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ABSTRACT 

 
Many image retrieval systems adopt the bag-of-words model 
and rely on matching of local descriptors. However, these 
descriptors of keypoints, such as SIFT, may lead to false 
matches, since they do not consider the contextual 
information of the keypoints. In this paper, we incorporate 
the cues of meaningful regions where local descriptors are 
extracted. We describe a matching region estimation (MRE) 
method to find appropriate matching regions for local 
descriptor matching pairs. Then the region matching quality 
is evaluated and the true matched regions will enhance the 
similarity of local descriptors. Consequently, the image retr-
ieval accuracy can be improved. Extensive experiments on 
benchmark datasets show the effectiveness of our method 
and our result compares favorably with the state-of-the-art. 
 

Index Terms— matching region estimation, similarity 
enhancing, fisher vector, regional cues, image retrieval  
 

1. INTRODUCTION 
 
This paper considers the task of image and object retrieval. 
Image retrieval serves as an important basis in various 
applications such as personal photo search [1], location 
recognition [2,3], partial-duplicate search [4], 3D reconstru-
ction [5] and product recognition [6]. 

Most image retrieval systems are based on matching of 
local descriptors, such as SIFT [7] and its variant [8]. Bag-
of-words (BOW) model is adopted to achieve fast descriptor 
matching [9]. Local descriptors are quantized into visual 
words and inverted index is used for efficient retrieval. 
Basically, local descriptors are matched if they are assigned 
to the same word. Then the similarity between two images 
can be expressed by aggregating the similarities between the 
matched local descriptors. However, the coarse quantization 
often leads to false matches. Many efforts have been made to 
improve this seminal work. Hamming Embedding (HE) 
exploits a binary representation of local descriptors for prec-
ise matching [10]. Multiple assignment or soft assignment is 
adopted to alleviate quantization error [10,11]. Post-
processing techniques such as re-ranking [12-14] and query 
expansion [15] also improve the accuracy. In this paper, we 
focus on improving initial results without post-processing. 

 
(a) 

 
(b) 

Fig.1. An example of HE based image retrieval. The left is the 
query image. (a) An irrelevant image with a high matching 
score; (b) A relevant image, but its score is lower than that of 
(a). All the matching SIFTs in (b) are extracted from the same 
objects (yellow rectangles), so they deserve higher score. 
 

SIFT is widely used due to its discriminative power, but it 
may cause false matches since SIFT only describes the 
gradient distribution of local patches, ignoring the regional 
information around the keypoints (Fig.1). Some methods 
have been proposed to provide cues of regions. Spatial 
features in the nearby region are extracted and used to 
measure the spatial consistency of regions [16, 17]. The 
region size is proportional to the scale of the keypoint, 
without considering the integrity of a meaningful region. 
The corresponding region pair may introduce noise due to 
image occlusions (Fig.2), so the cues of this region pair are 
insufficient.  

In this paper, we aim at finding the appropriate region pair 
to improve the SIFT matching accuracy, which helps to 
improve the image retrieval performance. Our contributions 
are three-fold. Firstly, a matching region estimation (MRE) 
algorithm is proposed to find appropriate matching regions 
for SIFT matching pairs. Then each SIFT pair will have a 
corresponding region pair. Secondly, we adopt Fisher vector 
(FV) [19] to describe the regions so that the similarity 
between regions can be measured. Specifically, we employ a 
binary version of FV for memory efficiency and fast compu- 
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ting. Finally, we introduce a similarity enhancing function to 
incorporate the cues of region pairs obtained from MRE. For 
a SIFT pair, if the corresponding region pair is a true match, 
e.g., the yellow rectangle pair in Fig.1(b), this SIFT pair is 
more likely to be a true match. So the region matching 
quality is evaluated and a true region match will enhance the 
SIFT-level similarity. After assembling some prior arts of 
image retrieval, we achieve state-of-the-art results. 

The rest of this paper is organized as follows. The MRE 
algorithm is proposed in Section 2. Binarized Fisher vector 
is shown in Section 3. Section 4 introduces the enhancing 
similarity function. We discuss the experimental results in 
Section 5. Final conclusions are in Section 6. 
 

2. MATCHING REGION ESTIMATION 
 
An image usually contains multiple semantic objects. Sever-
al methods have been proposed to find a number of possible 
regions which may include objects for the task of image 
classification or object detection [20, 21]. In this paper, we 
employ these regions as candidates and find the appropriate 
region pair among them for accurate SIFT matching. 

