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The application of supervised learning to train an intelligent vehicle
with a neuro-fuzzy controller to mimic the driving behavior of a human
driver is discussed. An initial fuzzy control system for vehicle driving was
set up on the basis of general human driving experiences, and its control
rules were modified to fit the driving behavior of an individual driver.
This provides an effective mechanism to construct driving control systems
with personality for automated intelligent vehicles.

Intelligent transportation systems (ITS) have been introduced to mit-
igate the delays and safety problems associated with the continuously
increasing traffic congestion on national highways. During the last
few years, significant resources and effort have been expended on
feasibility studies and the development of concepts, architecture, and
technologies for ITS.

It has been realized that a one-step deployment of ITS is both
impractical and extremely expensive, and thus the emphasis has
shifted to the development of technologies that can be incrementally
introduced and tested. The technologies would be helpful now and
fully beneficial when a complete ITS is deployed, where platoons of
vehicles would travel from point to point at high speeds with little
or no interactions with the drivers (unless they are getting on or off
the system).

One important technology that is under incremental deployment
is automated vehicle control. The idea is to put as much intelligence
in the car as possible so that it is semiautonomous, requiring little
instruction from or interaction with the driver of the vehicle.

Automated vehicle control systems have two basic functions: to
keep the vehicle in the middle of its lane (lateral control) and to
accelerate or decelerate to maintain a desired speed or a safe dis-
tance between vehicles (longitudinal control). Up until now, most
research in automated vehicle control has applied model-based con-
ventional control methods, such as a proportional-integral-differential
(PID) feedback sliding model (1–11). These methods have several
drawbacks. First, conventional control techniques require accurate
vehicle dynamic parameters that are often very difficult, if not
impossible, to obtain. Second, the data from onboard sensors are
unavoidably noisy, which makes it difficult for a PID-type controller
to generate accurate control commands. Finally, the longitudinal
velocity of vehicles varies in a wide range, making the performance
of the technique of gain scheduling, which is only suitable around a
specific equilibrium point, unacceptable (2, 12).

In recent years, people in scientific and industrial fields have
shown increasing interest in designing intelligent control systems
that combine fuzzy logic and neural networks, and many implemen-
tations integrating fuzzy logic and neural networks have been pro-
posed (13–16). Since 1990, the researchers have been attempting to
implement fuzzy logic control systems (FLCS) with a neural network
so that the knowledge structure of the FLCS is fully preserved in its
network implementation (17–20). The unique knowledge structure
embedded in this structured network enables it to carry out adaptive
changes of fuzzy reasoning methods and membership functions
for both input signal patterns and output control actions, and then
recover these changes individually and completely later from its sub-
networks. Gradient methods for optimization have been used to
derive off-line training rules and online learning algorithms for the
structured neuro-fuzzy network (NFN) (21–25; F. Wang, Network-
Based Neuro-Fuzzy Control Technology: Hardware and Software
Systems, U.S. patent pending, 1999).

VEHICLES WITH INTELLIGENT SYSTEMS FOR
TRANSPORT AUTOMATION PROJECT AND
AUTOMATED DRIVING BEHAVIOR 
WITH PERSONALITY

The Vehicles with Intelligent Systems for Transport Automation
(VISTA) project was sponsored by Arizona in 1998 to perform
research in intelligent vehicle and highway systems. The mission of
the project is to develop an affordable intelligent vehicle that can be
deployed within the next 5 to 10 years in the proposed intelligent
express lanes on I-10 between Phoenix and Tucson.

The VISTA project focuses on the use of a hierarchical control
platform that requires (a) less frequent and less spatially dense com-
munication among the road, the traffic operations center, and the
vehicles and (b) less computational effort for lateral and longitudi-
nal control of the vehicle on the highway. To achieve these goals,
three new techniques have been developed in the VISTA project:

1. The use of calibration-based vehicle control, rather than
guidance-based vehicle control, reduces the cost of constructing
and maintaining roadside sensors.

