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Abstract—In this paper, a data-based online learning algorithm
is established to solve the optimal control problem for weakly cou-
pled continuous-time nonlinear systems with completely unknown
dynamics. Using the weak coupling theory, we reformulate
the original problem into three reduced-order optimal control
problems. We establish an online model-free integral policy iter-
ation algorithm to solve the decoupled optimal control problems
without system dynamics. To implement the data-based online
learning algorithm, the actor-critic technique based on neural
networks and the least squares method are used. Two simulation
examples are given to verify the effectiveness of the developed
algorithm.

Index Terms—Adaptive dynamic programming (ADP), neural
networks (NNs), optimal control, policy iteration (PI), unknown
dynamics, weakly coupled systems.

I. INTRODUCTION

IN THE real world, many large-scale systems are naturally
weakly coupled, such as electrical networks, transportation

systems, chemical reactors, and power systems. For these real
physical systems, a traditional challenge is the optimal control
problem. A common approach is to split this large-scale opti-
mal control problem into some decoupled subproblems using
the decentralized control method [1], [2]. While the coupling
effects are usually neglected and the obtained control laws may
do not have ideal performance. In 1969, Kokotović et al. [3]
introduced the weakly coupled linear systems to the control
systems community. Since then, many theoretical aspects of
the optimal control problem for weakly coupled systems have
been studied. Gajić and Shen [4], [5] obtained the optimal
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control law through a decoupling transformation which leads
to solving two independent reduced-order optimal control
problems. For weakly coupled bilinear systems, the optimal
control problem has also been solved in a similar way [6], [7].
Jiang and Jiang [8] presented a new approach to decouple the
weakly coupled large-scale linear systems and accomplished
the stability analysis using the small-gain theory. The opti-
mal control law of the nonlinear systems can be obtained
by solving the Hamilton–Jacobi–Bellman (HJB) equations.
However, due to the intractable form of the HJB equations,
obtaining closed-form optimal controllers by directly solving
the HJB equations is difficult. By using the reduced-order
scheme and the successive Galerkin approximation (SGA), the
optimal control law for the weakly coupled nonlinear system
has been constructed based on the solutions of two indepen-
dent reduced-order HJB equations [9]. Carrillo et al. [10]
proposed a learning algorithm to derive the optimal control law
using a three-critics/four-actors approximator structure with
system dynamics. For large-scale real physical systems, it
is difficult to obtain the exact knowledge of system dynam-
ics. Therefore, a kind of data-based algorithms is needed
to solve the optimal control problem with unknown system
dynamics.

Dynamic programming provides a principled method for
determining optimal control laws for dynamical systems in
the case of completely known dynamics. While due to the
“curse of dimensionality” [11], it is often computationally
untenable to obtain the optimal control laws. Among the meth-
ods of solving optimal control problems, adaptive dynamic
programming (ADP), and reinforcement learning (RL) relax
the need for a complete and exact model of the dynamical
systems by using compact parameterized approximators. ADP
has received increasing attention due to its learning capabili-
ties [12]–[30]. RL is an effective computational method and
it can find the optimal policy interactively [31]–[34]. In the
existing literature of ADP-based and RL-based optimal con-
trol, either policy iteration (PI) or value iteration is utilized to
solve the HJB equation. Vrabie and Lewis [35] established an
integral RL algorithm to obtain direct adaptive optimal con-
trol for nonlinear continuous-time systems with partial system
dynamics. Liu et al. [36] developed an online synchronous
approximate optimal learning algorithm based on PI to solve
a multiplayer nonzero-sum game without the exact knowledge
of dynamical systems. Jiang and Jiang [37] presented a novel
PI method to solve optimal control problems for linear sys-
tems with completely unknown dynamics. Jiang and Jiang [38]
presented a novel method of global ADP for the adaptive
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optimal control of nonlinear polynomial systems to achieve
global asymptotic stability. Without the exact knowledge of
system dynamics, Lee et al. [39] derived a model-free integral
Q-learning approach for nonlinear system.

Although ADP-based and RL-based algorithms are widely
used, there are few related results which can be used to
tackle the optimal control problem for the weakly coupled
nonlinear systems. The novelty of this paper is that we estab-
lish a data-based learning algorithm to solve this problem
with completely unknown dynamics. By partitioning the HJB
equation, the original optimal control problem of the weakly
coupled systems is reformulated into three reduced-order opti-
mal control problems. We establish the model-free integral PI
algorithm to solve the decoupled optimal control problems
without system dynamics. The actor-critic technique based on
neural networks (NNs) and the least squares method are used
to implement the derived online learning algorithm.

The rest of this paper is organized as follows. In Section II,
the optimal control problem for the weakly coupled nonlinear
systems is described. In Section III, the original problem is
reformulated into three reduced-order optimal control prob-
lems and a model-free integral PI algorithm using online
learning manner with unknown system dynamics is estab-
lished. Two simulation examples are provided to demonstrate
the applicability of the established optimal control policy in
Section IV. In Section V, we conclude this paper with a few
remarks.

