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Abstract 

This paper proposes a method that uses cell state space and cell mapping based techniques for planning general 
optimum trajectories along given geometric paths for coordinated multiple robotic arm systems. The major 
advantages of this method include its simplicity and applicability to a wide range of problem formulations. In 
particular, three performance indices for optimum trajectory specification are investigated, i.e., minimum-energy, 
minimum-jerk, and minimum-time formulations. A simple search strategy is constructed using cell-to-cell mapping to 
find optimum trajectories. A special feature of this search algorithm is its ability to generate all optimum trajectories 
for all possible initial conditions through a single search. The computational complexity is analyzed for the search 
algorithm and its hierarchical implementation. Parallel execution of the hierarchical search method is discussed and 
the results indicate that it can improve the cell-mapping search efficiency significantly. 
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1. Introduction 

Optimum trajectory planning is of major importance for effective control of robotic arm systems. 
During the past decade considerable effort has been made to solve the problem for single robotic arms 
[1,14,17,19,13,10]. In particular, the generation of time-optimal trajectories is the focus for most of the 
research work [16,4,21,2,20], since the productivity of manufacturing systems is directly related to the 
execution time of robotic motion tasks. 

However, only a few studies on the corresponding problem for multiple robotic arms have been 
reported [18,9,3,22]. The main reason is due to the problem of high nonlinearity and strong coupling in 
their dynamics. But coordinated multiple arm systems are essential for many applications. These include, 
robotic tasks in manufacturing assembly, mining transportation, and structure construction for space 
exploration. In addition, optimum trajectories other than time-optimal are also important for multiple 
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arm systems. For example, an energy-optimal trajectory is commonly desired in environments where a 
limited power supply is available (i.e., robotic motions for Lunar or Martian missions [23]) or where 
repetitive robotic operations are required over long time periods, while a jerk-optimal trajectory is useful 
for manipulation tasks where high precision and smooth motion must be maintained [11]. These optimum 
trajectory planning problems have not yet been well studied in the robotics literature• A general 
technique to solve these problems must be developed in order to ensure the optimal operation of 
multiple robotic arm systems in those situations. 

The cell mapping method is considered to be a simple and efficient solution to optimum control [8,24] 
and trajectory planning problems [21,22]. In our previous work [22], this method has been used to solve 
the problem of time-optimal trajectory generation for a coordinated multiple robotic arm system 
handling a common object along a prescribed geometric path. The dynamic equations for coordinated 
arms were transformed into a set of second-order differential equations with a single path parameter. 
Force/torque constraints imposed on the arm joint actuators were expressed in terms of upper and 
lower bounds on the path parameter acceleration using a modified linear programming method. This led 
the original time-optimal trajectory generation problem to an optimal control problem in a two-dimen- 
sional phase plane• A cell-to-cell mapping was constructed from the continuous state equation by 
assigning a cellular structure to the phase plane. Using the special structure of time-optimal control and 
cell-to-cell mapping a simple search algorithm was applied to find the time-optimal trajectory. A 
hierarchical implementation of the search algorithm that allows for parallel execution was also discussed. 
The primary goal of the current paper is to generalize this cell-mapping based technique for optimum 
trajectory planning of coordinated multiple robotic arms with general performance index specifications. 

This paper is divided into six sections. First, dynamic equations for coordinated multiple robotic arms 
moving a common object along a given geometric path are discussed in Section 2. Section 3 formulates 
optimum planning problems for obtaining minimum-time, minimum-energy, and minimum-jerk trajecto- 
ries. The basic concept of the cell mapping method and its application to optimum trajectory planning is 
described in Section 4, where a simple trajectory search strategy is also constructed using cell-to-cell 
mapping. Section 5 presents an analysis of computational complexity for the search algorithm and its 
hierarchical implementation. The efficiency of the hierarchical search method is demonstrated. Finally, 
some concluding remarks and suggestions for future work are given in Section 6. 

2. Dynamic model and path specification 

This section presents the dynamic equations of multiple robotic arms moving a common object along a 
specified geometric path. Detailed derivation procedures for these equations can be found in our 
previous work [22]. 

