NY. In 1973 he served as Program Director of 
System Theory and Applications of the Engineering Division of the National 
Science Foundation, Washington DC. From 1988 till 1992, he was the Director 
of the NASA Center for Intelligent Robotic Systems for Space Exploration 
at Rensselaer Polytechnic Institute. In 1972-1973 he served as the Associate 
Editor and Chairman of the Technical Committee on Adaptive and Learning 
Systems and Pattem Recognition of the Control Systems Society of IEEE, 
Chairman of the 11th Symposium of Adaptive Processes, IEEE delegate to 
the 1973 and 1976 JACC, and Program chairman of the 1977 JACC. In 
1973 and 1979 he was elected member of the ADCOM and in 1986 he was 
appointed member of the Board of Govemors of the IEEE Control Systems 
Society. In 1979-81 he was appointed chairman of the Education Committee, 
and in 1986-89 chairman of the Committee on intelligent controls of the 

same Society. He was the International Program Committee chairman of the 
1982 JFAC Symposium on Identification and Parameter System Estimation, 
in Washington DC, and the 1985 JFAC Symposium on Robotic Control in 
Barcelona, Spain. In 1974 and 1981 he was appointed Vice-chairman of the 
IFAC International Committee on Education and in 1981-84 the Survey Paper 
Editor of Automatica, the JFAC journal. In 1983-1984 he was the Founding 
President of the IEEE Council of Robotics and Automation, and was elected 
member of the ADCOM of the IEEE Robotics and Automation Society in 1989 
and 1990. He is also chairman of the Awards Committee of the same Society. 
In 1989 he served as member of the Panel on Intelligent Manufacturing of the 
National Research Council. In 1988 he was the General Cochairman of the 
International Workshop on Intelligent Robots and Systems IROS ‘88 in Tokyo, 
Japan, Honorary Chairman of IPC of the 9th IFAUIFORS Symposium on 
Identification, Budapest Hungary 1991, and Organizing Committee Chairman 
of the IROS ‘92, Raleigh NC, 1992. He is the Editor of the series Annuals 
on Advances in Robotics and Automation of JAI Publications since 1982. 
He is also member of the editorial board of IEEE Press in 1988, Journal 
of Robotic Systems since 1984, Systems Control Encyclopedia since 1984, 
Journal of Intelligent and Robotic Systems since 1988, and the Journal of 
IMPACT of the Society of Machine Intelligence since 1987. He is the author of 
the book Self-Organizing Control of Stochastic Systems, coauthor of the book 
Intelligent Robotic Systems, editor of the book Advances in Automation and 
Robotics, volumes 1 (1985) and 2 (1990), and coeditor of the books, Fuuy 
and Decision h c e s s e s ,  Proceedings of the 6th Symposium of Ideratifcation 
and System Parameter Estimation, Proceedings of the 1985 SYROCO and 
Knowledge Based Robotic Control. He has written more than 350 book 
chapters, journal articles, conference papers and technical reports. He has 
also presented more than 100 invited lectures. He is the recipient of the IEEE 
Centennial Medal Award in 1984, and the IEEE Control Systems Society’s 
Distinguished Member Award in 1989. 
Dr. Saridis is a Fellow of IEEE and a member of Sigma Xi, Eta Kappa 

Nu, the New York Academy of Science, the American Society of Mechanical 
Engineers, the Society of Photo-Optical Engineers, the American Society of 
Engineering Education, the American Society for the Advancement of Science, 
the American Assocition of University Professors and Amnesty International. 
He is also Senior member of the Robotics International and Charter member 
of Machine Vision of the Society of Manufacturing Engineers. 

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 10:19 from IEEE Xplore.  Restrictions apply.


