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Abstract

The problem of maximizing the fundamental vibration frequency
of a flexible manipulator through the optimum design of its
link is addressed. A larger fundamental vibration frequency is
desired because it will enable the manipulator to move faster
without causing serious oscillation of its end point. Using the
variational method, we show that this design problem can be
formulated as a nonlinear eigenvalue problem and thus solved
by a set of successive iteration schemes. Sensitivity analysis
for the optimum design is also performed to obtain useful in-
formation for machining allowance specifications. The results
of this investigation should be very useful in the design of
lightweight and high-performance robotic arms. For example,
numeric calculations indicated that an increase ranging from
194.92% to 600.25% in the fundamental vibration frequency
can be achieved by the optimum tapering of a flexible manip-
ulator with a link of geometrically similar cross sections. This
may lead to a significant improvement in productivity, as the
manipulator can rotate three to seven times faster.

1. Introduction

One of the major objectives for developing flexible or
lightweight manipulators is to achieve high speed and
high precision performance. When the joint velocity of a
flexible manipulator approaches its fundamental vibration
frequency, however, the intensity of oscillations of its end
point will increase dramatically as a result of resonance.
This will cause a serious problem in controlling the end-
point position or even damage to the manipulator system.
Thus, a larger fundamental vibration frequency is desired
for flexible manipulators.
Asada et al. (1991) have investigated the problem of

integrated structure/control design of flexible manipula-
tors. They found that for a flexible manipulator with a
beam (or link) of varying rectangular cross sections, a
43% increase in the fundamental vibration frequency can
be achieved by tapering the beam appropriately. Their
result may have a significant impact on the design of
flexible manipulators, since to date most of them have
been constructed with uniform beams of regular and con-
ventional cross sections (e.g., uniform rectangular cross
sections).
The problem of optimum shape design of flexible ma-

nipulators is clearly related to the optimum design of
vibrating elastic structures, especially vibrating rods and
beams (Schwarz 1962; Niordson 1965). For example, as
we can see later in Section 4, when the hub inertia of a
flexible manipulator approaches infinity, the problem of
finding the extremal fundamental frequency of the manip-
ulator will be reduced to the classic problem of optimum
design of a vibrating cantilever, which was first formu-
lated and solved by Karihaloo and Niordson (1973) and
has been reexamined by Wang (1991) with a new and
simplified solution procedure. It was found that for a can-
tilever of geometrically similar cross sections, a 578%
increase in the fundamental frequency can be obtained
through optimum shape design.
The goal of this article is to generalize the solution

method developed for vibrating cantilevers to solve the
optimum design problem of flexible manipulators. We
start with the basic equations of one-link flexible manipu-
lators in Section 2 and present the variational formulation
of the shape design problem in Section 3. The optimal
solutions in the two limiting situations and their behaviors
near the singular points are analyzed in Section 4. Sec-
tion 5 describes a set of successive iteration schemes for

solving the nonlinear eigenvalue problem of the optimum
design for various conditions, followed by a number of
numeric examples and discussion in Section 6. Changes
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in the optimal fundamental frequency caused by small
variations of the hub inertia are investigated in Section 7
by introducing a sensitivity index. Section 8 concludes
the article.

2. Basic Vibration Equations of One-Link
Flexible Manipulators

The Euler-Bemoulli equations have been widely used in
’ 

the literature to describe the dynamics of flexible ma-
nipulators (Bellezze et al. 1990; Wang and Kwan 1993).
In this model, a one-link flexible manipulator is made
of a simple beam and an actuator fixed on a hub with
rotational inertia IH. The governing equation of har-
monic vibration and boundary conditions can be easily
derived as,

where v is the total beam displacement; EI, the bending
rigidity; A, the cross-sectional area; p, the mass density
per unit volume; L, the length; and c.~, the natural vibra-
tion frequency. Primes indicate derivatives with respect to
the coordinate x of the beam’s longitudinal axis.

For a manipulator with beams of uniform cross sec-
tions, its fundamental vibration frequency is determined
as the minimum root of the following characteristic equa-

. 

tion,

sin 0 cosh 0 - cos B sinh S + ~B3 ( + cosh 0 cos B) = 0, (3)

and the corresponding vibration mode is,

It is easy to show that 0 increases monotonically as 7] de-
creases and 1.8751 < ~ < 3.9266. The lower and upper
bounds of 0 are achieved at q = oo and q = 0, respec-
tively. Note that when q = oc, eq. (3) reduces to the
characteristic equation of a clamped cantilever, whereas
when q = 0, it becomes that of a hinged cantilever.