II. PROBLEM FORMULATION

In this paper, we consider the continuous-time nonlinear
system with weakly coupled structure[

ẋ1(t)
ẋ2(t)

]
=

[
f11(x1)+ εf12(x)
εf21(x)+ f22(x2)

]

+
[

g11(x1) εg12(x)
εg21(x) g22(x2)

][
u11(t)+ εu12(t)
εu21(t)+ u22(t)

]
(1)

where x1(t) ∈ R
n1 and x2(t) ∈ R

n2 are the system state vectors,
u11(t), u12(t) ∈ R

m1 and u21(t), u22(t) ∈ R
m2 are the control

input vectors, n1, n2, m1, and m2 are positive integers, and ε is
a small positive weak coupling parameter. Using the following
expressions:

x(t) =
[

x1(t)
x2(t)

]
, f (x) =

[
f11(x1)+ εf12(x)
εf21(x)+ f22(x2)

]

g(x) =
[

g11(x1) εg12(x)
εg21(x) g22(x2)

]
, u(t) =

[
u11(t)+ εu12(t)
εu21(t)+ u22(t)

]

the system dynamics (1) can be rewritten as

ẋ(t) = f (x)+ g(x)u(t). (2)

We assume that the system (2) is controllable, f : R
n → R

n

and g : R
n → R

n×m are Lipschitz continuous on the set
� ⊆ R

n, where n = n1+n2, m = m1+m2, and there must exist
a continuous control policy which asymptotically stabilizes the
system. Additionally, we let the following assumptions hold
through out this paper.

Assumption 1: The state vector x = 0 is the equilibrium of
the system.

Assumption 2: The functions f (·) and g(·) are differentiable
in their arguments, and f (0) = 0.

Assumption 3: The feedback control vector u(x) = 0
when x = 0.

According to the optimal control theory, we known that
solving the optimal control problem is equal to find the optimal
control policy u∗(x(t)) which minimizes the expenditure of
control effort. For this, we define the value function as

V(x(t)) =
∫ ∞

t

[
xT(τ )Qx(τ )+ uT(τ )Ru(τ )

]
dτ (3)

where Q ∈ R
n×n and R ∈ R

m×m are positive definite symmet-
ric matrices, and r(x, u) = xT(t)Qx(t)+uT(t)Ru(t) is the utility
function. The matrices Q and R have the following weakly
coupled structures:

Q =
[

Q1 εQε
εQT

ε Q2

]
, R =

[
R1 0
0 R2

]

where Q1 ∈ R
n1×n1 , Q2 ∈ R

n2×n2 , R1 ∈ R
m1×m1 , and

R2 ∈ R
m2×m2 are positive definite symmetric matrices, and

Qε ∈ R
n1×n2 . We know that the designed feedback control

policy u(x(t)) must not only stabilize the system on �, but
also guarantee that the value function (3) is finite. That is to
say, the control policy must be admissible.

Definition 1: A control policy u(x) is said to be admissible
with respect to (3) on �, denoted by u(x) ∈ �(�) [�(�) is the
set of all admissible control laws], if u(x) is continuous on �,
u(0) = 0, u(x) stabilizes the system (2) on �, and V(x(t)) is
finite ∀x0 ∈ �, where x0 is the initial system state [40].

According to the optimal control theory, the optimal value
function is defined as

V∗(x(t)) = min
u∈�(�)

∫ ∞

t

[
xT(τ )Qx(τ )+ uT(τ )Ru(τ )

]
dτ.

We define the Hamiltonian function of system (2) as

H(x, u,Vx) = VT
x

[
f (x)+ g(x)u

] + r(x, u) (4)

with V(0) = 0, and the term Vx = ∂V(x)/∂x denotes the partial
derivative of the value function with respect to the state. We
minimize the Hamiltonian function (4) to obtain the optimal
control policy

u∗(x) = arg min
u∈�(�)H(x, u,Vx) = −1

2
R−1gT(x)V∗

x . (5)

Using the optimal control policy u∗(x), the optimal value func-
tion V∗(x) can be described as the unique positive-definite
solution of the following HJB equation:

0 = V∗T
x

[
f (x)+ g(x)u∗(x)

] + r
(
x, u∗(x)

)
. (6)

Remark 1: In the class of nonlinear systems, the optimal
control scheme is based on the solution of the HJB equa-
tion (6). Because the solution of HJB equation for nonlinear
systems can hardly be found, the SGA method [41], [42] is
developed. However, the SGA method has the weakness that
the complexity of computation increases rapidly with the order
of the system, where the order indicates the dimension of a
system, i.e., n. Kim and Lim [9] established the optimal control
from two independent reduced-order HJB equations using the
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SGA method. Due to the difficulties when obtaining the exact
knowledge of the system dynamics, model-free methods are
more practical. Motivated by the weak coupling theory and [9],
we establish a novel model-free algorithm to derive the optimal
control based on three reduced-order HJB equations.

III. COMPUTATIONAL CONTROLLER DESIGN USING

DATA-BASED ONLINE LEARNING ALGORITHM

By partitioning the HJB equation, the original problem of
the weakly coupled systems is reformulated into three reduced-
order optimal control problems. We established the model-free
integral PI algorithm to solve the decoupled optimal control
problems without system dynamics. The actor-critic technique
based on NNs and the least squares method are used to
implement the derived online learning algorithm.

A. Problem Transformation

The value function (3) can be partitioned as

V(x(t)) = V1(x1(t))+ V2(x2(t))+ εVε(x(t))

where

V1(x1(t)) =
∫ ∞

t

[
xT

1 Q1x1 + uT
11R1u11

]
dτ

V2(x2(t)) =
∫ ∞

t

[
xT

2 Q2x2 + uT
22R2u22

]
dτ

Vε(x(t)) = 2
∫ ∞

t

[
xT

1 Qεx2 + uT
11R1u12 + uT

22R2u21

]
dτ

+ ε

∫ ∞

t

[
uT

12R1u12 + uT
21R2u21

]
dτ.

According to the reduced-order scheme [9], setting ε2 = 0,
εVε(x(t)) can be represented as

εVε(x(t)) = 2ε
∫ ∞

t

[
xT

1 Qεx2 + uT
11R1u12 + uT

22R2u21

]
dτ.