2. Trajectory planning and optimization based on long-range
road information reduce the level of energy consumption and air
pollution and increase the traffic throughput.

3. Distributed hierarchical agent-based control is used rather
than traditional functional decomposition into sensing, planning,
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and acting. Vehicle control systems are decomposed into hierarchi-
cally organized special-purpose task-achieving modules, called agent
programs. Fuzzy logic–based driving agent programs (from human
driving behaviors) are used for many modules. Figure 1 shows the
control structure of the VISTA control system.

FUZZY LOGIC–BASED KNOWLEDGE FOR
LONGITUDINAL VEHICLE MOTION CONTROL

A human driver generally controls the longitudinal motion of a vehi-
cle on the basis of an estimation of the distance between the con-
trolled vehicle and the preceding vehicle and their relative speed.
If the preceding vehicle is far ahead, the vehicle will be driven at a
speed specified for the section of the highway. If the preceding vehi-
cle is nearby, the driver will try to maintain a predetermined spacing
between the vehicles. If the spacing between the vehicles decreases
too rapidly, the driver will apply emergency braking. A human driver
changes the running state of a vehicle by pushing down the throttle
or brake pedal, which in turn produces forward or backward force
to accelerate or decelerate the vehicle. If the vehicle needs a quick
acceleration, the throttle pedal will be pushed down hard; if the vehi-
cle needs a quick deceleration, the brake pedal will be pushed down
hard. This driving knowledge can be described with fuzzy logic. The
distance between the controlled vehicle and its preceding vehicle
and the relative speed between the two vehicles (the rate of distance
change) are taken as two input signals. The throttle/braking force is
taken as output control. These variables are first transferred into seven

linguistic terms: negative big, negative medium, negative small, zero,
positive small, positive medium, and positive big (NB, NM, NS, ZE,
PS, PM, PB). With these fuzzy terms, the human driver’s experience
can be expressed in a form such as the following:

If distance is NS and relative speed is PB, then apply a force of PM.

Corresponding to the seven terms of distance and seven terms of rel-
ative speed, 49 fuzzy rules can be constructed (see Table 1, where
d̂ and v̂ are the fuzzified distance and relative speed between the
controlled vehicle and the preceding vehicle, respectively).

With this rule base, a fuzzy controller can be built. Input signals
are first linearly normalized into values in the range [−3, 3], then
transferred into fuzzy terms. Figure 2 shows a mapping under the
assumptions that the desired distance between the controlled vehi-
cle and the preceding vehicle is 10 m, the distance can vary between
5.5 and 14.5 m, the desired relative speed between the two vehicles
is 0 m/s, and the relative speed can vary between −4.5 and 4.5 m/s.

The output of the fuzzy logic controller is a crisp force F. When
F > 0, propulsion force is applied by increasing the throttle angle.
When F < 0, braking force is applied by pushing the brake pedal
down. Because of the high nonlinearity of the vehicle dynamic char-
acteristics, an accurate relationship between the throttle / brake posi-
tions and the forward/backward force cannot be specified. However,
it is known that bigger throttle control values result in bigger accel-
erating forces and that bigger brake control values result in bigger
decelerating forces. This common sense is applied to generate the
throttle/brake control command on the basis of the crisp force F.

FIGURE 1 Hierarchical structure of VISTA control system.

TABLE 1 Fuzzy Rule Base of the Vehicle Controller
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FIGURE 2 Mapping from measured input signal into linguistic terms.

FIGURE 3 Subnetworks and integration of NFNs.

SUPERVISED LEARNING OF LONGITUDINAL
DRIVING BEHAVIORS

Neuro-Fuzzy Networks

Figure 3 shows the structure of an NFN implementation of a set
of fuzzy logic decision rules. The network consists of three sub-
networks of distinctive functionalities: pattern recognition (PR),
fuzzy reasoning (FR), and control synthesis (CS). The PR subnetwork
identifies the patterns of input variables according to the membership
functions of linguistic terms. The FR subnetwork conducts fuzzy
reasoning (conjunction) by calculating the firing strength of each deci-
sion rule. The CS subnetwork carries out the task of control synthesis
by generating fuzzy control action and then defuzzifying it. Although
the three neural networks are connected sequentially, the construction
and training of these networks can be performed independently and
simultaneously, and the procedure in the fuzzy logic–based decision
making is fully preserved in its network implementation.

