
Journal of Intelligent and Robotic Systems 9: 209-233, 1994. 209 
© 1994 KluwerAcademic Publishers. Printed in the Netherlands. 

Coordination Specification for CIRSSE Robotic 
Platform System Using Petri Net Transducers 

FEI-YUE WANG 
Department of Systems and Industrial Engineering, University of A rizona, Tucson, AZ 85721, U.S.A. 

MICHAEL Mr[TMANN, and GEORGE N. SARIDIS 
NASA Center for Intelligent Robotic Systems for Space Exploration, Rensselaer Polytechnic Institute, 
Troy, NY 12180, U.S.A. 

(Received: 5 December 1991; revised: 22 September 1992) 

Abstract. A formal model based on Petri net transducers has been developed to specify the coordination 
and communication among the various task units in the CIRSSE platform system for robotic construction 
in space stations. The specification guarantees a mechanism of coherent control and communication 
for the effective cooperation among the different task units, and outlines the major steps toward the 
integration of the robotic platform system. The model is based on a coordination structure consisting 
of one dispatcher and three coordinators representing, respectively, the motion, vision, and gripper 
units of the platform system. The coordination structure insures some desired process properties for 
the system, such as boundedness, liveness, and reversibility, and easier translation from the formal 
specifications to the program codes based on Petri net transducer models. The model also assists 
with the system development in many ways, including (i) reducing the number of errors introduced 
while converting specifications to codes; (ii) assisting the developers in program implementation and 
verification (iii) allowing quicker adaptation to changed specifications; and (iv) allowing easier testing of 
the results for specification modifications. Therefore, it provides a useful tool for the design, simulation, 
performance evaluation, and implementation verification of the CIRSSE robotic platform system. 

Key words. Petri net transducer, coordination structure, command language, communication, intelligent 
machines. 

1. Introduction 

A platform system for robotic construction in space statimts is currently under devel- 
opment at the NASA Center for Intelligent Robotic Systems for Space Exploration of 
Rensselaer Polytechnic Institute. The system consists of a platform with two PUMA 
manipulators mounted on two moving bases. Each manipulator has six degrees of 
freedom of motion and each base has three degrees of freedom. A vision system is 
incorporated into the platform system for object identification and location determi- 
nation. The task scenario for the platform system is to assemble strut structures in 
a dynamic and uncertain environment on the space stations (Figure 1). 

The effort for the design and implementation of such systems is enormous. To 
carry out the construction mission successfully, the CIRSSE platform system has to 
cope with a variety of environment conditions. Moving entities, such as other arms, 
mobile robots, parts, etc., may appear in the workspace of the platform system in 



210 FE1-YUE WANG ET AL. 

Fig. 1. The CIRSSE robotic platform system. 

some unpredictable ways. Another major difficulty faced by the system is the time 
delay and information reliability caused by the communication between the earth 
stations and the space stations. Since it is undesired and infeasible to have human 
operators to maintain the operation of the system on space stations, it is imperative to 
design an autonomous intelligent control system for the platform system to perform 
all system operations with minimum assistance from human operators. 

The intelligent control system for the CIRSSE robotic platform will be devel- 
oped according to the theory of Hierarchical Intelligent Control Systems proposed 
by Saridis (Saridis, 1977). Based on this theory, the control system architecture is 
arranged into three levels: the Organization, Coordination, and Execution Levels, 
hierarchically ordered according to the principle of Increasing Precision with De- 
creasing Intelligence (Figure 2). Since the late 1970s, significant effort has been 
made by Saridis and his colleagues towards the establishment of general mathemat- 
ical models for these levels and their corresponding integration problems (Saridis 
and Stephanou, 1977; Saridis, 1985; Saridis and Valavanis, 1988; Valavanis and 
Saridis, 1991; Wang and Saridis, 1990, 1991, 1992; Wang et al., 1991). For the 
platform system, the function of the Organization Level is to define construction 
missions and to generate the high level task plans for some specific strut structures. 
The plans include the specification of structure configuration, strut/node assembling 
sequence, and motion task cormnands. The Coordination Level serves as an interface 
between the Organization and Execution levels. Its main function is to translate the 
higher level task plaits into the specific operation instructions and then coordinate 
their execution. Finally, the Execution Level is to execute the operation instructions 
using control methods through various devices. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 211 

I 

G 

E 
Ni  

EN~O",UTION LE~.I~_,L 

Fig. 2. The hierarchical structure of intelligent control systems. 

The focus of this paper is on the specificatiou and implementation of the Coordina- 
tion Level of the CIRSSE robotic platform system. The key issue here is to specify 
a mechanism o f  coherent control and communication for the diversified task units 
such as motion and vision subsystems in the platform system, which will guarantee 
the effective cooperation among the task units and the continuous operation of the 
system toward a successful construction mission. 

The specification stage is perhaps the most critical step in system development. It 
has been estimated that the cost of reworking an error discovered in the coding phase 
of a project is 50 to 200 times more expensive thau fixing an error discovered during 
specification (Boehm, 1976). In addition to reducing the cost and development time 
of a system, good specification will insure that the system does the desired task, 
and allow better estimates of the functionality and the time to produce the system. 
For system implementation, when an appropriate formalism has been chosen for 
specification, system specifications can be automatically translated into executable 
codes (Krogh et al., 1988). 