Considering the efficiency, we adopt spatial pyramid 
method to extracts manually defined regions. Each image I 
has L layers of regions. Denote the width and height of I as 
W and H. In the l-th layer, there are l lr r×  regions with a 
fixed size 

l l

W H
s s× , where lr  and ls  are the region density and 

scale parameters. Generally, more region proposals capture 
richer information. However, this is time consuming for 
feature extraction and region similarity measurement. We 
use L=4 layers, with fixed parameters 

1 2 3 4( , , , ) (1.0,1.5,2.0,3.0)s s s s = and 1 2 3 4( , , , ) (1,2,3,5)r r r r = , 
respectively for a good tradeoff in our experiments. Then we 
obtain 39 region proposals for every image. Each keypoint is 
located within several regions. These regions are candidates 
of this keypoint for the region matching step. 

We adopt the HE based image retrieval method proposed 
in [10] as our image retrieval criterion. x and y are two 
descriptors (SIFT) from query image Q and database image I. 
x and y match if they are assigned to the same visual word 
and the hamming distance between their binary signatures is 
lower than a threshold th . The matching score between x 
and y is given by: 

2( ( , )) ( ) ( ), ( , )( , )
0

   
                            

tw h idf if q q h hscore
otherwise

 ⋅ = ≤= 


x y x y x yx y  (1) 

where (.,.)h  is hamming distance function and idf is the 
inverse document frequency [9]. 2 2( ) exp( )w d d α= −  is a 
weighting function [22]. We denote as p the regional feature. 
For a matching pair of x and y, their relevant region feature 
sets are { , 1,...,m}x

tx p t ==  and { , 1,..., n}y
ty p t == , re- 

spectively, where m and n indicate the relevant region 
number. In order to find a region matching pair ( , )a c  which 

 
Fig.2. Illustration of the matching region estimation. Red 
circles are a SIFT matching pair based on hamming embedding. 
Some methods consider the cues of nearby regions whose size 
is proportional to scale of keypoints, marked in blue rectangles. 
They are not similar due to occlusions. In our MRE method, 
multiple region proposals (yellow rectangles) are extracted and 
only the region pair with the maximum feature similarity (solid 
yellow rectangles) is used for the next similarity enhancing step. 
 
are most similar and provide sufficient cues to verify the 
descriptor matching, we measure the similarity between the 
feature sets and find the pair with the maximum similarity 

,
( , ) arg max ( , ) ,,y yx x

i i yj ji j
xa c f p p p p= ∈ ∈  ,       (2) 

where (.,.)f is a similarity function. An example is shown in 
Fig.2. The SIFT match has several candidate regions mark-
ed by yellow rectangles. The two regions in solid yellow re-
ctangles have the maximum feature similarity. These two re-
gions are the appropriate pair for verifying the SIFT match. 

 
3. BINARIZED FISHER VECTOR 

 
In order to measure the similarity between regions, we 
should adopt a feature algorithm to describe the regions. 
Since we focus on an on-line retrieval system, a candidate 
algorithm should be robust and efficient computing. In this 
paper, we employ Fisher vector due to its good performance 
of describing global or regional information for both image 
classification and retrieval [19, 23].  

Let { , 1, , }tX t T= =x   be a set of D-dimensional 
samples whose generation process can be modeled by an 
independent probability density function uλ with 
parameters λ . [23] choose uλ to be a Gaussian Mixture 
Model (GMM) with N centroids: 1( ) ( )N

i iiu uλ ω== ∑x x  
and { , , , 1, , }i i i i Nλ ω= =μ σ  where iω , iμ and iσ are 
respectively the weight, mean vector and variance matrix of 
Gaussian iu . Let ( )t iγ be the soft assignment of tx to 
Gaussian i and X

ig  be the gradient with respect to the 
mean iμ  of Gaussian. We obtain X

ig after standard 
mathematical derivations: 

1

1 ( )( )
T

X t i
i t

ii t
i

T
γ

ω =

−
= ∑ x μg

σ
.                     (3) 
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The final Fisher vector X
λg is formed by concatenating the 

X
ig vectors for 1, ,i N=   and is therefore ND-dimensional. 

Here X  corresponds to SIFT descriptors extracted from an 
image, and the dimension is reduced from 128 to 64 by PCA. 
Since we have extracted SIFT for the system, no extra 
extraction process is needed. Fisher vector further undergoes 
a power normalization and finally is L2-normalized.  