2.1. Kinematic analysis 

Fig. 1 shows a case of m coordinated rigid robot arms handling a common rigid object. It has been 
assumed that the object is grasped firmly so there are no relative motions between the object and each of 
the arm end-effectors during the entire process of manipulation. The arms and the common object form 
a closed-chain system of rigid bodies. Let n i represent the number of joint variables of arm i, and 
0 i = (0~, 0 i )T be the corresponding joint variable vector, i = 1,. , m. According to the Kutzbach- 

• . . ,  n i • .  

Crubler criterion [15] there are only p independent motion variables among the total joint variables, 
where p is given by 

(2 for spatial arm systems, 
p =  n i - 3 ( D - 1 ) ( m - 1 ) ,  D =  3 for planar arm systems. (1) 

i = 1  



F.-Y. Wang, P.J.A. Lever~Robotics and Autonomous Systems 12 (1994) 15-27 17 

.~tlnt 
Fig. 1. Common object manipulation by coordinated multiple arms. 

Therefore, the motion of the system can be described completely by a generalized coordinate vector 
q -- (ql . . . . .  qp)T as, 

0 i = Oi(q) , i = 1 . . . . .  m.  

The Jacobian matrices of 0~ can be calculated by, 

= - -  = , i --- 1 . . . . .  m ,  j = 1 , . . . , n i ,  k = 1 , . . . , p .  ~i = Ji~l' Ji ~q ( Jjk )ni×p' J/k "~- aqk 

2.2. Dynamic equations 

The dynamic model of the multiple arm system can be developed using Hamilton's Principle. The 
following equations have been obtained for the system [22], 

M ( q ) i j  = f ( q ,  ~') - C(q ,  il)il - ~,(q)q - k ( q ) ,  (2) 

where 

m [ a g i l  i T  
{f(q, r), "y(q),k(q)}= i~:~lJT(q) ('i'BiJi(q)' aOij, ~'i--- ( r~, . . . ,~ ' , , )  , 

aM m 

C(q,  q) = M o ( q ,  ? 1 ) - '  T -~M~(q, il), Mo(q ,  il) z., T = - - ~ l e , ,  M ( q )  = ~ ,  JiTMi(Oi(q))Ji ,  
i=l ~qi i=l 

in which e k is the k th  unit vector, i.e., the kth  element is one, all others are zero, % is the joint actuator 
to rque / fo rce  vector, M i the inertia matrix, B i the friction coefficient matrix, and gi the potential energy 
of arm i, i = 1 . . . . .  m. Terms f (q ,  r), C(q, q), ~(q) and k(q)  represent the effects of joint to rque/ force ,  
Coriolis/centrifugal forces, friction and gravity, respectively. Usually B i = diag(b~ . . . . .  b / )  and bj is the 
friction coefficient of joint j of arm i. It has been assumed that joint to rque / fo rce  % is bounded by 

"l'~ain(si, Oi) <_~ ~i ~__'rmaX(0i, Oi) , i = 1  . . . . .  m. (3) 
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2.3. Path specification 

Assume the common object held by the coordinated arms is required to move along a specified 
geometric path h(s), where s o < s < sf is a scalar called path parameter. In this case by assigning a time 
history to the path parameter s we can determine the motion of the common object and thus the 
trajectory of the generalized coordinate vector q (the problems of multiple configurations and singularity 
can be solved during the path planning stage and will not be discussed here). This can be written as, 

q ( t ) = q ( s ( t ) )  = h ( s ( t ) ) ,  So<S(t  ) <sf ,  (4) 

and correspondingly, 

(1 = hs~, ij = hss.~ 2 + hsg, 

where ~ and //are called pseudo-velocity and pseudo-acceleration, respectively. Also, hs and h~ denote 
the first and second order partial derivative of h with respect to s, respectively. 

Obviously, the motion of the common object and correspondingly (q, q, q) will be determined once 
the time history of (s, ~, g) is known. Hence (s, g, g) has characterized the motion or trajectory of the 
coordinated multiple arms along the given geometric path h(s). From q(t) the motion of each individual 
arm can then be determined using Oi(t) = Oi(q(t)). Therefore, the problem of trajectory planning for the 
coordinated multiple arms becomes the task of finding path parameter s as a function of time. 