For manipulators with a beam of varying cross sec-
tions, however, the simple equations like eqs. (3)-(4) for
the fundamental frequency are no longer possible. In this

case, the fundamental frequency is a nonlinear functional
of the shape function. Our objective here is to find the
best possible tapering of the beam such that a manipula-
tor will obtain its highest possible fundamental vibration
frequency.

Throughout this article we will assume the following
relationship between the moment I and the area A of
beam cross sections:

where -y is a constant. Three cases are of special inter-
est-namely, p=1, 2, and 3-since they correspond to
beams with rectangular cross sections of given uniform
height, geometrically similar cross sections, and rectangu-
lar cross sections of given uniform width, respectively.

3. Variational Formulation for Optimum
Shape Design

To establish the basic equations for solving the optimum
shape design problem, we reformulate eqs. (1)-(2) into
the following variational form,

where v only needs to satisfy the geometric boundary
condition v(O) = 0. The equivalence of eq. (6) and

eqs. (1)-(2) can be easily proved.
Based on eq. (5), the problem of optimum shape de-

sign now can be stated as a variational problem in the
following dimensionless form,

where the dimensionless coordinate ~, eigenvalue A,
shape function a, and hub inertia parameter q are de-
fined, respectively, by,

in which W is the given total weight of the beam. From
the definition, a must be non-negative and satisfy the
following constraint:

To incorporate this constraint into eq. (7), we introduce
a generalized variational equation through a Lagrange
multiplier as follows, .
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where a2 is the Lagrange multiplier and must be positive.
After some long and tedious calculus, one can show

that the generalized variational equation leads to the fol-
lowing Euler equations,

and boundary conditions,

These equations, together with constraint (9), form the
complete set of basic equations of the optimum shape
design for a one-link flexible manipulator.

Clearly, the solution of eqs. ( 11 )-( 13) is not unique,
because if (v, Q2, a, A) is a solution, then (cv, C2(72, a, A)
will be another solution for any nonzero constant c. This

provides a way to completely eliminate the multiplier
from (12) by choosing c = Ilo,. In other words, for
solving the optimization problem, we only need to find
the unknown function u = v/rr instead of v and (72 2

individually. In terms of this new function u, eqs. (11)-
(13) can be rewritten as,

These equations constitute a nonlinear eigenvalue problem
for finding the frequency A. Obtaining the optimum shape
for a flexible manipulator is equivalent to finding an a
that maximizes the smallest eigenvalue of eqs. ( 14)-( 1 ~),
subject to constraint (9).
. 

Comparing eqs. (14)-(16) with the corresponding ones
for the optimum design of vibrating cantilevers (Kar-
ihaloo and Niordson 1973), one finds that the only
difference between them is in the second equation of
boundary conditions (16). For vibrating cantilevers, this
equation becomes u’(0) = 0 and leads to a substantial
simplification of the solution procedure. The reason is in
this case both u(0) and z,c’(0) are known, and hence u(~)
can be found uniquely from u&dquo;(~) by integration. For
flexible manipulators, however, u’(0) cannot be known
from the boundary conditions. Thus u(fl) cannot be deter-
mined directly from u&dquo;(~) by integration, and successive
iterations must be used. As one can see from the next

two sections, this complicates the solution procedure and
slows down the speed of convergences significantly.
From eq. (15), for p > 1, one finds,

where

Another important identity can be obtained by multiplying
both sides of eq. (14) by 2r, and then integrating over
0 < ~ < 1. Taking boundary conditions (16) into account
and after applying eq. (15), we have,

Note that the validity of this identity does not require
constraint (9) to hold.

4. Limiting Cases and Singularity Analysis
Before we attempt to solve the nonlinear eigenvalue prob-
lem (14)-(16), it is expedient to investigate the solutions
in the limiting cases with respect to 77. For the purpose
of numeric computation, it is also imperative to analyze
the singularity of solutions at the free end (~ = 1) or the
clamped end (~ = 0). We will show that for p = 1 and

~7 = 0 or oo, no optimal solution exists; for p > 1 and

q # 0, the optimal solution is singular at the free end; _
and for p > 1 and n = 0, the solution is singular at both
the free and clamped ends. Furthermore, as expected, for
very large q, the optimum design problem reduces to the
corresponding one for vibrating cantilevers.