For the CIRSSE platform system, the coordination structures developed for In- 
telligent Machines by Wang and Saridis (Wang and Saridis, 1990) have been used 
for the specification of its Coordination Level. The advantages of using the coor- 
dination structures include the guarantee of the desired system process properties, 
such as boundedness, liveness, and reversibility, and easier translation from the for- 
mal specifications to program codes based on Petri net transducer (PNT) models. 
More specific, a coordination structure consisting of one dispatcher and three co- 
ordinators has been constructed for the CIRSSE platform system. The dispatcher 
will receive the compiled task plalls from the higher level of the system and deal 



212 FEI-YUE WANG ET AL. 

with the control and communication of the coordinators during the execution of the 
task plaits. The control and communication is achieved by translating the given task 
plan into a sequence of coordinator-oriented control actions, and dispatching them 
to the corresponding coordinators. The three coordinators will supervise the opera- 
tion and data passing in the motion, vision, and gripper subsystems of the platform, 
respectively. Each coordinator will translate the given sequence of control actions 
into a sequence of executable operation instructions, and send them to the involved 
devices. Both dispatcher and coordinators are modeled as PNTs and implemented 
on different computers which host the corresponding subsystems. 

The coordination structure defines formally the overall architecture and information 
flow for the Coordination Level of the CIRSSE platform system. Besides the above 
mentioned process properties guaranteed for the system by the coordination structure, 
it also assists with the system development in many other ways, including 

• Reducing the number of errors introduced while converting specifications to 
codes. 

• Assisting the developers in program implementation and verification. 

• Allowing quicker adaptation to changed specifications. 

• Allowing easier testing of the results of specification modifications. 

Therefore, the coordination structure provides a useful tool for the design, simu- 
lation, performance evaluation, and implementation verification of the CIRSSE plat- 
form system. Note that applications of Petri nets for specification and verification of 
other kinds of systems have also been investigated (Azema et al., 1984; Bruno and 
Marchetto, 1986; Courvoisier et al., 1986). 

Section 2 presents a brief overview of the CIRSSE platform system project. Sec- 
tion 3 gives the system command language and task grammar for expressing input 
task plans to the Coordination Level of the system. Section 4 specifies in detail 
the PNT models for the dispatcher and coordinators with the corresponding pseudo- 
codes. Implementation and communication mechanism are described in Section 5. 
Simulation results of testing the speed of communication in various situations are 
also discussed in this section. Finally, Section 6 concludes the paper with a summary 
and suggestions for future research. 

2. Overview of the CIRSSE Platform System Project 

The present goal of the CIRSSE platform system project is to be able to assemble 
struts and nodes autonomously onto some well-defined structures in a typical space 
environment. To simplify the problem, it has been assumed that there are only three 
classes of objects in the workspace of the platform: struts, nodes, and obstacles. The 
obstacles may travel in the workspace in some unpredicatable ways, and the platform 
system has to avoid the possible collision with them during the construction process. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 213 

The high level task plans for construction will be generated by the Organization 
Level sited on the earth station and transmitted to the Coordination Level hosted 
on the space station. To interact with the Coordination Level, a formalism, called 
system command language, has to be designed to express the construction missions. 
The actual input to the Coordination Level will be compiled system commands (or 
task plans). Obviously, to reduce the communication intensity between the earth 
station and the space station, the compiler for the system command language should 
be hosted on the space station along with the Coordination Level of the platform 

system. 
Due to the constraint imposed by the earth-space communication, the Coordination 

Level has to be able to operate under the situation that task commands from the high 
level arrive infrequently and erratically. To accomplish this, the dispatcher (D) of 
the Coordination Level should 

(1) Decompose the task commands into subtasks and dispatch them in order when 
the relevant coordinators have signaled that they are ready for the next exe- 
cution. 

(2) Communicate with the coordinators relatively fast. 

(3) Be capable of setting up communication between any two coordinators which 
need information exchange. 

There are three coordinators in this Level: the vision coordinator (VC), the motion 
coordinator (MC), and the gripper coordinator (GC). The system components of the 
dispatcher and the coordinators are described in the sequel. 

2.1. THE DISPATCHER (D) 

As noted above, the communication time from the high level to the dispatcher is ex- 
pected to be erratic, however, it is required that the dispatcher communicates quickly 
with any of the coordinators. For a given task plan, the dispatcher is concerned pri- 
marily with questions related to which coordinator(s) should be called for tasks (task 
sharing) and/or be informed by the status of the task execution (result sharing). The 
dispatcher is not involved with the actual transmission of large blocks of data. If 
large amounts of data is expected to be passed from one coordinator to another, then 
the dispatcher will just instruct the coordinators to connect to each other, and allow 
them to communicate at whatever rate they are capable of. 

The dispatcher is physically realized on a SUN 4/260 workstation. The dispatcher 
colmnunicates with the coordinators through THINNET, a local version of ETHER- 
NET. The communication is implemented with 1PC SOCK_ STREAM type sockets 
under the PF_ INET protocol. This implementation results in a minimum turn around 
time of 200 ms from one processor to another and back, which is within the limits 
of our design specifications. 



214 FEI-YUE WANG ET AL. 

2.2. THE VISION COORDINATOR (VC) 

The vision coordinator has the job of 'looking' at an area that it is told to observe, 

attempting to find something it has been told to find there. It then gives the location 

of the identified object back to the system which asked for it, and waits for another 
command. The location of an object includes its position and orientation, and in the 
case of obstacles, a simple description of the obstacle geometry. 

The vision system is physically realized on a VxWorks cage with a Data cube and 

a Motorola MVME147 controller. The controller is connected to the THINNET, and 
thus to the rest of the system. The Datacube boards consist of: 

SNAP. The SNAP board performs non-linear transformations (comparisons and max/ 
min determinations) is sequential digital video data. 

VFIR-MKIII. A video impulse response filter module. It implements a 256 arbitrary 

coefficient convolution. This is primarily used in edge detection and noise filtering. 

MAX-SP. This is capable of performing real time frame rate single point temporal 

and spatial filters, image merging, image subtraction and addition, and Min/Max 
processing. 

FEATURE MAX-MKII. This does advanced feature-list extraction, and histograms. 