We give the following definitions to denote the partial deriva-
tives of the value functions V1(x1(t)), V2(x2(t)), and Vε(x(t))
with respect to the states x1 and x2, respectively:

V1x1 = ∂V1

∂x1
, V2x2 = ∂V2

∂x2

Vεx1 = ∂Vε
∂x1

, Vεx2 = ∂Vε
∂x2

.

Theorem 1: Partitioning the HJB equation (6), we get an
O(ε2) approximation in terms of three reduced-order decou-
pled HJB equations

0 = V∗T
1x1

[
f11(x1)+ g11(x1)u

∗
11(x1)

]
+ xT

1 Q1x1 + u∗T
11 (x1)R1u∗

11(x1)

0 = V∗T
2x2

[
f22(x2)+ g22(x2)u

∗
22(x2)

]
+ xT

2 Q2x2 + u∗T
22 (x2)R2u∗

22(x2)

0 = V∗T
1x1

f12(x)+ V∗T
2x2

f21(x)+ V∗T
εx1

f11(x1)

+ V∗T
εx2

f22(x2)+ 2xT
1 Qεx2

− 2u∗T
11 (x1)R1u∗

12(x)− 2u∗T
22 (x2)R2u∗

21(x).

The optimal control law (5) can be partitioned as

u∗
11(x1) = −1

2
R−1

1 gT
11(x1)V

∗
1x1

u∗
12(x) = −1

2
R−1

1

[
gT

11(x1)V
∗
εx1

+ gT
21(x)V

∗
2x2

]

u∗
21(x) = −1

2
R−1

2

[
gT

22(x2)V
∗
εx2

+ gT
12(x)V

∗
1x1

]

u∗
22(x2) = −1

2
R−1

2 gT
22(x2)V

∗
2x2
. (7)

Based on the optimal control theory, u∗
11(x1) can be seen as

the optimal control law for the subsystem 1

ẋ1(t) = f11(x1)+ g11(x1)u11(t)

with respect to the value function V1(x1). u∗
22(x2) can be seen

as the optimal control law for the subsystem 2

ẋ2(t) = f22(x2)+ g22(x2)u22(t)

with respect to the value function V2(x2). u∗
12(x) and u∗

21(x)
can be solved from the optimal control problem of the virtual
subsystem 3 with respect to the value function V∗

3 (x)

V∗
3 (x) = 2

∫ ∞

t

[
u∗T

11 (x1)R1u∗
12(x)+ u∗T

22 (x2)R2u∗
21(x)

− xT
1 Qεx2

]
dτ

where V∗
3 (x) = V∗

ε (x)− 4
∫ ∞

t xT
1 Qεx2dτ with V∗

3 (0) = 0.
Proof: Refer to the Appendix.
Remark 2: The original optimal control problem with the

HJB equation (6) is transformed into three reduced-order HJB
equations which should be solved without system dynamics.
In the following section, we will derive the data-based online
learning algorithm.

B. Model-Free Integral PI Algorithm

The optimal control formulation developed in (7) displays
an array of closed-form expressions, which obviates the need
to search for the optimal control law via optimization process.
To obtain the optimal control law, the existence of V∗(x) sat-
isfying the HJB equation (6) is the necessary and sufficient
condition. Instead of directly solving (6), we can successively
solve the nonlinear Lyapunov equation (4) and update the con-
trol policy based on (7) to obtain the solution V∗(x). This
successive approximation is known as the model-based PI
algorithm [42]–[45], and it is fundamental for the model-free
integral PI algorithm and we describe it as follows.

1) Model-Based PI Algorithm: Step 1: Give a small pos-
itive real number ε. Let i = 0 and start with an initial
admissible control policy u0(x).

Step 2 (Policy Evaluation): Based on the control policy
ui(x), solve Vi(x) from the following nonlinear Lyapunov
equation:

r
(
x, ui(x)

) + ViT
x

[
f (x)+ g(x)ui(x)

] = 0.

Step 3 (Policy Improvement): Update the control policy by

ui+1(x) = −1

2
R−1gT(x)Vi

x. (8)
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Step 4: If ‖ui+1(x)−ui(x)‖ ≤ ε, stop and obtain the approx-
imate optimal control policy ui+1(x); else, set i = i + 1 and
go to step 2.

In [41], it was shown that on the domain �, the cost func-
tion Vi(x) uniformly converges to V∗(x) with monotonicity
Vi+1(x) ≤ Vi(x), and the control policy ui(x) is admissible
and converges to u∗(x).

To deal with the optimal control problem without system
dynamics, we develop a data-based online learning algorithm
called model-free integral PI algorithm. Consider a nonlin-
ear system which is explored by a known bounded piecewise
continuous probing signal e(t)

ẋ(t) = f (x)+ g(x)[u(t)+ e(t)]

where

u(t)+ e(t) =
[

[u11(t)+ e1(t)] + εu12(t)
εu21(t)+ [u22(t)+ e2(t)]

]
.

Now, we consider the subsystem 1 with exploration signal

ẋ1(t) = f11(x1)+ g11(x1)[u11(t)+ e1(t)]. (9)

The derivative of the value function V1(x1(t)) with respect to
time along the trajectory of the explored system (9) can be
calculated as

V̇1(x1(t)) = VT
1x1

[
f11(x1)+ g11(x1)[u11(t)+ e1(t)]

]
= −r1(x1, u11(x1))+ VT

1x1
g11(x1)e1(t) (10)

where r1(x1, u11(x1)) = xT
1 Q1x1 + uT

11(x1)R1u11(x1) is the
utility function for the subsystem 1 given in (9).

We present a lemma which is essential to prove the
convergence of the model-free integral PI algorithm.