4.1. Two Limiting Cases

Let us consider two limiting cases in which q = 0 and
q = oo, respectively. For 77 = 0, the second equation of
boundary conditions (16) becomes,

and identity (19) now reads,

Therefore, no optimal solution is possible for p = 1,
since constraint (9) cannot be satisfied by any solution.
For p > 1, as it can be shown shortly, eq. (20) leads to
the singularity of the optimal solution at the clamped end
~=0.

For q = oo, the second equation of (16) has to be
replaced by,

and all the other equations in (14)-(16) remain un-
changed. Clearly, both the governing equations and
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boundary conditions now become exactly the same as
those for the optimum design of vibrating cantilevers
(Karihaloo and Niordson 1973). Thus the optimization
problem in this case reduces to that of cantilevers. It is
easy to show that in this case, identity (19) also reduces
to (21). Hence, for the same reason, no optimal solution
exists when p = 1.

4.2. Singularity Analysis

When p # 1, the solution of eqs. (14)-(16) is singular at
the free end for q fl 0 and at both the free and clamped
ends for 17 = 0. In this case the numeric method can-
not be applied to find the solution directly. To make the
numeric solution feasible, we must first determine the
behavior of the solution near these singular points. This
can be achieved by assuming that the solution can be
expanded in a power series of ~ or I - ~ with a character-
istic term fl’ or ( 1 - Ç)k near the singular points.
To analyze the singularity at the free end, let us expand

both ~c and a in a power series of 1 - ~ at ~ = 1,

Substituting these expressions into (15), we get,

Similarly, we have from (14),

Eliminating A and ao from those equations, we find,

For p = 2, we get k = -2, and for p = 3, k = -1.
For 77 = 0, the solution of (14)-(16) is also singular

at ~ = 0. To determine the singularity at this point, we
notice the following facts when q = 0,

Therefore, the series expansions for those two functions
near ~ = 0 can be written as,

where a¡, a2, and bi are constants. Solving the above
equations for a and u&dquo; we get,

where cl and di are two new constants. The behavior of
u near the clamped end thus can be found as

Therefore, the singularity of u at fl = 0 is 1~ =

p~-3/p+ 1.
The results of singularity analysis will be used to nor-

malize the functions employed in the iteration schemes
developed in the next section.

5. Solution by Successive Iterations

Since in general the solution of the nonlinear eigenvalue
problem (14)-(16) cannot be obtained in a closed form,
a set of successive iteration schemes is developed to find
it numerically. The iteration schemes are based on formal
integration, with the introduction of one of the boundary
conditions at each integration. Care is taken to remove
the singularity of the solution at the singular points and
to separate the differential operator of the highest order
on the left-hand side at each step. This has been found

necessary to make the numeric computation feasible and
to achieve the convergence by successive iteration.
The following integral formulae are useful in the for-

mulation of iteration schemes,

Note that the single integrations save computation time
and hence are preferred numerically over the double
integrations.

For p > 1, by formal integration of (14) we find, after
satisfying the boundary conditions at ~=1, substituting a
from (17) into (14), and using (29), that

where s is a sign indicator defined as,

Eq. (30) is used as the basic formula for constructing the
iteration schemes for p > 1.
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5.1. Case p = 1

For p = 1, function a drops out of eq. (15) and we have
a degenerate case. Eqs. (14)-(16) now have the form,

And identity (19) becomes,

Since no solution exists for 77 = 0 or oc, we consider
only 0 < q < oc. In this case if we choose

then cx obtained by solving eq. (31 ) with boundary con-
ditions in (33) must satisfy constraint (9) automatically.
This observation leads to an inverse approach to solve
the problem for p = 1. In other words, for a given A we
determine u and a by solving (31 )-(33) with q calculated
from (34). This will establish a relationship between 7]
and the optimum eigenvalue A, which in turn will en-
able us to find A for a given 7] and hence solve the real
optimization problem inversely.
To develop a successive iteration scheme, we formally

integrate (31) and (32) with boundary conditions (33).
Application of formulas (28) and (29) leads to,