PR Neural Networks

For each signal reading si, a neural network SNi is constructed to
match its values with the linguistic terms in the set of signal patterns
Ai. In other words, the functionality of SNi is to calculate member-
ship functions µsk

i
(x) for k = 1, . . . , pi, i = 1, . . . , m. Figure 3 shows

a three-layer SNi. Initially, this network is trained with the specified
membership functions for terms in Ai. At this stage, network SNi is

not required to learn the membership functions at high accuracy
since the specified membership functions are usually subjective.
Note that if two sensor readings have identical sets of linguistic
terms, they can use the same network at the beginning. Through net-
work learning, the membership functions of linguistic terms can be
changed adaptively later for better performance.

FR Neural Networks

For each decision rule r in the knowledge base, a neural network
RNr, r = 1, . . . , R is used to calculate the firing strength of the rule.
Thus, RNr is actually a network implementation of conjunction oper-
ator. Figure 3 shows a three-layer RNr. By changing its weights, it
can be made to implement various logic operations approximately.
Therefore the initial training of RNr can be carried out by using any
of these norms, or even their combinations, and the network can be
easily modified for new fuzzy reasoning by the use of learning algo-
rithms. Clearly, as long as every rule has the same number of lin-
guistic terms in its precondition, the same FR network can be chosen
for all the control rules at the initial stage. In this paper, the algebraic
product is used for initial training.

CS Neural Networks

Control synthesis is the process of determining the final crisp control
according to the firing strengths of rules and membership functions
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of linguistic terms defined for control actions. This involves deduc-
ing consequences for individual rules, generating resultant fuzzy
control, and then converting it into a crisp value. Figure 3 illustrates
a two-layer neural network CNj for the synthesis of control compo-
nent uj, j = 1, . . . , n. The first layer is introduced for calculating fuzzy
controls. In this layer, a neuron is created for each of the elements in
the universe of discourse Uj. Given the firing strengths of control
rules, neuron k produces the value of the membership function of the
resultant control at a specific ujk, 1 ≤ k ≤ nj. Note that the algebraic
product operator has been used for conjunction in rule consequence
deduction and the bounded sum for disjunction in the resultant fuzzy
controls. Since the logic operations have been fixed, there is no need
for initial network training. The initial weights of network CNj at this
layer can be calculated from membership functions as

while the bounded sum is implemented by a linear activation func-
tion f(x) = x, if 0 ≤ x ≤ 1; f(x) = 0, if x < 0; and f(x) = 1, if x > 1. The
second layer carries out the task of defuzzification. Initial values of
weights in this layer can be determined according to the center of
area. Thus, weights of the second layer are given by

where µjk is the value of neuron k at the first layer. These initial
weights of networks CNj, j = 1, . . . , n, can be changed later by learn-
ing algorithms to improve control performance. However, learning
will only change the membership functions of control actions and
the defuzzification algorithm, not the logic operations involved in
control synthesis.

Integration of Neural Networks: NFNs

Once SNi, RNr, and CNj have been created, the final step toward a
structured NFN is to connect those networks appropriately accord-
ing to the original set of fuzzy decision rules. Figure 3 also presents
the integrated NFNs.

From Fuzzy Control Rules to the NFN

For vehicle longitudinal control, the NFN has two PR subnetworks,
49 FR subnetworks, and one CS subnetwork. They are built and
trained separately.

Each of the SNs has one input process element (PE) and seven
output PEs, corresponding to seven linguistic terms of input signal.
Several pairs of distance value/membership value of linguistic terms
are used for training the network. The numbers of hidden layers and
hidden PEs are determined during the training process. Once this
network is trained, it is cloned into two, one for converting the dis-
tance and the other for converting the relative speed into membership
value of linguistic terms.