Lemma 1: Solving for V1(x1) in the following equation:

V1(x1(t + T))− V1(x1(t))

=
∫ t+T

t
VT

1x1
g11(x1)e1(τ )dτ −

∫ t+T

t
r1(x1, u11(x1))dτ

(11)

is equivalent to finding the solution of (10).
Proof: Since u11(x1) ∈ �1(�1) [�1(�1) is the set of all

admissible control laws for the subsystem 1], the value func-
tion V1(x1) is a Lyapunov function for the subsystem 1, and
it satisfies (10) with r1(x1, u11(x1)) > 0, x1 �= 0. We inte-
grate (10) over the interval [t, t+T] to obtain (11). This means
that the unique solution of (10), V1(x1), also satisfies (11). To
complete the proof, we show that (11) has a unique solution
by contradiction.

We assume that there exists another value function V̄1(x1)

which satisfies (11) with bounding condition V̄1(0) = 0.
This value function also satisfies ˙̄V1(x1) = −r1(x1, u11(x1))+
V̄T

1x1
g11(x1)e1(t). Subtracting this from (10), we obtain

0 =
(

d
[
V̄1(x1)− V1(x1)

]T

dx1

)
× [

ẋ1(t)− g11(x1)e1(t)
]

=
(

d
[
V̄1(x1)− V1(x1)

]T

dx1

)
× [

f11(x1)+ g11(x1)u11(x1)
]

Algorithm 1 Model-Free Integral PI Algorithm
1: Give a small positive real number ε. Let i = 0 and start

with an initial admissible control policy u0
11(x1).

2: Policy Evaluation and Improvement: Based on the con-
trol policy ui

11(x1), solve Vi
1(x1) and ui+1

11 (x1) from the
integral equation (13).

3: If ‖ui+1
11 (x1)− ui

11(x1)‖ ≤ ε, stop and obtain the approxi-
mate optimal control policy ui+1

11 for the subsystem 1; else,
set i = i + 1 and go to Step 2.

which must hold for any x1 on the system trajectories gener-
ated by the stabilizing policy u11(x1). According to the above
equation, we have V̄1(x1) = V1(x1)+ c. As this relation must
hold for x1(t) = 0, we know V̄1(0) = V1(0)+ c, c = 0. Thus,
V̄1(x1) = V1(x1), i.e., (11) has a unique solution which is
equal to the solution of (10). The proof is complete.

Based on the model-based PI algorithm and using the rep-
resentations Vi

1(x1(t)) and ui
11(x1), the policy improvement (8)

for the subsystem 1 can be written as

ui+1
11 (x1) = −1

2
R−1

1 gT
11(x1)V

i
1x1

(12)

where i is the iteration index. Integrating (10) from t to
t + T with a time period T > 0, and using the policy
improvement (12), we have

Vi
1(x1(t))− Vi

1(x1(t + T)) =
∫ t+T

t
r1
(
x1, ui

11(x1)
)
dτ

+ 2
∫ t+T

t

(
ui+1

11 (x1)
)T

R1e1(τ )dτ.

(13)

Since the dynamics f11(x1) and g11(x1) are not in the integral
equation (13), the integral PI algorithm can be implemented
using the data generated from the system instead of the sys-
tem dynamics. Thus, we obtain the model-free integral PI
algorithm (Algorithm 1).

Theorem 2: Give an initial admissible control policy
u0

11(x1) for the subsystem 1. Using the model-free integral PI
algorithm established in Algorithm 1, the value function and
the control law converge to the optimal value function and the
optimal control law as i → ∞, that is

Vi
1(x1) → V∗

1 (x1), ui
11(x1) → u∗

11(x1).

Proof: Based on the results in [35], we known that all the
subsequent control policies will be admissible during the algo-
rithm implementation if u0

11(x1) is admissible. Considering the
model-based PI algorithm and the formation process of (13),
the value function sequence generated in Algorithm 1 will con-
verge to the solution of the HJB equation. So we can conclude
that the value function Vi

1(x1) and the control policy ui
11(x1)

obtained from the proposed model-free integral PI algorithm
will converge to the solution of the optimal control problem
for the subsystem 1. The proof is complete.

To solve the optimal control policy u∗
22(x2) for the sub-

system 2, we can apply Algorithm 1 with some simply
replacements. Using the expressions of the optimal control
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laws u∗
11(x1) and u∗

22(x2), we derive the following equation
which will be used to solve u∗

12(x) and u∗
21(x):

Vi
3(x(t + T))− Vi

3(x(t)) = −2
∫ t+T

t
xT

1 Qεx2dτ

+ 2
∫ t+T

t

[
u∗T

11 (x1)R1ui
12(x)+ u∗T

22 (x2)R2ui
21(x)

]
dτ

+ 2
∫ t+T

t

[(
ui+1

12 (x)
)T

R1e1(τ )+
(

ui+1
21 (x)

)T
R2e2(τ )

]
dτ.

Using this formulation to replace the integral equation (13) in
Algorithm 1, we can calculate u∗

12(x) and u∗
21(x) iteratively.

