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Doubly Coprime Fractional Representations of 
Generalized Dynamical Systems 

FE1 YUE WANG AND MARK J. BALAS 

Abstract-Explicit formulas for doubly coprime fractional representa- 
tions of the transfer matrix of a generalized dynamical system are given in 
terms of a stabilizable and detectable state-space realization of the 
transfer matrix. These formulas establish a possible way to use the 
fractional representation approach in the synthesis of generalized dynam- 
ical systems. 

I. INTRODUCTION 

Both the fractional representation approach and the generalized 
dynamical system theory have received a great deal of attention over the 
past few years (see [2], [5], [6], and the references therein). It has been 
shown that the fractional representation approach is a powerful tool in the 
analysis and synthesis of linear feedback systems. A connection between 
state-space and doubly coprime fractional representations has been given 
recently in [3] by Nett, Jacobson, and Balas. However, little has been 
done to apply this powerful method to the corresponding problems in 
generalized dynamical systems. In this note we extend the result in [3] to 
generalized dynamical systems. This extension establishes a way to use 
the fractional representations for generalized dynamical systems. 

11. PRELIMINARIES 

Let Q C C denote any closed superset of the closed right-half complex 
plane which is symmetric with respect to the real axis. Let H denote the 
ring of proper rational functions which are analytic in Q. A rational matrix 
X E H(s)P"" is said to be Q-stable if it has entries in H. 

A pair of real matrices (E,  A )  is said to be Q-Hurwitz if matrix (SE - 
A ) - I exists and is Q-stable. A triple of real matrices ( E ,  A ,  B )  E R" X n  

x R"'" x RnX" is said to be Q-stabilizable if there exists a K E R""" 
such that ( E ,  A - B K )  is Q-Hurwitz. Similarly, a triple of real matrices 
(C, E ,  A )  E RPx" X R"'" X R"'" is said to be Q-detectable if there 
exists a matrix F E RnXP such that ( E ,  A - FC) is Q-Hurwitz. 

III. MAIN RESULTS 

Consider a generalized dynamical system described by the equations 

EX=Ax+Bu, (1) 

y = c x  (2) 

where E ,  A E R n X " ,  B E R""", C E RPxn are real matrices. As done 
by Rosenbrock [4] we henceforth make the standard assumption that IsE 
- A I + 0. The transfer matrix of the system is C(s) = C(sE - 
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A )  - 'B.  Our objective is to derive the doubly coprime factorizations of 
G(s).  The factorizations obtained are given in the following theorems. 

Theorem 1: Given the system (l), (2), suppose the triples ( E ,  A ,  B ) ,  
(C, E,  A )  are Q-stabilizable and detectable, respectively. Select matrices 

- K E R m X " ,  F E RnXP such that both (E,  A -- B K )  and ( E ,  A 
are Q-Hurwitz. Define 

N ( S )  = CH p I B ,  D( S )  = I - KH <- I B 

U ( S ) =  K H i ' F ,  V ( S )  = I  + K H i ' B  

N ( s ) =  C H i ' B ,  D ( s ) = I -  CHoIF 

U ( S ) =  KH; 'F ,  V ( S ) =  I +  C H ; ' F  

where 

HC(s )  = H ( s ) + B K ,  H ~ ( s ) =  H ( s ) +  FC, H ( s ) = s E - A  

then: 
1) all eight matrices described by (3)-(6) are Q-stable; 
2) D(s)  and D(s)  are nonsingular; 
3 )  G(s) = N(s)D(s) - l  = D(s)-IN(s); 
4) 

Remarks: The above theorem is a straightforward extension of the 
theorem given in [3] where E = I ,  i.e., the normal dynamical system was 
considered. As in [3], this result is readily extended to the case G(s )  = 
C(sE - A ) - ' B  + W, where W E HPx" by: 1) adding WD(s)  to the 
expression for N ( s ) ;  2) adding D(s )  W to the expression for m(s); 3) 
subtracting U(s )  W from the expression for V ( s ) ;  and 4) subtracting 
WO@) from the expression for v(s) .  

Proof: 
i) Follows immediately from the definition of an Q-Hurwitz pair of 

ii) Consider equations 
matrices. 

D(S)=l-KH~'B=l-K(H+BK)~'B 

= ( I  + K H - ' B )  - '  
and 

I H, 1 = I H +  BK I = I H I I I +  H - ' B K  I 

= 1 HI I I +  BKH-  ' I = I HI 1 I + KH - ' B  1 .  
It follows that 

which indicates that ID(s)I + 0. 
Similarly, one shows (D(s)I = IH(s)/H,,(s)I + 0. 
iii) Write 

N ( s )  D ( s )  = CHc- I B( I - KH;  ' B ) -  I 

= C H c  ( I  - BKH, I )  - 'B 

= C ( (  I - BKH; ' ) H,) B 

= C (  H,  - B K )  

= C H -  ' B = G ( s )  

' B 

the matrix identity B ( I  - A B ) - '  = ( I  - B A ) - ' B  is used in the above 
second step. 

In a similar fashion, one shows G(s) = D(s)- 'N(s) .  
iv) We only need to verify three equalities, the fourth being contained 

oO18-9286/89/0700-0733$01 .oO 0 1989 IEEE 

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 23, 2009 at 23:43 from IEEE Xplore.  Restrictions apply.



734 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34, NO. 7, JULY 1989 

The Explicit Structure of Inner Matrices and Its 
Application in H”-Optimization 

= K H ,  ‘( FCH 

= I + KHo ‘ (FC + H, - Ho - B K )  H ; ‘  B 

= I + KHo ‘ ( FC + BK - FC - B K ) H c ‘  B 

= I .  