Each of the 49 RNs has two input PEs and one output PE. The two
input PEs correspond to the membership values of a linguistic term of
distance and a linguistic term of relative speed, respectively. The out-
put PE corresponds to the firing strength of a fuzzy rule. Several pairs
of membership value of distance, relative speed linguistic terms, and
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resulting firing strength of a fuzzy rule are used for training the net-
work and determining the number of hidden layers and hidden PEs.
Once the network is trained, it is cloned into 49, each corresponding
to a fuzzy rule.

The CN has 49 input PEs, each corresponding to the firing strength
of a fuzzy rule; 7 hidden PEs, each corresponding to the membership
value of a linguistic term of the fuzzy output force; and 1 output PE,
which gives the crisp control force value. In any time step, most
fuzzy rules have a firing strength of 0 except for those that are really
triggered. By integrating these subnetworks, an NFN for vehicle
longitudinal control can be obtained.

Supervised Learning Using 
Error Backpropagation

The backpropagation learning algorithm developed for standard multi-
layer feed-forward neural networks can be easily generalized to an
NFN. As for multilayer neural networks, this will enable the NFN to
tune its weights to match the recorded longitudinal driving behavior
of individual drivers. To find the supervised learning algorithm for
the NFN, the error function is defined as

where ud
j is the recorded throttle and braking motor control value. If

only initial values of weights γjk are to be calculated, the rules for
updating weights of the NFN are exactly the same as those for the
standard multilayer neural networks, except that weights between
any two neurons with no direct connection are treated as zero. This
will change the defuzzification algorithm through training. Other-
wise, the rule for updating weight ωjkr in the first layer of CNj has to
be modified as follows:

where

f ′(x) = 1 when 0 < x < 1 and f ′(x) = 0 otherwise;
η = learning rate, with 0 < η < 1; and
t = number of iteration steps in training.

This result can easily be obtained from gradient calculation. In this
case, the error term δr backpropagated to the output neuron of RNr

is found to be

After supervised learning has been completed, membership func-
tions and fuzzy conjunction operators can be recovered by breaking
the NFN into subnetworks of pattern recognition, fuzzy reasoning,
and control synthesis. Specifically, from SNi the refined membership
functions of signal patterns for si are obtained, and from RNr the
modified conjunction operator for rule r is obtained. Note that, after
learning, different control rules would have different conjunction
operators. To obtain the updated membership functions of control
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actions for uj, only one input neuron, say αr, of CNj is set to 1, and
all others to zero. In this way, output values of neurons in the first
layer of CNj present the new membership function for control term
ucjr

j . Like conjunction operators, a fuzzy control action used by two
or more control rules could have different membership functions in
different rules after training.

EXPERIMENTAL RESULTS

Experiments were conducted on a test vehicle (Figure 4) with the
neuro-fuzzy controller described in the preceding section. The aim
of these experiments is to examine the controller’s performance and
the result of supervised learning.

The test vehicle is a 1989 Chevrolet Celebrity station wagon. Three
experiments were conducted. The set rule for the experiments is to
keep the distance between the controlled vehicle and the preceding
vehicle at 10 m. A human driver manipulates the preceding vehicle.

Experiment 1

The vehicle is controlled by the controller that has not been trained
after integration. Figure 5 shows the recorded throttle/brake control
values and the distance between the two vehicles and their relative
speed. The distance between the two vehicles fluctuated widely,
though it basically remained around the desired value, with the
shortest distance being 8.0 m and the longest being 13.2 m. The per-
formance of this controller is similar to the basic fuzzy controller:
both behave like a new driver who understands driving principles
but lacks hands-on experience and therefore cannot manipulate a
vehicle gracefully.

Experiment 2

The vehicle is controlled by a human driver who tried to keep the
distance between the two vehicles at 10 m. Figure 6 shows that
the average distance (10.45 m) between the two vehicles was a lit-
tle above the desired value. The reason may be that a human driver
cannot measure the distance as accurately as it can be measured by
radar. However, the distance fluctuation is much smaller than in the
first test. Figure 6a demonstrates that the human driver maintains
the distance by making minor frequent adjustments of the throttle/
brake control value.