A summation of all row or column pixels can be done in a table. 

MAX-MUX. This provides the MaxVideo user with software control over MAXbus 

data source and destination selection. This allows for easier reprogramming of the 

Datacube. 

DIGIMAX. This is a video acquisition and display module which is capable of 

accepting one of eight inputs. This is used to feed the information from the 
cameras to the ROI-STORE units. 

ROI-STORE. This is a frame storage module which supports user programmable 
video resolution and processing of regions of interest within a video image. 

Since there are two DIGIMAX cards, two frames can be read simultaneously. 
There are five cameras in the vision system. Two of the cameras are mounted on 

the manipulators, allowing greater diversity in the objects which can be viewed, 
but presenting greater challenges in calibration. Two of the remaining cameras are 

mounted on the ceiling of the workspace, and the remaining one has not yet been 
placed. Each frame grabber is capable of reading the cameras at a rate of 30 Hz. 
The output of the Datacube is sent to the MVME147 which can further analyze the 
image and send data to other coordinators. The MVME147 does all intermediate 
level vision operations, such as Hough transforms and line fitting. 

The Uniphase laser is controlled by the Motorola MVME 135 CPU and the 

MVME 340 parallel board. The laser is used to put bright points on the object 
and to make stereo point matching easier. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 215 

2.3. THE MOTION COORDINATOR (MC) 

The motion coordinator is used to control the robot arms to move objects in the envi- 
ronment, and to move the cameras which are attached to the anus. The coordinator 
also participates directly in the camera calibration with the vision coordinator. 

The motion system is physically realized on a VxWorks cage running 5 Motorola 
MVME 135 boards (68020 CPUs), along with 

MVME 340A. A parallel port board, which also supplies timer interrupts. This is 
used to read the seltsors, and supply interrupts for the platform servo control. 

VMIVME 2532A. A digital I/O board, which is used primarily for switching external 
circuits and thus allowing software control of power to any of the arms. 

DVME 628. A D/A converter for supplying motor currents to the arms. The digital 
signal is converted to analog and then run through a servo amplifier and fed to 
the joints in the system. 

MVME 224-1. Four MBytes of shared memory. 
XVME 556. A 16 channel A/D converter which is currently unused, but may be 

used for reading encorders. 
Whetdco Encoder. A VME 3570 optical shaft encoder used for reading the position 

of the carts on the Aronson platform. 
VME 7016. A VME Q Bus controller used to control the PUMAs. 
332 XT. Eight channel serial interface. This will be used to control the grippers. 

The 68020s connect via the databus to a D/A board which feeds currents to 
a PUMA 560 and a PUMA 600 arms. The PUMA anus have absolute position 
potentiometers, and torque sensors at all of their joints. Each arm is mounted on an 
Aronson platform which gives each arm three more degrees of freedom for motion. 
The arms and platform are controlled by Kali (Topper et al., 1988), an integrated 
path planner/arm controller. 

2.4. THE GRIPPER COORDINATOR (GC) 

The grippers will be used to actually grasp struts and nodes. They must be able to 
sense when there is an object between their 'fingers' and report the finger position and 
the force they are applying. The grippers are pneumatically controlled ones. Each 
gripper is equipped with a crossfire sensor and a force sensor, and is mounted on a 
Lord force/torque sensor, which in turen is mounted on the end of the PUMA arm. 
The gripper controller is a Motorola 68HC11 based controller, which communicates 
witht the VxWorks cage through the 332 XT serial interface in the VxWorks cage. 

3. System Command Language and Task Grammar 

As mentioned in the previous section, a system command language is necessary 
for the Coordination Level to interact with the Organization Level. This high level 



216 FEI-YUE WANG ET AL. 

command language also makes the programming of the construction missions easier 
for human operators. 

A general formalism for the system command language can be defined by following 
the syntaxs of the existing high level languages, such as Pascal or VAL-II. One of 
such examples is the command formalism developed by Noreils and Chatila (1989) 
for a mobile robot system. However, since this paper is concentrated only on the 
Coordination Level of the platform system and the inputs to that Level are the 
compiled system commands only (that is, sequences of tasks which are directly 
related to the operation of this Level), no attempt is made here to specify a formal 
language for system commands. Instead, we define the following task grammar G 
to describe the compiled system commands to the Coordination Level: 

G = (S, N, Y0, P)  

where 

Y0 = 

g ~ .  

P =  

{ cal_ r, cal_ v, move, approach, release, grasp, 

f ind_ sn, f ind_ obs, slave, continue_ v}, 

{S, V, V~, M, Ms, M~, H,, H,l,  H,2, Hv, Hvl, Hv2), 

{S --* cal_rM, m --* cal_vglm, ,  Ms ~ move Ms lapproach m,  lap- 

proach H,, H, --* release H,I, H,I  --* grasp H~almove H,1lapproach 

H,11cal-vV, H,z --* HvlMs, V --* f ind-snVIf ind_obsVIs lave  Vt[Mv, Vt 

--* continue_ v V, My --* move Mv [approach My lapproach H~ IV, Hv --* 

release Hvl, Hvl -"* grasp Hv2lmove Hvllapproach HvllV, Hv2 ---* Hv] 

M~, V, M, M,, M~, He, H, 1, H~, H~ t ~ S}. 

Zo represents the set of task primitives (terminal symbols), N is the set of non- 
terminal symbols with S as the start symbol, and P the set of production rules for 
deriving task plans (or language). The meaning of these task primitives will become 
clear later in the next section. 

The task grammar G characterizes the basic task precedences in the operation of 
the platform system. With the task grammar, the problem of developing the Coordi- 
nation Level becomes that of constructing a coordination structure which is capable 
of processing all the task plans generated by G. This will be accomplished in the 
following section by giving the individual PNTs for the dispatcher and coordina- 
tors. 