Another reason for choosing FV is its efficient computing 
using an integral image of FVs. Since we partitioned the 
image into multiple regions, the time of generating features 
should be considered. FV is an aggregated representation, so 
we can split the image into many small grids and compute 

X
λg for each grid, then all the Fisher vectors of regions can 

be computed efficiently through the use of an integral image 
of unnormalized FVs. 

Given the requirement of memory efficiency and low 
computational cost, we transform the floating-point FV into 
a binary signature, 

1( )
0
     
          f

if r v thresb v
otherwise

 ≥= 


Τ
                    (4) 

where r is a PCA projection matrix of FV and thres is the 
median value. Both the projection matrix and median value 
are learned on an independent dataset. In our experiment, we 
use a 128-bit signature. The region similarity can be reflect-
ed by the hamming distance of binarized FV. Small distance 
means high similarity. Then Eq. 2 can be substituted by 

,
( , ) arg min ( ( ), ,( )),y yx x

f i f ij x yji j
a c h b p b p p p= ∈ ∈  .  (5) 

 
4. SIMILARITY ENHANCING FUNCTION 

 
We have found an appropriate region pair for each SIFT 
match. The matching quality of this region pair should be 
evaluated before contributing to the SIFT-level matching 
score. The similarity between these two regions can be 
reflected by the hamming distance ( ( ), ( ))x y

f f a f cd h b p b p= , 
where ( , )a c is calculated from Eq.5. For a true-positive 
region match, the corresponding fd should be small. In ord-
er to study the distribution of fd , we extracted relevant and 
irrelevant regions from the Holiday dataset [10] according to 
the ground truth. Fig.3 depicts the distribution of the 
hamming distance of the relevant and irrelevant regions. It 
can be seen that binarized FV hamming distance separates 
the true matching from the false matching regions quite well. 

For a SIFT matching pair based on HE, it is more likely to 
be a true match if the relative region pair has small hamming 
distance. So we consider a function that gives the SIFT pair 
a higher matching score when fd  is small. We have tested 
different kinds of functions and choose an exponential 
function to improve the SIFT match accuracy. The similarity 
enhancing function updates Eq. 1 as follows: 

5 5( , ) ( , ) (1 exp( ))fscore' score d θ= × + −x y x y         (6) 

 
Fig.3. The distribution of hamming distance between regions. 
 
whereθ is a parameter which will be discussed in Section 5. 
 

5. EXPERIMENTS 
 
5.1. Datasets and Implementation Details 
 
Datasets: We evaluate our method on the Holidays [10], 
Oxford5k [12], Paris [11] and Oxford105k [12] dataset. 
Evaluation measure is the mean Average Precision (mAP). 
In Oxford and Paris datasets, each query is a rectangular 
region delimiting the building in the image. 
Features: For Holidays, keypoints are detected by Hessian-
Affine detector [24]. For Oxford and Paris datasets, we use 
the modified Hessian-Affine detector which includes the 
gravity vector assumption [13]. We use SIFT descriptors 
and apply component-wise square rooting. The rootSIFT has 
proven to yield superior performance at no cost [8]. 
Vocabulary: We use the approximate k-means to train our 
visual vocabularies [25]. For Holidays, the vocabulary is 
trained on Flickr60k dataset [10]. Vocabulary used for 
Oxford is trained on Paris, and vice versa. We use a 
vocabulary of 65k visual words for Oxford and Paris 
following [26], and 20k for Holidays. 
Matching region estimation: In order to mark the relative 
regions, 38 extra bits are required in the inverted index for 
each keypoint. If this keypoint is located in one region, the 
corresponding bit is set to 1. In order to achieve efficient 
retrieval, all the region similarities between the query image 
and the dataset image, which is first visited when traversing 
the inverted lists, are computed and stored in the memory. 
Then it can be read fast when being visited next time. 
Multiple assignment and burstiness: We further combine 
our proposed method with multiple assignment (MA) which 
is applied on query side only [10]. In order to deal with the 
burstiness phenomenon, we also combine our approach with 
intra-image burstiness normalization (Burst) [22]. 
 