B )  + I + KH 0 ‘  B - K H ,  ‘ B - K H ,  ’ BKH; ’ B 

Also 

V ( s )  U ( s )  = ( I +  K H , ’ B ) ( K H ; ’ F )  

= K ( I + H 0 ’ B K )  H‘: ’ F 

= K H ,  ‘ ( Ho + B K )  H ;  ’ F 

= KH;  ‘ ( H, + FC)  H ;  ‘ F 

= KH 0‘ ( I  + FCH )F  

= K H , ’ F ( I +  CHF‘F) 

= U ( s )  P(s). 0 

Finally, one shows N(s )o ( s )  + D(s) P(s) = Z by manipulations similar 
to those above. 

The next two results were motivated by the state and state derivative 
feedback U = K l x  - K2x. 

Theorem 2.a: Suppose there exist matrices K I ,  K 2  E R m X n ,  F E 
Rnxp such that: 1) matrix E + BK2 i s  nonsingular; 2) ( E  + BK,,  A - 
B K , )  and ( E ,  A - FC) are 0-Hurwitz; 3) 1ims+” K 2 ( s E  - A + 
FC)-’B = 0 and Iims-” K2(sE - A + F C ) - I F  = 0. Then Theorem 1 
still holds if one replaces K in the expression (3)-(7) by K I  + sK2.  

Remarks: The condition 1) in the above theorem is the necessary and 
sufficient condition for the generalized dynamical system (1) to be 
normalizable [a]. Conditions 1) and 2) are equivalent to all uncontrollable 
modes of ( E ,  A ,  B) lying in C - 0 [I], (81. Condition 3) is satisfied 
when E is nonsingular (i.e., the normal dynamical system). 

The proof of the above theorem is entirely analogous to that of 
The0re.n 1. 

The following result is dual to Theorem 2.a. 
Theorem 2.b: Suppose there exist matrices K E R m x n ,  F , ,  F2 E 

RnXP such that: 1) ( E ,  A - B K )  and ( E + F2C, A - F I C )  are 0- 
Hurwitz; 2) matrix E + F2C is nonsingular; and 3) 1ims-- C ( s E  - A + 
BK)-IF2 = 0 and Iims-” K ( s E  - A + B K ) - ’ F 2  = 0. Then Theorem 
1 still holds if one replaces F i n  the expression (3)-(7) by Fl + sFz. 

U. SHAKED 

Abstract-A very simple expression for inner matrices is obtained 
which allows a detailed investigation of their structure. This expression is 
used to solve the H”-interpolation problem in a most simple way. A 
solution to this problem is obtained explicitly in terms of the interpolation 
parameters without solving any equation. It is found that the resulting 
solution encounters a reduction in its order at the critical point, and the 
characteristics of the resulting reduced-order solution are investigated. 
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I. INTRODUCTION 

One of the most important computational steps in the solution of H”- 
minimization problems in control theory is the derivation of inner 
matrices. These matrices are, in a sense, extensions of the single-input, 
single-output, all-pass networks and the calculation problem in the H”- 
minimization context is to find such an inner that satisfies given 
interpolation conditions [I]. These inners are also used in circuit theory 
[2], [3] and in the problems of LQ stabilization [4] and LQ optimal 
tracking [5]. 

Two main approaches have been suggested for solving the inners’ 
interpolation problem. The first is the classical function-theoretic ap- 
proach that is based on the Pick and Nevanlinna theory [6]. This approach 
has been extended to the multivariable case by [7] and [8] and recently by 
[9], where the interpolation condition is imposed on some given directions 
instead of requiring full rank matrix matching [7]. The second approach is 
based on the Hankel-norm approximation technique [lo]-[ 121. Although 
this state-space approach is computationally effective, it lacks the 
structural simplicity and the physical insight that can be gained by the first 
approach. 

The problem with the first approach is, however, that even if one uses 
the directional interpolation method of [9], which resolves the overdeter- 
mination that is achieved by the matrix Pick-Nevanlinna method of [7] 
and applies a simpler calculation procedure, the obtained results are still 
rather complicated. Since they are derived by using the Schur-Nevanlinna 
algorithm, these results cannot be expressed in closed form and the direct 
effect of the elementary parameters of the interpolation problem on the 
structure of the resulting inner cannot be explicitly obtained. 

In the present note, we introduce a state-space approach that solves the 
H”-optimization problem via the directional interpolation problem of [9]. 
Unlike [9], the results for the inner matrices will be found in closed-form, 
explicitly in terms of the interpolation directions, without using any 
iterative algorithm. These results will be obtained by a simple substitution 
of the problem parameters. 

The motivation to this approach is the result that is obtained in the LQ 
stabilization problem, where it is recluired to stabilize an unstable plant 
without putting any weight on the system states [4]. It is found there that 
the return difference matrix of the optimal LQ closed-loop control scheme 
is an inner. This inner possesses a very simple structure whose parameters 
are the system elementary matrices and the corresponding Kalman gain 
matrix. Based on this result we introduce a general approach to the H”- 
interpolation problem which obviates the need for solving Riccati or 
Lyapunov type equations. By this approach we find necessary and 
sufficient conditions for the existence of a solution to the Ha-interpolation 
problem and we derive a simple explicit expression for the resulting inner 
matrix. 

The fundamental H”-optimization is formulated in Section I1 where 
the interpolation requirements on the inner matrix are derived. The 
structure of this matrix is investigated in Section 111, where an expression 
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