The dynamic equations along the given path h(s) can be written in terms of the path parameter s, 
pseudo-velocity ~ and pseudo-acceleration g as, 

a( s)g + b( s)g 2 + y(s)~ + c( s) = f (  s, ~'), (5) 

where 

a ( s ) = M ( h ) h s ,  b ( s ) = M ( h ) h s s + C ( h ,  hs)hs, 

c ( s ) = k ( h ) ,  r ( s ) = r ( h ) ,  f ( s ,  r ) = f ( h ,  r) .  

3. Formulations of optimum trajectory planning 

The problem of optimum trajectory planning along a specified geometric path is to determine the time 
history of the path parameter (i.e., s and ~) that will allow the coordinated multiple arms to move from 
their initial state to a desired state with a minimum cost under the given dynamic constraints. To 
formulate the trajectory planning problem in a form that is convenient for the cell-to-cell mapping 
method to be developed in the next section, we introduce the following state-variable trajectory 
representation: 

iCl=X2, j?2 = u( t ) ,  (6) 

where x I = s(t) and x 2 = ~(t) are two state variables and u(t) = g(t) is control. 
The general form of the performance index for trajectory planning is defined as, 

m t/ 
m i n  J(u( t ) )  = fo i~=l~i(Oi, Oi' Oi' "l'i) dt,  (7)  

u(t)~U = 

where tf is the trajectory execution time, ~,. represents the cost function for arm i, and U is the set of 
admissible coritrols. In this paper, we will only discuss three optimum trajectory planning problems, i.e., 
minimum-time, minimum-energy and minimum-jerk trajectories. However, the method and procedures 
of optimum trajectory planning discussed here are still valid for other optimum trajectory planning 
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problems. Note that for a single robotic arm system, if an inappropriate cost function is selected the 
corresponding minimum trajectory may exhibit poor behavior during motion execution [12]. 

3.1. Minimum-time trajectory 

The minimum-time trajectory planning problem has been studied extensively over the last few years 
[3,16,13,19,5]. In manufacturing tasks, minimum motion execution is obviously desired for better 
productivity. A minimum-time trajectory can be achieved by making all the cost function 5r's have the 
same constant value, so that J(u(t)) = tf. Using Pontryagin maximum principle, it has been found that 
the control structure for optimum trajectory generation is that of generalized bang-bang control [3]. 

The lower and upper bounds for generalized bang-bang control can be found from constraint (3) and 
Eq. (5), 

o/(x1, x2) < u ( t )  =~'<fl(Xl ,  x2), (8) 

where both a(xl ,  x 2) and f l(x 1, x 2) can be determined using a modified linear programming method 
with the pseudo-acceleration as the objective function. Generalized bang-bang control requires that 
during any time interval the optimum control must be 

U(t)-----O~(Xx(t), X2(t)) or u ( t ) - - - [ J ( X l ( t ) ,  X2(t)) 

Therefore, the problem of time-optimal trajectory planning is reduced to determining the time instances 
at which the pseudo-acceleration of the path must switch from one bound to the other, i.e., switch points. 
Using this special control structure, it is simple and very efficient to solve the planning problem using the 
cell mapping method. A detailed description of the procedure for finding the minimum-time trajectory 
using this method can be found in our previous work [22]. 

3.2. Minimum-energy trajectory 

A minimum-energy trajectory is commonly desired in environments where a limited power supply is 
available, such as robotic motions for Lunar or Martian tasks in space exploration. In addition, repetitive 
robotic operations over long time periods, or heavy duty materials handling such as mining transporta- 
tion tasks for local resource utilization, are cases where a minimum-energy trajectory may reduce the 
energy consumption level significantly. A minimum-energy trajectory can be obtained by using some 
energy measure as the cost function, e.g., 

c~i = (~Taioi + ~'TRi'ri, (9) 

where Qi and R i are non-negative matrices. The two cost terms reflect kinetic energy and power 
consumed by arm i, respectively. Clearly, the first term can easily be expressed in terms of trajectory 
variables s and g. However, the expression for the second term is much more complicated, since in 
general, torque ~'i cannot be uniquely determined from (s, ~, ~'). This is a special problem for multiple 
arms and will be discussed in detail later. Note that the motion execution time tf will be treated as fixed 
in this case. 