Experiment 3

The neuro-fuzzy controller is trained with a supervised learning
method on the basis of the data recorded in Experiment 2. Figure 7
shows that the distance between the two vehicles is kept at around
10 m, with the shortest distance being 8.3 m and the longest dis-
tance being 11.8 m. The fluctuation is much smaller than was achieved
in Experiment 1 (before the controller is trained). At the same time,
the relative speed is basically between −5 and 5 m/s. Figure 7a
shows that the neuro-fuzzy controller also manipulates the vehicle
with a minor degree of adjustment to the throttle/brake control
value. This indicates that a neuro-fuzzy controller can acquire at
least part of a human driver’s driving behavior through supervised
learning.

The intrinsic reason for performance improvement of the neuro-
fuzzy controller can be found by decomposing the NFN into three
subnetworks and recovering the refined membership functions and
modified fuzzy conjunction operators.

Figure 8a compares the original and refined membership func-
tions of distance. It can be seen that after supervised learning, the
boundaries between the different linguistic terms have become
blurred. The range of each membership function becomes wider
than before and thus overlaps with neighboring fuzzy terms. The
fuzzy terms NM and NS coincided for the most part, as did PM and
PS. This indicates that a human cannot easily distinguish NM from
NS, or PM from PS. The same phenomenon can be found in Fig-
ure 8b, where the original and refined membership functions of rel-
ative speed are compared. Figure 8b shows that a human driver is
more sensitive to the decrease of relative speed than to the increase
of relative speed, which can be verified from the fact that the revised
membership functions are shifted slightly to the right.

Figure 9 illustrates the modified fuzzy conjunction operator for
Rules 1 and 24. In the original neuro-fuzzy controller, every rule
applies the algebraic product operator. However, it can be seen that
after training, Rule 1 still applies the algebraic product operator,
while Rule 24 changes to the intersection operator. Therefore, the
firing strength of Rule 24 is increased. This shows that after train-
ing, the weight of Rule 24 (and other rules that produce mild output)
becomes bigger than before.

Figure 10 shows the recovered membership function of the CS
neural network. It can be seen that after training, the range of each
fuzzy term (except ZE) is shifted toward the middle. This indicates
that for a given control output term, the controller produces a crisp

(a) (b)

FIGURE 4 Performance of the initial neuro-fuzzy controller: (a) VISTA vehicle; ( b) demonstration of
autonomous control of VISTA car at Highway 51 on April 27, 1999.



FIGURE 5 Performance of the initial neuro-fuzzy controller: (a ) brake and throttle control value; ( b) distance and
relative speed.

FIGURE 6 Performance of human driver in vehicle longitudinal control: (a) brake and throttle control value;
( b) distance and relative speed.
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FIGURE 7 Performance of the neuro-fuzzy controller after supervised learning: (a) brake and throttle control value;
( b) distance and relative speed.

FIGURE 8 Recovered membership function of PR subnetwork: (a) membership function of distance;
( b) membership function of relative speed.

output value smaller than that produced before training. This par-
tially explains why and how the trained controller improved its
performance.

The revision documented here is only for a specific driver. Dif-
ferent drivers with different driving habits or behaviors will cause
different revisions. In this way, the automated driving system could
acquire a personality from an individual human driver.

CONCLUSION AND FUTURE DIRECTIONS

The research presented here shows that a neuro-fuzzy controller for
an automated vehicle can be trained with data derived during the driv-
ing process of a human driver. The advantage of this method is that
it can improve the performance of existing neuro-fuzzy controllers
and keep the original knowledge structure, which makes it much
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easier for people to analyze how and why the performance of the
controller changes after training.
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FIGURE 9 Recovered fuzzy conjunction operators of FR subnetwork.

FIGURE 10 Recovered membership function of CS subnetwork.