C. Algorithm Implementation

For the subsystem 1, we represent Vi
1(x1) and ui+1

11 (x1) by
single-layer NNs on a compact set �1 as

Vi
1(x1) =

N1c∑
j=1

ωi
1jφ1j(x1)+ δi

1c(x1)

ui+1
11,p(x1) =

N1a∑
j=1

νi
1j,pψ1j(x1)+ δi

1a,p(x1)

where p = 1, 2, . . . ,m1, ωi
1j ∈ R, and νi

1j,p ∈ R are bounded
ideal weight parameters which will be determined by the
developed data-based integral PI algorithm, φ1j(x1) ∈ R and
ψ1j(x1) ∈ R, {φ1j}N1c

j=1 and {ψ1j}N1a
j=1 are the sequences of real-

valued activation functions which are linearly complete and
independent, and δi

1c(x1) ∈ R and δi
1a,p(x1) ∈ R are the

bounded NN approximation errors. Since the ideal weights
are unknown, the outputs of the critic network and the action
network are

V̂i
1(x1) =

N1c∑
j=1

ω̂i
1jφ1j(x1) = ω̂iT

1 φ1(x1) (14)

ûi+1
11,p(x1) =

N1a∑
j=1

ν̂i
1j,pψ1j(x1) = ν̂iT

1,pψ1(x1) (15)

where ω̂i
1 and ν̂i

1,p are the current estimated weights, and

φ1(x1) = [
φ11(x1), φ12(x1), . . . , φ1N1c(x1)

]T ∈ R
N1c

ψ1(x1) = [
ψ11(x1), ψ12(x1), . . . , ψ1N1a(x1)

]T ∈ R
N1a

ω̂i
1 =

[
ω̂i

11, ω̂
i
12, . . . , ω̂

i
1N1c

]T ∈ R
N1c

ν̂i
1,p =

[
ν̂i

11,p, ν̂
i
12,p, . . . , ν̂

i
1N1a,p

]T ∈ R
N1a

ν̂iT
1 =

[
ν̂i

1,1, ν̂
i
1,2, . . . , ν̂

i
1,m1

]T ∈ R
m1×N1a .

Define col{ν̂iT
1 } = [ν̂iT

1,1, ν̂
iT
1,2, . . . , ν̂

iT
1,m1

]T ∈ R
m1N1a . Then

(
ûi+1

11 (x1)
)T

R1e1(t) =
(
ν̂iT

1 ψ1(x1)
)T

R1e1(t)

= [ψ1(x1)⊗ (R1e1(t))]
Tcol

{
ν̂iT

1

}

where ⊗ represents the Kronecker product. Using the real out-
puts of the networks (14) and (15), the integral equation (13)

has the following general form:

λT
1k

[
ω̂i

1

col
{
ν̂iT

1

}
]

= θ1k (16)

with

θ1k =
∫ t+kT

t+(k−1)T

[
xT

1 Q1x1 + ûiT
11(x1)R1ûi

11(x1)
]
dτ

λ1k =
[
(φ1(x1(t + (k − 1)T))− φ1(x1(t + kT)))T

− 2
∫ t+kT

t+(k−1)T
(ψ1(x1)⊗ (R1e1(τ )))

Tdτ

]T

where T is the period of time to measure the data. Since
the general form (16) is a 1-D equation, we cannot find
the unique weight vector. The least squares method [39] can
be used to guarantee the uniqueness of the weights over
the compact set �1. For any positive integer K1, we denote
�1 = [λ11, λ12, . . . , λ1K1 ] and �1 = [θ11, θ12, . . . , θ1K1 ]T.
Then, we have the following K1-dimensional equation

�T
1

[
ω̂i

1

col
{
ν̂iT

1

}
]

= �1.

The weight vector can be solved by the following equation
when �T

1 has full column rank:[
ω̂i

1

col
{
ν̂iT

1

}
]

=
(
�1�

T
1

)−1
�1�1. (17)

Therefore, we need to make sure (�1�
T
1 )

−1 exists; that is to
say, the number of collected points K1 should satisfy K1 ≥
rank(�1) = N1c + m1N1a. By collecting enough data points
of the explored system (9), the weight parameters in (17) can
be obtained in real time. Using the same implementation pro-
cedures for the subsystem 1, we can solve the optimal control
problems of the subsystems 2 and 3.

IV. NUMERICAL SIMULATION

We provide two simulation examples in this section to
demonstrate the applicability of the established data-based
integral PI algorithm for weakly coupled nonlinear systems.

Example 1: In this example, we consider the system (1)
with the following parameters:

f11(x1) =
[ −1.93x2

11−1.394x11x12

]

f12(x) =
[

0
−4.26x21x22

]

f21(x) =
[ −1.3x2

12
0.95x11x21 − 1.03x12x22

]

f22(x2) =
[ −0.63x2

21
0.413x21 − 0.426x22

]

g11(x1) =
[−1.274x2

11
0

]
, g12(x) =

[
0

−6.5x22

]

g21(x) =
[

0.75x11
0

]
, g22(x2) =

[−0.718x21
0

]
.
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Fig. 1. Evolution of the action network 1’s weights.

In the above, x1 = [x11, x12]T ∈ R
2 and u11(x1) ∈ R are

the state and control vectors of the subsystem 1, and x2 =
[x21, x22]T ∈ R

2 and u22(x2) ∈ R are the state and control
vectors of the subsystem 2. The initial system state is x(0) =
[3.4, 2.7, 4.3, 1.2]T. The weak coupling parameter is equal to
ε = 0.05. The matrices Q and R are chosen as

Q1 = Q2 = R =
[

1 0
0 1

]
, Qε =

[
1 0
0 0.05

]
.

We assume that the exact knowledge of the system dynamics
is completely unknown during the simulation. We adopt the
integral PI algorithm to derive the optimal control law.

For the subsystem 1

ẋ1 =
[ −1.93x2

11−1.394x11x12

]
+

[−1.274x2
11

0

]
u11(x1)

the weight parameters of the critic network and the action
network are

ω̂1 = [
ω̂11, ω̂12, ω̂13

]T

ν̂1 = [
ν̂11, ν̂12

]T
.

The activation functions are chosen as

φ1(x1) =
[
x2

11, x11x12, x2
12

]T

ψ1(x1) =
[
x11x12, x2

12

]T
.