4. Coordination Structure for the Platform System 

This section describes in detail the PNT models for the dispatcher and coordinators. 
A PNT is a language translator, defined by a 6-tuple (N, E, A, ~, #, F), which trans- 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 217 

lates a given input task plan into an output task plan. The Petri net N = (P, T, I, O) 
of PNT is the controller of translation, and # is the initial marking of N, i.e., the 
initial state of PNT, 5: is the input alphabet representing input tasks, and A is the 
output alphabet representing the output tasks. ~r, the translation mapping from 
T x (5: t.J {A}) to finite sets of A* (where A is the empty string and A* is the set 
of all strings of finite length over A), specifies for a given input task the process- 
ing transitions in N as well as the output sub-task plans which may be used for 
that task. Finally, F is a set of final markings indicating the termination of the 
task translation. The translation mappings for the dispatcher and coordinators are 
specified by pseudo C codes here. For details of PNs, PNTs, coordination struc- 
tures, and their properties, a reader is referred to Wang and Saridis (1990, 1991 
and 1992). 

4.1. PNT FOR THE DISPATCHER 

The Petri net model for the dispatcher is given in Figure 3(a). For the sake of 
simplicity, however, a simplified net, shown in Figure 3(b), for the dispatcher 
will be discussed here. The simplified net is obtained by replacing some sub- 
nets of the original net with so-called macroplaces/transitions without changing 

Modaa 

)OUT_Moaon 

I 

71  
',dj.~.J 

,Ib/_Gdp 

OS_Grlp 

Fig. 3a. The Petri net transducer for dispatcher. 



218 FEI-YUE WANG ET AL. 

CalV I 

Modon 

Fig. 3b. The simplified Petri net transducer for dispatcher. 

the net topology, and thus knowing the simplified one would be enough for un- 

derstanding the task processes of the dispatcher. The simplified Petri net consists 

of 12 places and 16 transitions. A transition generally represents dispatching a 

command to the coordinators for performing a specific task, while a place repre- 

sents the state of the system. These places and transitions are specified as fol- 

lows: 

Transitions: 

CalR: Send a calibrate command to MC and VC. 

M1, M2, M3, M4, M5: Send a move or approach command to MC. 

Grip: Send a grasp command to GC. 

Rell,  Rel2: Send a release command to GC. 

V1, V2, V3: Send a find obstacle, find strut, orfind node command to VC. 

CalV1, CalV2: Send a calibrate command to VC. 

ConV: Send a continue command to the interrupted task of VC. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 219 

Places: 

C: Holding a token if the cameras have been calibrated. 

UC: Holding a token if the cameras are not calibrated and at least one move 
command has been done. 

S, M, Ms, H1, H2, V, Vt: Places correspond to the nonterminals in grammar G. 

Vision, Gripper, Motion: Each of these three places represent four input, output, 
and semaphores for each of the three subnets (Figures 4-6) 

The input alphabet for D, i.e., the tasks to be translated by D, is the set of 
primitive tasks specified by Zo as in grammar G. The output alphabet, i.e., the 
control commands to be dispatched by D to the coordinators, is Ad = Z~ t_J ~:m U Xg, 
where Zv, Xg, and Y'rn are the input alphabets for VC, MC, and GC, respectively. 
We have, 

E, = {look, find, calibrate, continue}, 

Em = {approaches, move}, 

Y'a = {cross fire, goto_ position, goto_ force, read_position, read_ force}. 

The translation mapping ~d(t, s) of D specifies the procedures of processing task 
s by transition t. This is achieved by translating each of tasks in Yo into task strings 
over Ad. For example, 

cr d(Grip, grasp) = { ((goto_position.read_position)+ cross f ire)+.goto_ force}, 

where s + = {s '~, n/> 1} represents repetitive actions. Among all possible task strings 
for grasp, only one will be selected for each translation and the selected string will 
be sent to GC via communication for execution. 

Other translations in D are: ad(V, find_z), where V = V1, V2, or V3, and 
find_ z = find_sn or find_obs; ~a(Rel, release), Rel = Rell or Rel2; ~d(CalV, 
cal_v), CaW = CalV1 or CalV2; ad(ConV, continue_v); ea(CaIR, cal_r); 
~d(M, z), M = M1, M2, M3, M4, M5, or M6, and z = approach or move; ed(M6, 
slave). All transitions associating with no input tasks are internal operations, which 
can be fired without processing any extenlal tasks. It is easy to verify that all input 
task plans generated by grammar G can be translated by the dispatcher described. 

4.2. PNT FOR THE VISION COORDINATOR 

qhe Petri net model of the vision coordinator in Figure 4 consists of 15 places 
and 16 transitions. The transitions generally represent lower level routines for task 
execution, while the places represent the state of the vision system. The places and 
transitions are specified as follows: 



220 FEI-YUE WANG ET AL. 

Fig. 4. The Petri net transducer for vision coordinator. 

Transitions: 

Look: Position the vision system to 'look' at a given location. 

NMv: Require no arm movement to ' look' at a given location. 

My: Require ann movement to ' look' at a given location. 

BMv: Send the motion command to MC. 

Cah Execute the given calibration command. 

Find: Give the command to identify a strut, node, or an obstacle that the vision 
system is already looking at. 

EMv: Receive a non-error message from MC. 

BL: Block until the Datacube is free. 

FG: Get pictures from the cameras through frame grabber, and send data to the 
Datacube. 

BAn: Begin partial image processing in the case when another motion command 
must be sent to MC to take new pictures. 

EAn: Reset the Datacube be ready when partial image processing is completed. 

BA2: Begin the final image processing. 