3.3. Minimum-jerk trajectory 

It has been found that the jerk (the third derivative of joint variables) of the desired trajectory 
adversely affects the efficiency of the ann motion control algorithm [10]. Experimental results have 
indicated that joint position errors increase when jerk increases [11]. Therefore jerk should be minimized 
in order to accomplish motion tasks accurately and smoothly. This planning strategy may also be useful 
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for manipulation tasks involving large and fragile components in construction operations. To specify a 
minimum-jerk trajectory, the cost functions have to be chosen as, 

where Si is a positive matrix. In the single robot arm case, the problem has been solved by [10] using an 
optimal control formulation without considering dynamic force/ torque constraints. However, for the 
coordinated multiple arms case, the same formulation cannot be used due to its complexity and 
nonlinear dynamic constraints (3) and (5). 

Usually, the calculation of the third derivatives is very complicated and time consuming. To avoid 
involving the third derivatives directly, we will approximate them by the second derivatives instead. Let 
t o = 0 < t 1 < . . .  < t k < . . .  < t ,  = t f  be a discretization of the motion execution period. Then the cost 
functions for the minimum-jerk trajectory can be replaced by 

~ (  t k)  = ( Oi( t k)  - 0~( tk+ , )  ) T s i (  oi( t k ) -- Oi( tk+ 1) )" (10) 
Now it is relatively easily to express ~ in terms of x 1, x 2 and u. However, the value of the cost functions 
at t k in this case also depends on the control to be selected at the next time instance t k +1 (since 0~ is a 
function of u), thus the cost at a given state cannot be calculated only based on the control chosen at 
that state. This problem can be solved by introducing one more state variable in trajectory representa- 
tion, i.e., 

X I = X z ,  X2 =X3 ,  3~3 ---- u ( t ) ,  (11) 

where the new trajectory state variable and control are defined as x 3 = k'(t) and u ( t )  = ~'(t), respectively, 
and x 3 must meet constraint (8). With the new state variables, the value of cost functions at t k n o w  can 
be found by using the current state and control information only, i.e., ~ i ( t k )  = ~ i ( x j ,  x 2, x 3, u / t  = tk ) .  

The actual computation procedure can easily be constructed from Eq. (4). Correspondingly, the 
performance index is modified as, 

n - 1  m 
m i n J ( u ( t ) )  = ~ ,  ~_, ~ i ( t k ) .  (12) 
u(t) k = 0 i = 1 

4. Optimum trajectory search with cell mapping 

The basic concept of the cell-to-cell mapping method and the procedure for using this approach to 
plan optimum trajectories are described in this section. A simple trajectory search algorithm that uses 
cell-to-cell mapping is discussed. 

4.1. Cell-to-cell  mapp i ng  

The cell-to-cell mapping method was developed by Hsu [6,7] in the early 80's for nonlinear dynamic 
analysis. The basic idea is to consider a state space not as a continuum, but as a collection of state cells 
with each cell representing a state entity. Let x i, i = 1, 2 . . . . .  N, be a state variable of the state space, 
and let the coordinate axis of state variable x i be divided into a large number of intervals of uniform 
interval size hi. The interval zi along the xi-axis is defined to be the one that contains all x i  satisfying 

- 1 ) h  i ( z i + ~ ) h  i ,  z i < x  i < 1 
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where z i is an integer. Such an N-tuple ( Z 1 ,  Z 2 , . . .  , Z N) is then called a cell and is denoted by z. The cell 
state space S c Z N is the collection of all such cells. We will assume S is finite with cardinality N r 

Having introduced a cellular structure to the state space, we can approximate a dynamic system with 
continuum state space, 

~ = f ( x ,  U, t), x ~ R  iv, u E R  M, (13) 

by a dynamic system over the discrete cell state space, 

z ( n + l ) = C ( z ( n ) , u ( n ) ) ,  z ~ S c Z  iv, u ~ U c Z  M, (14) 

where C ( ' , "  ) is called cell-to-cell mapping. Control u has also been discretized in the cell-to-cell 
mapping. The set of admissible discrete controls U will be chosen as a finite set with at most N, different 
values. Note that U is allowed to vary from cell to cell. We call z(n) and z(n + 1) the domain cell and 
the image cell, respectively. Clearly, a domain cell may have at most N u possible image cells. 