After application of (34), the second equation of (33) can
be replaced by,

Based on eqs. (35)-(37), the iteration scheme can be
outlined as follows,

1. For a given A, select initial u’(0), Mo(0. and o:o(ç).
2. Update ~r.c2 according to:

3. Update ai according to:

4. Update u’(O) according to:

5. If a given accuracy is not satisfied, go back to
Step 2.

5.2. Case p > I and 77 = 0

Since the singularity cannot be dealt with directly in
numeric computations, we introduce the following two
new functions for ~c and u&dquo;, respectively:

where 7~ is the singularity of zc at ~ = 1 determined
from (24). Both f and z are regular over the entire inter-
val 0 < ~ < 1. It is easy to show that

In terms of f and z, function Øu can be rewritten as,

and hence according to constraint (9) parameter Q be-
comes,

By formal integration of (38) and after application
of (28), we get,
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Note that the second expression of f (~) removes the
pseudosingularity of the integrand at ~ = 0. Substitution
of (38) into (30) gives the following equation for z:

where s is the sign of the denominator. The expres-
sion for ~c’(0) can be found from boundary condition
aPu&dquo;(0) = 0 as,

where

Now the scheme for successive iterations can be pre-
sented as follows,

1. Select initial fa(0) and zo(~).
2. Update h(O according to (42) by using f/(0) and

~(0.
3. Update §a(fl) according to (40) by using fi+~(~) and

~(0.
4. Update z2(~) according to (43) by using and

Oi+i(~).
5. Update fz(0) according to (44) and (45) by using

zi+i (~) and 4i+ 1 (I>.
6. If a given accuracy is not satisfied, go back to Step

2.

Once f and z have been obtained for a given accuracy,
one can find parameter /3 from (41). Then the optimum
eigenvalue A, function Øu, and the optimum cx can be ob-
tained according to (18), (40), and (17), respectively. The
linear dimension of the beam of the optimum manipulator
is Q;’/P(0.

5.3. Case p > 1 and q 7~ 0

In this case, we only need to take care of the singular-
ity of u at ~ = 1. To this end, we introduce two new
functions by,

Again, k is the singularity of u at ~ = 1 determined

from (24). Both ,f and z are regular over the entire inter-
val0<~< 1, and

In terms of f and z, function Øu and parameter Q can
be rewritten as, 

.

From eqs. (46), (28), and (30) we get,

where s is the sign of the denominator. From the second
equation of boundary conditions (16) we find,

Now the scheme for successive iterations can be specified
as follows:

1. Select an initial ,Qa and an initial zo(~).
2. Update fi(~) according to (49) and (51) by using /3i

and ~(0.
3. Update <~(0 according to (48) by using ~+i(0 and

~(0.
4. Update zi(~) according to (50) by using fHI (Ç) and
ØH (~)-

5. Update 0, according to (48) by using fz+1(~) and
zi+i (~)-

6. If a given accuracy is not satisfied, go back to Step
2.

Once /3, f , and z have been determined within the
specified accuracy, one can find the optimum eigenvalue
A, function Øu, and then the optimum a, according to
( 18), (48), and (17), respectively.
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Table 1. Ratio of ~/~/~~ for Various Values of q (p =
2, 3)

6. Numeric Examples and Discussions
Numeric analysis has been conducted using the successive
iteration schemes described in the previous section. We
present some of the results here for p = 2 and p = 3.
The successive iteration processes are controlled by the

following accuracy criteria,

and

for 77 = 0 and 77 ~ 0, respectively.
To simplify the numeric computation, we have approx-

imated all functions by splines by interpolating at N + 1
uniformly distributed discrete points on 0 _< ~ < 1.

Throughout the entire section, N = 10 and E = IO-4
are used in all computations. All numeric integrations are
carried out by using the recursive Simpson’s formula.

For 7] = 0, the iteration for f’(0) and z(fl) starts with
fo{0) _ -1 and zo(O = 1, and convergence is achieved
after 25 iterations for p = 2 and 26 for p = 3. For

17 j4 0, the iteration for ,Q and z(~) starts with Qo = 1

and zo(~) = 1. In this case, for large q (say, q = 100),
convergence is achieved after 34 iterations for p = 2 and

16 for p = 3. For small 77 (say, 0.5 < ~ < 1), the iteration

process converges very slowly (about 1000 iterations),
and for r~ < 0.5, it does not converge at all with the
initial guesses !30 = I and zo(~) = 1. This problem can be
solved by using the converged 3 and z(~) of the previous
value of Tj as the initial guesses of !30 and zo(~) for the
new q value, however, the speed of convergence is still

very slow and becomes extremely slow for 77 < 0.1.