EA2: Send the results of image analysis to the Out place and reset VC to be ready. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 221 

RAM: Return from Ann Movement, this is fired if the arm returns an error, or if 

the look task is being done. 

Cont: Fire when the event VC is waiting on (e.g., an ann motion) is completed. 

NW: Fire if VC receives a continue command when it isn't waiting. 

Places: 

In, Out: the input and output places. 

IS, OS: The input and output semaphores. 

Ready: Marking the availability of the system. 

Datacube: Marking the availability of the Datacube. 

Anl, An2: the Datacube is processing information. 

Mov: The arm is moving. 

IA, OA: Input and Output to the Ann. 

PMove: Preparing to Move the ann 

AFin: The arm motion is completed. 

WFD: Waiting For Datacube. 

HF: Having Frame. 

RMov: Ready to move the arm. 

DW: Deciding where cameras need to be in order to 'look' at the given location. 

WFFG: Waiting For Frame Grab. 

The set of subtasks to be processed by the vision coordinator is Z~, are given in the 

previous subsection. The output alphabet Av consists of procedures for controlling 

camera devices, processing digital images, communicating with the motion coordi- 

nator. The translation mapping ~ro of VC specifies the association of input tasks, 

transitions, and execution procedures. For example, translation cry(Look , look) = 

(select_ cameras.position_ cameras, select_ cameras.calculate_ arm_ position.posi- 

tion_ cameras) indicates that transitiou Look can execute task look by using either 

select_ cameras.position_ cameras or select_ cameras.calculate_ arm_position. 

position_cameras. In the first case, the task can be performed by selecting two 

cameras among all available ones and then positioning the selected cameras, while 

in the second case arms have to be moved in order to position the cameras at the 

desired location. The three routines are specified in the sequel: 



222 FE1-YUE WANG ET AL. 

select_cameras(x,y,z,cameras.al lowed) 

f l o a t  x,y~z; 

boolean cameras_allowed[]; 
( 

int i; 

for(i=O; i< NUM.CAMERAS; i++) 

cameras.allowed[i] &= can_be_pointed_at(x,y,z, i); 

if (number_of_allowed(cameras_allowed) < 2) return (EI~OR); 

/* the location to be looked at */ 

/* spec i f i e s  all available cameras "1 

else enable_two_best_cameras(caaeran.allowed); 

return(enabled_camera.descriptor); 
) 

calculate_arm_position(x,y,z,cameras_enabled) 

float x,y,z; /* the location to be looked at */ 

boolean cameras.enabled[I; /* specifies selected cameras */ 
( 

if(number_of_eameras_mobile(cameras_enabled) !-  1) 

return(Eal~a); 
else load (where_the_camera_shoald_be(x,y,z),DESIRED_/d~M_POSITION_TABLE); 

return(OK); 
> 

posi t ion.cameras(x,y,z ,cameras_enabled)  /* procedure of pos i t i on ing  cameras */ 

Translation a~(Cal, calibrate) is performed by, 

load.desired_arm_positions_for_calibrationO; 

analyze = &analyze_calibration_card_routine; 

Translation a~ (Find, find) is performed by, 

setup_analyze.routine(tape_cmnd, high_precision) 

boolean high_precision; 

int tape_cntud ; 

if (high_precision) { 

s,it ch(tape_cmnd) of 

case strut: 

case node : 

case obstacle: 

> 
> 

analyze.routine = &find_strut_routine.hp; 

analyze_routine = ~find_node_routine_hp; 

analyze_routine - &find_obstacle_routine_hp; 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 223 

else 

switch(tapecmnd) of 

case strut: 

case node : 

case obstacle: 

) 

> 

analyze_routine = ~find_strut_routine; 

analyze_routine = &find_node.routine; 

analyze_routine = ~find_obstacle_routine; 

The final translation, ~r~(Cont, continue), just informs VC that the arm movenlent 

it is waiting on is completed, and VC can continue its processing. All other transitions 
are internal operations of  VC. 

4.3. PNT FOR THE MOTION COORDINATOR 

There are 13 places and 9 transitions in the Petri net model of the motion coordinator 
(Figure 5). The meanings of places and transitions are specified as follows: 

Transitions: 

St: Start the motion task. 

Ill: Report an illegal location for the ann to go to. 

Calc: Calculate the transform for the Cartesian motion command. 

Oue: Queue the motion command for execution. 

Mv: Start the motion task. 

CSP: Calculate the next Set Point. 

tS: Continue the motion task. 

Sta: Stop the motion task. 

Fin: Report the completion of the motion task or an error state. 

. \ A .,"ff / wailing outpul Sl~ PID 

ill ~11 i 

Rcady $1 PI CIIc P2 Quc TQ My 

Fig. 5. The Petri net transducer for motion coordinator. 



224 FEI-YUE WANG ET AL. 

Places: 

In, Out: The input and output places. 

IS, OS: The input and output semaphores. 

Ready: Motion system ready for the motion command. 

PID: Executing PID control. 

Waiting: Waiting until the lower levels of Kali output either the desired position 
or an error. 

Output: The lower levels of Kali have either reached an error or some position. 

LLR: Ready for the next job in the motion queue. 

PI: Verifying the legality of path. 

P2: Ready to enqueue a motion task. 

TQ: Task Queued. 

NSP: Get the Next Set Poit. 

The set of subtasks to be processed by the motion coordinator is Ym. The trans- 
lation mapping trm for the motion coordinator can be specified as, 

Translation trm ( M v, move): 

set_Kali_mode(CARTESIAN); 
load_from.queuo(desired_path). 

Translation am(My, approach): 

set_Kali_mode(JOINT); 
load_from_queue(desired_path). 