From the activation functions, we have N1c = 3 and N1a = 2
and we select K1 = 10 to conduct the simulation. The ini-
tial weights are chosen as ω̂1 = [0, 0, 0]T and ν̂1 = [2, 1]T.
During the online learning process, the time period T = 0.1[s]
and the exploration signal e1(t) = 3 sin(2π t)+ 3 cos(2π t) are
used. The least squares problem is solved after K1 samples are
acquired, thus the weights of the NNs are updated every 1[s].
The evolution of the action network 1’s weights is illustrated in
Fig. 1. After 52 iterations, the precision ε = 10−4 is achieved.
At time t = 52[s], ν̂∗

1 = [−1.2557,−0.1067]T.
For the subsystem 2, the activation functions are chosen as

φ2(x2) =
[
x2

21, x21x22, x2
22

]T

ψ2(x2) =
[
x21x22, x2

22

]T
.

Fig. 2. Evolution of the action network 2’s weights.

As N2c = 3 and N2a = 2, we conduct the simulation with
K2 = 10. The initial weights are chosen as ω̂2 = [0, 0, 0]T

and ν̂2 = [10, 2]T. During the online learning process,
the time period T = 0.1[s] and the exploration signal
e2(t) = 5 sin(2π t) + 5 cos(2π t) are used. The evolution of
the action network 2’s weights is illustrated in Fig. 2. After
50 iterations, the precision ε is achieved. At time t = 50[s],
ν̂∗

2 = [−9.9814, 0.0367]T.
For the virtual subsystem 3, the weight parameters of the

critic network and the action network are

ω̂3 = [
ω̂31, ω̂32, ω̂33, ω̂34, ω̂35, ω̂36

]T

ν̂3 = [
ν̂31, ν̂32, ν̂33, ν̂34

]T
.

The activation functions are chosen as

φ3(x) =
[
x2

11, x11x12, x2
12, x2

21, x21x22, x2
22

]T

ψ3(x) =
[
x11x12, x2

12, x21x22, x2
22

]T
.

From the activation functions, we have N3c = 6 and N3a = 4
and we select K3 = 10 to conduct the simulation. The
initial weights are chosen as ω̂3 = [0, 0, 0, 0, 0, 0]T and
ν̂3 = [0,−2, 2, 3]T. During the online learning process, the
time period T = 0.1[s] and the exploration signals e1(t) and
e2(t) are used. The least squares problem is solved after K3
samples are acquired, and the weights are updated every 1[s].
After 20 iterations, the precision ε = 10−4 is achieved. At
time t = 20[s], ν̂∗

3 = [0.3830, 0.0533,−0.0899,−0.9548]T.
According to the results in Section III, the optimal control

law of the weakly coupled system can be derived as

u∗(x) =
[

u∗
11(x1)+ εu∗

12(x)
εu∗

21(x)+ u∗
22(x2)

]
.

Using the optimal control u∗(x) to control the weakly cou-
pled system for 20[s], we obtain the evolution process of the
state trajectory and control trajectory shown in Figs. 3 and 4.
Obviously, these simulation results have verified the effective-
ness of the developed model-free integral PI algorithm.

Example 2: In this example, we use the established model-
free integral PI algorithm to balance a bicycle riding at a
constant speed on a horizontal surface. The steering column
of the bicycle is vertical, which means that the bicycle is not
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Fig. 3. State trajectory of the weakly coupled system under the derived
optimal control.

Fig. 4. Control trajectory of the weakly coupled system under the derived
optimal control.

Fig. 5. Schematic representation of the bicycle, as seen from behind (left)
and from the top (right).

self-stabilizing, but must be actively stabilized to prevent it
from falling [47]. This is a variant of a bicycle balancing and
riding problem which is widely used as a benchmark for RL
algorithms [46].

The schematic representation of the bicycle is provided in
Fig. 5, which includes the system state and control variables.
The system state variables are the roll angle ξ [rad] of the
bicycle measured from the vertical axis, the angle α[rad] of
the handlebar, and the respective angular velocities ξ̇ , α̇[rad/s].
The control variables are the displacement δ[m] of the bicycle-
rider common center of mass perpendicular to the plane of
the bicycle, and the torque τ [Nm] applied to the handlebar.

TABLE I
PARAMETERS OF THE BICYCLE

Therefore, the state vector is x = [ξ, ξ̇ , α, α̇]T, and the control
vector is u = [δ, τ ]T.

The dynamics of the bicycle can be represented as [46]

ξ̈ = 1

Jbc

[
sinβ(Mc + Mr)gh − cosβ

(
Jdcv

r
α̇

+ sign(α)
Mdrv2

l
(|sinα| + |tanα|)

)]

α̈ = 1

Jdl

(
τ − Jdvv

r
ξ̇

)

where

Jbc = 13

3
Mch2 + Mr(h + dCM)

2, Jdc = Mdr2

Jdv = 3

2
Mdr2, Jdl = 1

2
Mdr2, β = ξ + arctan

δ

h
.

Table I shows the values of the parameters in the bicycle
model. The meanings of these parameters are the same as
those in [46]. Using the notations x1 = [ξ, ξ̇ ]T, x2 = [α, α̇]T,
u1 = δ, and u2 = τ , we rewrite the bicycle dynamics as
⎡
⎢⎢⎣

ẋ11
ẋ12
ẋ21
ẋ22

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x12
4.62x11 + 0.054x21 + 0.011x22 + 4.62u1

x22
24.51x12 + 10.18u2

⎤
⎥⎥⎦.

Compared with the system (1) with weakly coupled
structure, we have the following system dynamics:

f11(x1) =
[

x12
4.62x11

]
, f12(x) =

[
0

0.54x21 + 0.11x22

]

f21(x) =
[

0
245.1x12

]
, f22(x2) =

[
x22
0

]

g11(x1) =
[

0
4.62

]
, g12(x) =

[
0
0

]

g21(x) =
[

0
0

]
, g22(x2) =

[
0

10.18

]
.