5.2. Parameter Analysis 
 
We tune the parameterθ of similarity enhancing function on 
the Holidays and Oxford5k datasets. The baseline system is 
HE with 64-bit binary signature.α and th in Eq.1 are 16 and 
22, respectively. We vary the parameter values and report 
the performance in Fig.4. 50θ =  provides good enhancing 
weights and no threshold is required in our similarity enhan- 
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Table 3. Performance comparison with state-of-the-art methods without post-processing. * denotes the case where 128-bit SIFT 
binary signature is used.  

Methods Ours Ours* [27]  [31] [13] [22] [30] [29] [18]  [26]*  [28]* 
Holiday 82.77 84.27 82.1 81.9 81.1 82.6 81.92 78.7 - 81.0 - 

Oxford5k 78.60 81.24 78.0 70.4 72.5 64.7 65.01 77.8 71.17 80.4 81.3 
Paris 75.82 77.78 73.6 - - - - 74.1 - 77.0 77.5 

Oxford105k 73.88 75.33 72.8 - 65.2 - - 72.9 62.34 75.0 - 
 

 
Fig.4. Impact of parameter θ on Holidays (left axis) and 
Oxford5k (right axis). The baseline method is based on HE. 
 
Table 1. Impact of the number of region proposals. 

Layer L = 1 L = 2 L = 3 L = 4 
Regions 1 5 14 39 
Holidays 78.52 78.64 78.81 78.80 
Oxford5k 70.01 70.51 70.87 71.10 

 
Table 2. Image retrieval results for different methods. We inte- 
grate all these methods and show the accuracy in the last row. 

Methods Holidays Oxford5k Paris Oxford105k 
HE 77.10 69.25 68.37 56.85 

HE+Proposed 78.80 71.10 70.21 62.43 
HE+MA+Burst 81.00 76.83 73.75 72.06 
HE+MA+Burst 

+Proposed 82.77 78.60 75.82 73.88 

 
cing function. We select 50θ = for all experiments.  

We also evaluate the performance with respect to the 
number of region proposals (Table 1). Note that each query 
has a specific object rectangle in Oxford and Paris, so the 
region proposals extraction is just processed on the database 
side. On the query side, only the region that has been 
specified is used. L=3 obtains the best performance on 
Holidays, but the difference between L=3 and L=4 is small. 
The reason is that many images in Holidays are consistent in 
appearance. More region proposals do not help to improve 
the accuracy on Holidays, but work well on Oxford5k. This 
is because images in Oxford dataset vary a lot in scales and 
viewpoint, and there are also occlusions and cluster in these 
images. More region proposals help to provide rich visual 
clues. So L=4 achieves better performance for Oxford. We 
use L=4 for the remaining experiments. 
 
5.3. Evaluation 
 
The effectiveness of our MRE algorithm and similarity enha- 

ncing function can be seen in Table 2. Our method brings 
improvements over the HE baseline approach for all the four 
datasets. Some prior arts, such as MA and Burst, have 
improved HE based image retrieval accuracy. Table 2 shows 
that our method brings consistent improvements over these 
two techniques. Finally, good performance is obtained. 

Table 3 summarizes the performance of our method 
combined with MA and Burst and compares to state of the 
art methods without post-processing. All the reported results 
adopt binary version of local descriptors for efficient 
memory and fast computing. Most of the methods use the 
default detector threshold value and obtain the same number 
of SIFT descriptors for a fair comparison. We achieve the 
best performance for Holidays, Paris and Oxford105k and 
fall slightly behind [28] on Oxford5k when using 128-bit 
SIFT signature.  
 
5.4. Time and Memory Cost 
 
The SIFT extraction and quantization takes an average of 
0.7s and 0.25s, respectively. The time spent in generating 
binarized FV of multiple regions is 0.05s on average, which 
is negligible. The average query time on Oxfor105k is 0.23s. 
In our MRE algorithm, extra 38 bits (L=1 bit is needless) are 
required for each keypoint to store the region relationship 
information in the inverted index. Every image needs 624 
bytes for storing binarized FV. Our method consumes extra 
360 Mb memory on the Oxford105k dataset when 
comparing to HE approach.  
 

6. CONCLUSIONS 
 
In this paper, we consider the contextual cues around 
keypoints to improve HE based image retrieval accuracy. 
Our MRE algorithm is proposed to find an appropriate 
region pair and the similarity enhancing function is used to 
enhance the similarity of true matched SIFTs. Experiments 
demonstrate the effectiveness of our methods and our results 
compare favorably to the state of the art approaches. 
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