4.4. PNT FOR THE GRIPPER COORDINATOR 

There are 7 places and 7 transitions in the Petri net model of the gripper coordinator 
(Figure 6). The places and transitions are specified as follows: 

Transitions: 

Start: Start the grasping task. 

Cross: Read the crossfire sensor, retunling true or false. 

CoP: Close the gripper to a desired width. 

MeF: Measure the size of the gripper opening. 

G-oF: Close the gripper until the desired force is reached. 

MeF: Measure the force that the gripper is applying 

Next: Continue if there are commands left on input tape. 

Finish: Report the result of task execution. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 225 

Ready 
i°, 

_j  
Fig. 6. The Petri ne.~ transducer for gripper coordinator. 

) ,s 

PI aces: 

In, Out: The input and output places. 

IS, OS: The input and output semaphores. 

Ready: Ready for grasping tasks. 

BC: Starting task execution. 

AC: Finishing task execution. 

The set of subtasks to be processed by the gripper coordinator is Z a. The translation 
mapping o" a is specified as, 

Translation crg(Cross, cross f ire):  

c r o s s f i r e ( ) {  

i f  ( d a t a _ f r o m _ c r o s s f i r e . s e n s o r s  == BLOCKED) r e t u r n  ~TRUE); 

e l s e  return(FALSE) ; 
} 

Translation v g ( Go P , g ot o_posit ion) : 

got  o_pos i t  ion ( d e s i r e d _ p o s i t  ion) { 

w r i t e _ v a l  = c a l c u l a t e _ c o n t r o l l e r _ v a l u e ( d e s i r e d _ p o s i t i o n ) ;  
wr i t  e_t  o _ c o n t r o l l e r  ( w r i t e _ v a l )  ; 

i f ( u h a t e v e r _ t h e _ e r r o r _ c o n d i t i o n e _ a r e )  return(ERROR) ; 

e l s e  r e t u r n  (OK); 
} 

Translation mappings crg(GoF, 9oto_ force): 



226 FEI-YUE WANG ET AL. 

gets_force(desired_force)( 

write_val - calculate_controller_value(dssired.forcQ); 

.rits_to_controller(write_val); 

if(whatever_the_error_conditionsare) return(ERROR); 

else return (OK); 
} 

Translation #9(MeP, read_position) and #g(MeF, read_force) are performed 
by the routine aeanure_poei '~ion()and mea-ure_:~oree(), respectively. 

5. Communicat ion  Mechanism and Simulation 

A CAD tool called TokenPasser has been developed to allow the system designer 
to define a distributed hierarchy of communicating PNTs (Mittmann, 1991). Token- 
Passer allows us to distribute PNTs on different Unix machines with easy ways of 
changing the connections between different PNTs or the machine on which a PNT 
runs. This section first discusses the issues related with communication and then 
describes the results of simulation conducted by using TokenPasser. 

5.1. COMMUNICATION MECHANISM 

The communication between the processors running PNTs is an important issue. 
Since all CIRSSE machines are running under the Unix operating system and are 
connected by a Thinnet Ethemet, so most Unix methods of communication are easily 
available. 

A socket is a Unix Inter Process Communication (IPC) construct, which allows 
communication between processes on multiple machines. Sockets allow many op- 
tions including non-blocking reading and writing, and asynchronous notification of 
data arrival. Functionally sockets look like files, they can be written to, or read from 
with the read(2) or wri%e(2) commands. Sockets have many communication seman- 
tics, the most convenient one was the SOCK_ STREAM which provides sequenced, 
reliable, two-way byte streams. Sockets also use several different protocols, the 
most relevant one is PF_INET, which is an internet protocol and provides enough 
versatility to go across Ethernets. 

Since all UNIX IPC is built upon sockets, sockets are the fastest built-in com- 
munication method possible, and due to the relative ease of writing and reading 
data using them, SOCK_ STREAM, PF_ INET sockets are the communication tool 

used. 

5.2. SIMULATION RESULTS 

Simulations has been conducted with TokenPasser to test the speed of communication 
when the size of message and distances between the machines are varied. The default 
setup of simulation is: 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 227 

Dispatcher: Sol, a Sun 4/260, which is the system file server and network host. 
V~ion Coordinator: Venus, a Sun 4/60 Sparc Station. 
Motion Coordinator: Mars, a Sun 3/260. 
Gripper Coordinator: Earth, a Sun 3/150. 

Timing of the speed has been done by attaching a routine to every transition in the 
dispatcher, and recording the amount of time passed (in millisecond, ins) since that 
routine was last called. All of the times which measure the delay between sending 
a message and receiving one back have been recorded. 

The task plan (or string) processed by the dispatcher in the simulation is the 
following: cal_ r, cal_ v, move, f ind_ obs, move, approach, move, f ind_ sn, move, 
approach, release, approach, grasp, move, approach, release. 
This has resulted in 52 transitions being fired, causing 26 message transmission 
delays. 

5.2.1. Message Size Variation 

Variation in traltsmission delay when the message size is increased has been tested. 
Under normal operations, sending a token involves the transmission of 8 bytes, and a 
sequence of commands 12 to 40 bytes. In this test 50 and 500 bytes were appended to 
each socket message to see if this deteriorated the speed of the message transmission. 

The results of the test (Figures 7a-7c) have indicated that adding 50 bytes didn't 
affect the performance, while adding 500 bytes doubled the average delay time (from 
about 250 ms to about 500 Ins). 

5.2.2. Network Configuration Variation 

Variation in transmission delay due to change in the distances between the computers 
which are running the PNTs and changes in how the computers are connected has 
also been tested. 

D e f A u l t  ~ t u p  

~g 

5 0  

4 O  

3 0  

2 O  

1 0  

r - i s  oo~ 1 o o o  1 5 0 0  2 0 0 0  2 5 0 0  

D e l n y  t i m e  ( r n S e c )  

~OOO 

Fig. 7a. Distribution of delay time with message size variation for default setup. 