The initial system state is x(0) = [0.1,−0.1, 0.1,−0.1]T.
The weak coupling parameter is ε = 0.1. The matrices Q and
R are chosen as

Q1 = Q2 = R =
[

1 0
0 1

]
, Qε =

[
1 0
0 0.1

]
.

Assume that the exact knowledge of the bicycle is completely
unknown during the simulation. We adopt the model-free inte-
gral PI algorithm to solve the bicycle balancing and riding
problem.
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Fig. 6. Evolution of the action network 1’s weights.

Fig. 7. Evolution of the action network 2’s weights.

As in Example 1, for the subsystem 1 the weight parameters
of the critic network and the action network are

ω̂1 = [
ω̂11, ω̂12, ω̂13

]T

ν̂1 = [
ν̂11, ν̂12

]T
.

The activation functions are chosen as

φ1(x1) =
[
x2

11, x11x12, x2
12

]T

ψ1(x1) = [x11, x12]T.

From the activation functions, we have N1c = 3 and N1a = 2
and we select K1 = 10 to conduct the simulation. We set the
initial weights as ω̂1 = [0, 0, 0]T and ν̂1 = [−2,−1]T. During
the online learning process, the time period T = 0.1[s] and the
exploration signal e1(t) = 0.05 sin(2π t) + 0.05 cos(2π t) are
used. The least squares problem is solved after K1 samples
are acquired, and thus the weights of the NNs are updated
every 1[s]. The evolution of the action network 1’s weights is
illustrated in Fig. 6. After 4 iterations, the precision ε = 10−4

is achieved. At time t = 4[s], ν̂∗
1 = [−2.4142,−1.4301]T.

For the subsystem 2, the activation functions are chosen as

φ2(x2) =
[
x2

21, x21x22, x2
22

]T

ψ2(x2) = [x21, x22]T.

As N2c = 3 and N2a = 2, we conduct the simulation with
K2 = 10. The initial weights are chosen as ω̂2 = [0, 0, 0]T

Fig. 8. State trajectory of the bicycle under the derived optimal control.

Fig. 9. Control trajectory of the bicycle under the derived optimal control.

and ν̂2 = [−2,−1]T. During the online learning process, the
time period T = 0.1[s] and the exploration signal e2(t) =
0.05 sin(2π t) + 0.05 cos(2π t) are used. The evolution of the
action network 2’s weights is illustrated in Fig. 7. After 5
iterations, the precision ε = 10−4 is achieved. At time t = 5[s],
ν̂∗

2 = [−1.0000,−1.0955]T.
For the virtual subsystem 3, the weight parameters of the

critic network and the action network are

ω̂3 = [
ω̂31, ω̂32, ω̂33, ω̂34, ω̂35, ω̂36

]T

ν̂3 = [
ν̂31, ν̂32, ν̂33, ν̂34

]T
.

The activation functions are chosen as

φ3(x) =
[
x2

11, x11x12, x2
12, x2

21, x21x22, x2
22

]T

ψ3(x) = [x11, x12, x21, x22]T.

From the activation functions, we have N3c = 6 and N3a = 4
and we select K3 = 10 to conduct the simulation. The
initial weights are chosen as ω̂3 = [0, 0, 0, 0, 0, 0]T and
ν̂3 = [0,−2, 2, 3]T. During the online learning process,
the time period T = 0.1[s] and the exploration signals
e1(t) and e2(t) are used. The least squares problem is
solved after K3 samples are acquired, and the weights of
the NNs are updated every 1[s]. After 23 iterations, the
precision ε = 10−4 is achieved. At time t = 23[s], ν̂∗

3 =
[0.5420,−0.8267, 0.6952,−0.6516]T.
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0 =
[

V∗
1x1

+ εV∗
εx1

εV∗
εx2

+ V∗
2x2

]T([
f11(x1)+ εf12(x)
εf21(x)+ f22(x2)

]
+

[
g11(x1) εg12(x)
εg21(x) g22(x2)

][
u∗

11(x1)+ εu∗
12(x)

εu∗
21(x)+ u∗

22(x2)

])

+
[

x1
x2

]T[ Q1 εQε
εQε Q2

][
x1
x2

]
+

[
u∗

11(x1)+ εu∗
12(x)

εu∗
21(x)+ u∗

22(x2)

]T[R1 0
0 R2

][
u∗

11(x1)+ εu∗
12(x)

εu∗
21(x)+ u∗

22(x2)

]

=
[

V∗
1x1

+ εV∗
εx1

εV∗
εx2

+ V∗
2x2

]T
[

f11(x1)+ g11(x1)u∗
11(x1)+ ε

[
f12(x)+ g11(x1)u∗

12(x)+ g12(x)u∗
22(x2)

]
f22(x2)+ g22(x2)u∗

22(x2)+ ε
[

f21(x)+ g22(x2)u∗
21(x)+ g21(x)u∗

11(x1)
]
]

+ xT
1 Q1x1 + xT

2 Q2x2 + 2εxT
1 Qεx2 + u∗T

11 (x1)R1u∗
11(x1)+ u∗T

22 (x2)R2u∗
22(x2)

+ 2εu∗T
11 (x1)R1u∗

12(x)+ 2εu∗T
22 (x2)R2u∗

21(x)

= V∗T
1x1

[
f11(x1)+ g11(x1)u

∗
11(x1)

] + xT
1 Q1x1 + u∗T

11 (x1)R1u∗
11(x1)︸ ︷︷ ︸

HJB1

+ V∗T
2x2

[
f22(x2)+ g22(x2)u

∗
22(x2)