To make the cell mapping method more efficient, we also need to discretize the one-step value of the 
cost functions [8]. Since each cell may have up to N, values for its one-step cost, there could be at most 
N, × N~ different one-step cost levels. Let N,~ represent the number of one-step cost levels selected. 
Usually, N~ is far less than its upper bound N, x N s. 

For optimum trajectory planning with the cell mapping method, it is very easy to convert (6) or (11) to 
a cell-to-cell mapping equation. Note that cells with a >/3 are inadmissible under the given torque 
constraints for the given path specification and can be classified as a single dead or sunk cell. This will 
guarantee that the cell space to be considered has a finite number of cells. The admissible control set U 
for each cell will be determined according to the values of ot and /3 calculated at that cell. 

4.2. One-step cost calculation 

In minimum-energy trajectory planning, individual joint force / torque  ~'i for each arm cannot be fully 
determined from trajectory variables x 1 and x 2. Thus, a quadratic programming approach has been used 
at each cell to find the force / torque  distribution and to achieve a minimum-energy trajectory. In other 
words, the one-step cost is calculated by, 

m 

9-( z( i), u( i) ) = min ~, (o~aioi + ~'~Ri~.i), (15) 
~'1'" " "  ~'m i = 1  

subject to constraints (3) and (5) at the given cell z(i) with control u(i). Once 5 r is determined, it will be 
rounded to one of the N w discretized one-step cost levels. 

The calculation of one-step cost for minimum-jerk trajectory planning is straightforward using cost 
function approximation (10). Again, once 9-(z(i), u(i)) is obtained at each cell, it is rounded to a 
discretized cost level. Note that we now have to deal with a three-dimensional instead of a two-dimen- 
sional cell space as for the minimum-energy problem. 

4.3. Cell-space search 

Based upon the cellular structure of state space and the discretization of control and cost functions, 
an optimum trajectory planning problem associated with the continuum dynamic system (6) or (11) can 
be transferred into a search problem that relates to the corresponding discrete cell-to-cell mapping (14) 
over the cell space. To see this, let the cell space be partitioned into three parts, i.e., S = O u S a U Su, 
where O is the set of target cells, Sd the set of all cells from which the target set cannot be reached 
without violating the given path or force / torque  constraints, and S u the set of all other cells. Obviously, 
S d contains the dead cell. Both S a and S, are not known before the completion of the trajectory search. 
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The detailed search process and data structure for information tracking is discussed in [8,22]. I~ t  
p ( N  s) be an upper bound of the performance index (see the next section for its estimation), cc(z) the 
accumulated cost of moving optimally from cell z to the target ~9, nn(z)  the optimal image cell of z, and 
{w 0 . . . .  , WNw_I}O" the set of possible one-step cost levels in ascending order, where ~r is the unit cost and 
w's are integers. The major steps of the search algorithm can be outlined as follows: 

Begin 
W = Wo; S,, = S - 69 - {dead cell}; S,, = O; 
While W <_p(N s) Do 

D=~b;  
For each cell z ~ S u Do 

Find H ( z )  = {z' l  z '  = C(z,  u) ~ S~ and cc(z ' )  = W -  w i for some u ~ U and 0 < i < Nw}; 
If H ( z ) =  ~b Then go to next cell in Su; 
Else 

Break ties using discriminating functions if H ( z )  contains more than one cell; 
Select the cell left in H ( z )  as nn(z); 
cc ( z )=  W; D = D U { z } ;  

End 
End 

S u = s u - D ;  S~,=S v U D ;  
Increase W to the next cost level; 

End, 

where S v is the set of all cells whose optimum control has been decided. Also, at the end of the search 
process S d = S - S~ corresponds to the set of cells from which the target cannot be reached with the 
given path or f o r c e / t o rque  constraints. An important feature of the search algorithm is its independence 
to initial conditions, i.e., once the target cell is given, the cell-to-cell mapping search will determine all 
the optimum trajectories starting from any initial cells by a single search. 