228 F E I - Y U E  W A N G  E T  A L .  

70 

6O 

5O 

4O 

30 

20 

10 

0 
0 

DefauR÷ 50 bytes/data transrnilsion 
80 

F i g .  7 b .  

25  

s6o 1 obo 15'oo ~o~o 25'oo 3 ooo 
Delay time (rnSee) 

Distribution of  de lay  t ime with message  s ize  variat ion for default  setup. 

2 0  

15 

10 

Default+ 500 bytes/datA tran ,mis | ion  

o 

0 
0 ~00 1 0 0 0  1500  2 0 0 0  2 ~ 0 0  

Delay time (rnSec) 

3 0 0 0  

F i g .  7c .  D i s t r i b u t i o n  o f  delay  time with message  s i ze  variation for default  setup. 

All PNTs Local. In this test all of the nets are running on Sol, communicating, as 
normal, via sockets. The results of the test can be seen in Figure 8. Clearly, by 
comparing with the result of the default setup, there is an increase in delay in this 
c a s e .  

The explanation for the counter-intuitive increase in delay can be seen when one 
realizes that a computer only checks sockets every 200 ms, and since a computer 
will be synchronized with itself, (and is unlikely to be synchrotfized with another 
computer), a round trip socket communication on one computer takes twice as many 
clock cycles as communication between different computers. 

On Peers. In this test the dispatcher is moved to Moon (a Sun 4/60GX Sparc Station) 
to see if the dispatcher being the net server improved or deteriorated the situation. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 229 

9 0  
A l l  N e t s  o n  S o l  

i T  
dZ 

8 0  

7 0  

OO 

5 0  

4 0  

3 0  

2O 

1 0  

0 
0 

Fig. 8. 

1"71 ~ r'-n , m  
iOO i K]~O 1 5 ' ~  2 0 O O  25~K)  ~ 

D e l a y  t i m e  ( n a S e c )  

Distribution of  delay time when all nets on a single machine. 

~ooo 

5O . '  

4 5 -  

35- 

3O 

20- 

15 

10- 

5- 

0 
0 

A l l  N e t t  o n  P c c n  

5 0 0  ! 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0  

D e l a y  t i m e  ( m S e c )  

3 0 0 0  

Fig. 9. Distribution of delay time when dispatcher on the file server. 

A s  one can see from Figure 9 and Figure 7a, there is no significant difference 
in transmision delays, thus relieving any necessity of placing the dispatcher on the 
(possibly overloaded) file server .  

Nonlocal Dispatcher. The dispatcher was placed on pawl3.pawl.rpi.edu, a Sun 3/50, 
located across campus. The message size was increased by 50, then to 500 bytes in 
the test. 

As one can be seen from Figures 10a-10c, the increased distance produced almost 
no changes in the normal and +50  byte tests, however when the amount of data 
transmitted gets larger, the increased distance produces a more pronounced effect. 
In fact, when the program was run with the display tunled on (necessitating increased 
data transmission to allow the graphics) the program halted with lost data on 3 of 



230 FEI-YUE WANG ET AL. 

7 0  
M e d i u m  D i s t a n c e  t o  D i s p a t c h e r  

o 

e= 

6 O  

5 O  

4 O  

3 0  

2 0  

1 0  

0 f 
0 5 o o  l o0o ~ 5bo 2o:oo 25oo  ~ o 0 o  

D e l a y  t i m e  ( m S e ¢ )  

Fig. 10a. Distribution of delay time with message size variation for nonlocal dispatcher. 

M e s d i u m  D i m t m c e , ÷ 5 0  b y t e =  

o 

4 5  ! 
, 4 0 ~ -  

3o 

2 5  - 

i 
2 0  

,5i 
! 0 -  

I 

5 -  

0 I 
0 

Fig. 10b. 

2 5  

5 0 O  1500 2000 2 5 ~ ) 0  3 0 0 0  

D e l a y  t i m e  ( m S e e )  

Distribution of delay time with message size variation for nonlocal dispatcher. 

M e d i u m  D i l t a n c e ,  - I - 5 0 0  b y t e =  

2 0  

a5 

o 

,v- 

0 
0 5 0 0  ! 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0  3 0 0 0  

D e l a y  t i m e  ( m S e c )  

Fig. 10c. Distribution of delay time with message size variation for nonlocal dispatcher. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 231 

the 4 attempts. In further testing it was observed that more displays resulted in less 
time to failure. 

Remote Dispatcher. The coordinators were located on their normal computers, re- 
sulting in about 3000 miles of Internet communication between the PNTs. 

From Figures 1 la-1  lc,  it can be seen that this increased distance resulted in de- 
graded communication speed even with minimal data. The PNTs still ran (although 
more slowly) with 50 extra bytes of data, even when displaying full graphics. How- 
ever the increase to 500 extra bytes of  data per socket transmission resulted in the 
PNT failing to complete the task every time (in 6 consecutive trys). When the 
extra load was lowered to 200 bytes, it resulted in success in 5 out of the 6 at- 
tempts. 

~ S m  
L o n g  D i s t a n c e  t o  D [ m p a t c l ~ m r  

g 

210 

2 5  

2 0  

1 5  

1 0  

5 

o 
r~ __~ [-M . rTt__ 

5 0 0  IOOO 1 5 0 0  

De|my t i m e  ( m S . c )  

Fq 
2 0 0 0  2 5 0 0  3 0 0 0  

Fig. l la .  Distribution of delay time with message size variation for remote dispatcher. 