For various 77 values, Table 1 summarizes the increase
in the fundamental frequency in comparison with that
of a flexible manipulator with a beam of uniform cross
section and the same length, volume, and material as the
optimum flexible manipulator.

Figure I illustrates the optimal linear dimension (e.g.,
radius of the cross sections) of the geometrically similar
cross sections (p = 2). Figure 2 gives the same results
for the rectangular cross sections of given uniform width

Fig. 1. Optimum tapering of geometrically similar cross
section (p = 2).

Fig. 2. Optimum tapering of rectangular cross section of
given width (p = 3).

(p = 3). Both figures indicate that the optimal cross sec-
tions shrink to zero at the clamped end as rl approaches
zero but obtain their maximum value there for rl > 0.5.

Physically, it is very clear that the mass concentration
near the clamped end would increase the vibration fre-
quency of a flexible manipulator.

Figure 3 presents the relationship between the funda-
mental frequency ~ and hub inertia 71 for an optimal
flexible manipulator. The dashed curve in the figure is the
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Fig. 3. Fundamental frequencies vs. hub inertia para-
meter 77 (p = 2,3).

result obtained from eq. (3) for the corresponding manip-
ulator with a beam of uniform cross section. From those

curves, one can find that the optimal fundamental fre-
quency of a flexible manipulator is sensitive with respect
to the change in the hub inertia for small 77 (ri < 0.2).
The increase in the fundamental frequency achieved

through the optimum design is depicted in Figure 4.
Clearly, the increment decreases as hub inertia de-
creases.

7. Sensitivity Analysis of Optimal
Fundamental Frequencies

To obtain some useful information on the machining
allowance for making an optimum manipulator, we must
know the effect of small changes in the hub inertia on
the value of the optimal fundamental frequency. To this
end, we introduce an index to measure the sensitivity of
the optimal frequency with respect to the variation of hub
inertia 71.
From eq. (6), the change of c.v2 due to variations in EJ,

pA, and IH can be found as

Note that although 6(EI), b(pA), and 61H cause a corre-
sponding variation bv in v, 6v will not affect the value of

Fig. 4. Ratio of VAIA, vs. hub inertia parameter 77 (p =
2, 3).

cJ, since obtains its minimum value at v. This is why
we do not need to consider bv in expression (52). For the
optimal frequency, since both a and u make A achieve
its extremal value, their variations around the optimal
solution will not change the value of A. Hence eq. (52)
becomes

Define a sensitivity index of A with respect to 77 by,

Clearly, -1 < S~ < 0, and thus the optimal frequency
is not very sensitive to the hub inertia variation. Table 2

lists the value of the sensitivity index for various q. Note
that S~ = 0 for 17 = oo, not -1, as one may have ex-
pected from eq. (54). This can be verified from identity
(19). As 77 approaches oo, this identity will take the same
form as that of eq. (21). Hence from (19), 7~/(0)~ ap-
proaches zero as q goes to oo, and accordingly, S~ = 0
for q = oo.

Figure 5 presents the S~-versus-r~ curve. Clearly, the
optimal fundamental frequency is more sensitive to the
variation of hub inertia when q is small. As illustrated

in Figure 5A, S1J varies .dramatically in the range of 0 <
q < 0.25.
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Table 2. Sensitivity Index Sp for Various Values of 71
(p = 2, 3)

Fig. 5. Sensitivity index .5.~ vs. hub inertia parameter 77
(p=2,3).

8. Conclusion

The problem of optimum shape design of a flexible ma-
nipulator has been formulated and solved by the suc-
cessive iteration schemes. A substantial increase in the
fundamental frequency has been found in the numeric
analyses. This will enable the flexible manipulator to
move faster without causing serious vibration problems at
its end point, thus improving the position precision and
productivity. Sensitivity analysis has indicated that the
optimal frequency is not very sensitive to the variation in
hub inertia.

As the numeric results have indicated, the optimal
beam tapering can lead to zero-area cross sections. This
situation may not be allowed in most applications and
can be remedied by imposing a positive lower bound
on the shape function. Additional requirements, such as
an upper bound, can also be introduced into the prob-
lem formulation. These constraints, however, will make

analytical analysis extremely difficult, if not impossible,
and some numeric optimization method must be used
to find the optimum design. Some initial results along
this direction have been recently obtained (Wang and
Russell 1992). New results on the dual optimum design

problem of finding the minimum-weight robot arm for a
specified fundamental frequency are given in Wang and
Russell (1993).
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