The discriminating functions mentioned in the above algorithm are used to break possible ties 
encounted when different image cells offer the same total optimum cost during the search process. There 
are various ways to select the discriminating functions [8,22]. For example, we can use the deviation of 
the image point of the current cell to the center of its image cell as the first discriminating function, and 
the sum of the accumulated deviations along the optimum trajectory from the current cell to the target as 
the second. If a tie still exists after testing the two discriminating functions, a random selection can be 
used to break the ties. 

5. Complexity estimation and hierarchical search 

Complexity analysis is performed for the search algorithm described in the previous section. To 
improve the search efficiency and enable the parallel implementation, a hierarchical search scheme is 
proposed. The complexity of the hierarchical search strategy and the problem of finding an optimum 
number of cell space divisions is also discussed. 

5.1. Upper bound cost and search complexity 

The upper bound cost of a trajectory can be estimated by imposing some construction restriction on 
the cellular structure. Physically, an arm system should always move to a new posi t ion/or ientat ion at 
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each control step. This suggests that the division of cell space and control needs to be refined so that a 
cell will always be mapped into a new cell with a greater xl = s coordinate. In other words, the cell 
mapping will always evolve along its z I coordinate. Using this division policy, a trajectory from any initial 
cell to the target can consist of at most N~ cells, where N1 is the number of divisions along the x i axis. In 
the worst case, each mapping step will cost the maximum one-step-mapping cost WNw_ 1, thus the upper 
bound of the trajectory cost is, 

p ( N s )  = NxN. , .  (16) 

Note that p ( N  s) is not dependent on the number of divisions along the x 2 or the x 3 axis. 
From the search algorithm in the previous section, the number of candidate cells in S u should become 

smaller and smaller as the search proceeds. However, the exact number of candidates entering S v at 
each cost level cannot be determined. In the extreme case, the search at a given cost level may extend 
over the whole cell space. Therefore, the worst-case computation complexity for the search algorithm can 
be estimated as N s p ( N s ) T  c, where Tc represents the cell-to-cell mapping search computation time 
required to evaluate a single candidate cell. T c is bounded by T~ < c,~ + cp + c ~ N  u, where c~, c~ and c~ 
are the computation times of a,/3, and one-step cost ~r, respectively. 

5.2. Hierarchical search strategy 

The computational efficiency of the cell-mapping search process can be improved by a hierarchical 
implementation. The basic idea is to divide one optimum trajectory planning problem into several small 
ones along a given path. This division leads the original planning problem into a two-level decision 
problem: a multivariable optimization problem in the higher level and several independent optimum 
trajectory planning problems at the lower level as shown in Fig. 2. All individual trajectory planning 
problems at the lower level are solved using the same search algorithm described in the previous section. 
Independence at the lower level allows a parallel execution of the search process. 

Consider the minimum-energy planning problem specifically. We divide the original total cell space 
into d small sub-cell-spaces along the x 1 axis with each containing ( N 1 / d ) N  2 cells, where N 2 is the 
number of divisions along the x 2 axis. Let Oi be the target cell assigned for sub-cell-space i by the higher 
level, i.e., 0 i = ( i ( N 1 / d ) ,  Yi), where Yi is an integer representing the pseudo-velocity of the target cell, 
i = 1 . . . . .  d. 19i also serves as the search starting cell of sub-cell-space i + 1, except for O d = 19, which is 
the global target cell. The task of the higher level is to find the optimum pseudo-velocity vector 
(Yl, Y2 . . . . .  Ya) such that the sum of the individual costs submitted by d local cell-to-cell mapping 
searches at the lower level will yield the global minimum cost for the total cell space. In other words, the 

High Level Coordinator 

Nonlinear Optimization 

I I,,, ' "  I I 
I I i I 
Fig. 2. ttierarchical search structure for cell mapping search. 
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optimum pseudo-velocity vector will link the optimum sub-trajectories found independently by d local 
cell-to-cell mapping searches to form a global optimum trajectory in the total cell space. 