4 0 , m  
Long D i s t a n c e ,  + 5 0  b y t e ~  

35 

3(} 

2 5  

2 0  

1 5  

1 0  

0 ,&, L 
1 o o o  1 5 ; 0 0  2 0 0 0  

D e l • v  t i m e  ( r n S e c )  

• t"l , 
2 5 0 0  3 0 0 0  

Fig. l lb .  Distribution of delay time with message size variation for remote dispatcher. 



232 FEI-YUE WANG ET AL. 

3 ~  
L o n  E D i s t a n c e ,  + 2 0 0  b y t e s  

g 
¢:1 

30 

25 

20 

15 

I 0  

5 

0 
0 

Fig. 11c. 

.111111~ n 
~o 1ooo 15bo . . . .  =o~ 4'00 3o00 

D e l a y  ~ ( r e . S e e }  

Distribution of delay time with message size variation for remote dispatcher. 

6. Conclusions 

This paper has presented a formal specification of the coordination level of the 
CIRSSE Robotic Platform System by using Petri Net Transducers to specify a coor- 
dination structure in which one dispatcher supervising three coordinators. A simple 
task grammar for the command language has been described and used in the con- 
struction of the PNT model of the dispatcher. All four PNTs for the dispatcher and 
coordinators have been defined in detail and their task translations have been illus- 
trated by pseudo C codes. The simulation conducted on the communication speed 
within the Coordination Level has indicated that the longer the physical distance 
between the computers which host the dispatcher and coordinators, the smaller the 
number of tokens (or amount of information being transferred) required to degener- 
ate the communication speed. This observation agrees with our intuition and once 
again demonstrates the importance of developing an intelligent autonomous control 
system for the CIRSSE Robotic Platform System, since such a control system will 
reduce dramatically the intensity of information exchange between the earth station 
and the space station. 

Acknowledgement 

This work was supported by the NASA Center for Intelligent Robotic Systems for 
Space Exploration (CIRSSE) under Grant # NAGW-1333. The first author has been 
partially supported by a Special Purpose Grant in Science and Engineering Program 
from AT&T Foundation. 

References 
Azema, P., et al. (1984), Specification and verification of distributed systems using prolog interpreted 

Petri nets, Proc. 7th Int. Conf. Software Eng., Orlando, U.S.A, pp. 510-518. 



COORDINATION SPECIFICATION USING PN TRANSDUCERS 233 

Boehm, B.W. (1976), Software engineering, IEEE Trans. Computers C-25(12), 1226-1241. 
Bruno G. and Marchetto, G. (1986), Process-translatable Petri nets for the rapid prototyping of process 

control systems, IEEE Trans. Software Eng. SE-12(2), 346-357. 
Courvoisier, M., Vallette, R., Bigou, J.M., and Esteban, P. (1983), A programmable logic controller 

based on a high level specification tool, Proc. 1983 Conf. lnd. Electron., pp. 174-179. 
Krogh, B.H., Wilson, R., and Pathak, D. (1988), Automated generation and evaluation of control pro- 

grams for discrete manufacturing processes, Proc. IEEE lnt. CIM Conference, Troy, NY, U.S.A., 
pp. 92-99. 

Mittmann, M. (1991), Token Passer: A Petri net specification tool, MS Thesis, ECSE Dept, RPI, Troy, 
NY. 

Noreils, E.R. and Chatila R.G. (1989), A general structure for mobile robot action control, IEEE/RSJ 
Int. Workshop on lntelligentRobots and Systems, Sept. 4-6, 1989, Tsukuba, Japan, pp. 550--556. 

Saridis, G.N. (1977), Self-Organizing Stochastic Control Systems, Marcel Dekker, New York. 
Saridis, G.N. and Stephanou, H.E. (1977), A hierarchical approach to the control of a prosthetic arm, 

IEEE Trans. Systems Man Cybernet. SMC-7(6), 407--420. 
Saridis, G.N., Foundation of intelligent controls, Proc. IEEE Workshop on Intelligent Contr., RPI, Troy, 

NY, pp. 23-27. 
Saridis, G.N. and Valavanis, K.P. (1988), Pu~alytie design of intelligent machines, Automatica 24, 123- 

133. 
Topper, A., Caneshmend, L., and Hayward, V. (1988), A computing architecture for a multiple robot 

controller for space applications Kali Project. Fifth CASI Conference on Astronautics, Ottawa. 
Valavanis, K.P. and Saridis, G.N. (1991), Probabilistic modeling of intelligent robotic systems, IEEE 

Trans. Robot. Automat. RA-7(1), 164-170. 
Wang, Fei-Yue and Saridis, G.N. (1990), A coordination theory for intelligent machines,IFACJ. Automat. 

26(9), 833--844. 
Wang, Fei-Yiae and Saridis, G.N. (1991), Petri net transducers for task translation in intelligent machines, 

Proc. 1FA C lnt. Workshop on Discrete Event Systems Theory and Applications in Manufacturing and 
Social Phenomena (DES'91), June 1991, Shenyang, China. 

Wang, Fei-Yue and Saridis, G.N. (1992), Coordination Theory for Intelligent Machines: Applications 
in Intelligent Robotic Systems and CIM Systems, to be published by Kluwer Academic Publishers, 
Boston, MA. 

Wang, Fei-Yue and Saridis, G.N. (1993), "]['ask translation and integration specification in intelligent 
machines, IEEE Trans. Robot. Automat. 9(3), 257-271. 

Wang, Fei-Yue (1990), A coordination theory for intelligent machines, PhD Thesis, ECSE Dept, RPI, 
Troy, N'Y. 

Wang, Fei-Yue, Kyriakopoulos, K.J., Tsolkas, A., and Saridis, G.N. (1991), A Petri net coordination 
model for an intelligent mobile robot, IEEE Trans. Systems Man Cybcrnet. SMC-21(4), 777-789. 