The hierarchical search algorithm owes much of its efficiency to the fact that once the target cell is 
given, the cell-to-cell mapping search will determine all optimum trajectories leading to the target cell, 
irrespective of the initial starting cell. This means that one only needs to look up the relevant tables to 
obtain the minimum cost and optimum trajectory from any cell to the target cell without executing a new 
search process each time. The cell mapping searches in the lower level can be carried out either 
sequentially or in parallel. The efficiency of the hierarchical search strategy in these two cases can be 
estimated using the following worst-case complexity analysis. 

5.3. Hierarchical search evaluation 

Let T a and T o respectively denote the complexities of adding two variables and selecting a new 
velocity vector for searching at the higher level (many optimization methods can be used for this 
purpose). In the worst case, the higher level exhausts all possible values of pseudo-velocity vector, i.e., all 
N d-  1 vectors (since Od is fixed) and thus its corresponding worst-case complexity can be calculated as: 

T h =Nff- l(Tb + (d - 1)T~). (17) 

In the lower level, each sub-cell-space has N 2 possible target cells with the exception of the last one 
which receives the global target cell as its only target cell. Thus, according to discussions in the previous 
subsection, the worst-case complexity of the lower level can be estimated as, 

1) N12N~$ 2 
T ~ = ( ( d - 1 ) N z +  N.- ,Tc ' Tp=N2(N ,  N2) WN.-L d2 To, (18) 

i 
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Fig. 3. Efficiency of the hierarchical search strategies. 
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Fig. 4. Optimum number of cell space divisions. 

for the sequential and parallel searches, respectively. Correspondingly, the efficiency factor of the 
hierarchical search strategy, defined as the ratio of complexities of the hierarchical and the single cell 
space searches, can be determined as, 

rh+rs  Th + 
rls = N 2 N 2 W N 2 _ I T  c , rip = N 2 N 2 W N  _ I T  c , (19) 

for the sequential and parallel searches, respectively. Fig. 3 gives r/$ and ~p as a function of d for 
N 1 = 200, N 2 -- 10, W N _  1 = 10; T a / T  c = 10 -12 and T b / T  c -- 10 -6. Note that the sequential search is not 
efficient in this case except when d = 10 or 11, where ~L = 0.9125 or 0.8597, respectively. 

The optimum division of the total cell space is found by selecting d so that ~Ts or ~Tv obtains its 
minimum value. For example, assuming the same data used in Fig. 3 except N 1 = 100, one can find 
doptimu m = 10 for both the sequential and parallel searches. The corresponding ~L = 0.92, i.e., only 8% of 
the computation time can be saved by the sequential hierarchical search; however, more significantly, 
r/p --- 0.11, i.e., an 89% saving by the parallel hierarchical search. Fig. 4 shows doptimu m as a function of 
N,. 

For minimum-jerk trajectory planning, a similar analysis can be performed and the corresponding 
complexity estimation can be obtained by replacing N 2 with N 2 N  3, where N 3 is the number of divisions 
along the x 3 axis. 

6. Conc lus ions  

Several cell-mapping based search schemes have been proposed in this paper for planning optimum 
trajectories of coordinated multiple arm systems using general performance indices. In particular, 
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minimum-energy, minimum-jerk, and minimum-time trajectory planning formulations have been dis- 
cussed. A simple cell-space search algorithm as well as its hierarchical implementation has been 
proposed. The worst-case computational complexity of the hierarchical search strategy is estimated and 
compared with that of the basic search algorithm. The results show a large improvement in search 
efficiency with the hierarchical search method, especially when the search over each sub-cell-space is 
executed in parallel. For the example calculated in section 5.3, an 89% saving in the worst-case 
computation time was achieved using the parallel hierarchical search. 

The major advantages of using the cell mapping method for optimum trajectory planning includes its 
simplicity and applicability to a wide range of problem formulations. A special feature of this search 
method is its ability to find all optimum trajectories for all possible initial conditions through a single 
search. Conventional methods based on optimum control formulations usually involve different, compli- 
cated equations and treatments for different planning problems [10,16]. However, the construction of 
cellular space and cell-to-cell mapping for a particular dynamic system is still very tedious. For example, 
many trial-and-errors are needed before a proper cell size, control discretization, and number of 
one-step cost levels can be determined. Computer-aided-design software packages which facilitate the 
applications of the cell mapping method must be developed. 
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