] + xT
2 Q2x2 + u∗T

22 (x2)R2u∗
22(x2)︸ ︷︷ ︸

HJB2

+ εV∗T
εx1

[
f11(x1)+ g11(x1)u

∗
11(x1)

] + εV∗T
1x1

[
f12(x)+ g11(x1)u

∗
12(x)+ g12(x)u

∗
22(x2)

]
+ εV∗T

εx2

[
f22(x2)+ g22(x2)u

∗
22(x2)

] + εV∗T
2x2

[
f21(x)+ g22(x2)u

∗
21(x)+ g21(x)u

∗
11(x1)

]
+ 2εxT

1 Qεx2 + 2εu∗T
11 (x1)R1u∗

12(x)+ 2εu∗T
22 (x2)R2u∗

21(x) (A1)

0 = V∗T
1x1

f12(x)+ V∗T
2x2

f21(x)+ V∗T
εx1

f11(x1)+ V∗T
εx2

f22(x2)+ 2xT
1 Qεx2 − 2u∗T

11 (x1)R1u∗
12(x)− 2u∗T

22 (x2)R2u∗
21(x)︸ ︷︷ ︸

HJB3

(A2)

u∗(x) = −1

2
R−1gT(x)V∗

x = −1

2

[
R1 0
0 R2

]−1[ g11(x1) εg12(x)
εg21(x) g22(x2)

]T[V∗
1x1

+ εV∗
εx1

εV∗
εx2

+ V∗
2x2

]

=
[

u∗
11(x1)+ εu∗

12(x)
εu∗

21(x)+ u∗
22(x2)

]
= −1

2

⎡
⎣R−1

1 gT
11(x1)V∗

1x1
+ εR−1

1

[
gT

11(x1)V∗
εx1

+ gT
21(x)V

∗
2x2

]
εR−1

2

[
gT

22(x2)V∗
εx2

+ gT
12(x)V

∗
1x1

]
+ R−1

2 gT
22(x2)V∗

2x2

⎤
⎦ (A3)

According to the results in Section III, the optimal control
law of the weakly coupled system can be derived as

u∗(x) =
[

u∗
11(x1)+ εu∗

12(x)
εu∗

21(x)+ u∗
22(x2)

]
.

Using the optimal control u∗(x) to control the weakly cou-
pled system for 20[s], we obtain the evolution process of the
state trajectory and control trajectory shown in Figs. 8 and 9.
Obviously, these simulation results have verified the effective-
ness of the developed model-free integral PI algorithm.

Remark 3: In Figs. 1 and 2, one weight parameter is largely
dominated by the other one. While in Figs. 6 and 7, we can find
that the weight parameters have the same order of magnitude.
Selecting different activation functions may result in different
converged weight vector.

V. CONCLUSION

In this paper, a data-based online learning algorithm for
weakly coupled nonlinear systems is established. The opti-
mal control law is derived by the optimal controllers of the
reduced-order subsystems. We use the model-free integral PI
algorithm with an exploration to solve the HJB equations
related to the subsystems. We use the actor-critic technique
and the least squares method to implement the constructed
algorithm. The effectiveness of the developed optimal control
law is demonstrated by two simulation examples.

APPENDIX

PROOF OF THEOREM 1

Using the notation

V∗
x =

[
V∗

1x1
+ εV∗

εx1

εV∗
εx2

+ V∗
2x2

]

and setting ε2 = 0, the HJB equation (6) can be rewritten
as (A1), shown at the top of the page, which consists of three
parts, i.e., HJB1, HJB2, and the last term which will be sim-
plified as HJB3 in (A2), shown at the top of the page. The
optimal control law u∗(x) can be calculated as (A3), shown at
the top of the page. Then we have the expressions of u∗

11(x1),
u∗

12(x), u∗
21(x), and u∗

22(x2) as in (7). According to the opti-
mal control theory, HJB1 = 0 is the HJB equation for the
subsystem 1

ẋ1(t) = f11(x1)+ g11(x1)u11(t)

and the optimal control law is u∗
11(x1) =

−(1/2)R−1
1 gT

11(x1)V∗
1x1

. HJB2 = 0 is the HJB equation
for the subsystem 2

ẋ2(t) = f22(x2)+ g22(x2)u22(t)

and the optimal control law is u∗
22(x2) =

−(1/2)R−1
2 gT

22(x2)V∗
2x2

.
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To simplify the last term in (A1) besides HJB1 and HJB2,
we give the following equations according to (A3):

V∗T
εx1

g11(x1)+ V∗T
2x2

g21(x) = −2u∗T
12 (x)R1

V∗T
εx2

g22(x2)+ V∗T
1x1

g12(x) = −2u∗T
21 (x)R2

V∗T
1x1

g11(x1) = −2u∗T
11 (x)R1

V∗T
2x2

g22(x1) = −2u∗T
22 (x)R2. (A4)

Based on (A4), we obtain HJB3 = 0 as (A2). To solve u∗
12(x)

and u∗
21(x) from HJB3, we integrate both sides of (A2) from

t to ∞, and obtain∫ ∞

t

[
V∗T

1x1
f12(x)+ V∗T

2x2
f21(x)+ V∗T

εx1
f11(x1)+ V∗T

εx2
f22(x2)

]
dτ

= 2
∫ ∞

t

[
u∗T

11 (x1)R1u∗
12(x)+ u∗T

22 (x2)R2u∗
21(x)− xT

1 Qεx2

]
dτ.

Using V∗
ε (x), we have

V∗
3 (x) =

∫ ∞

t

[
V∗T

1x1
f12(x)+ V∗T

2x2
f21(x)

+ V∗T
εx1

f11(x1)+ V∗T
εx2

f22(x2)
]
dτ

where V∗
3 (x) = V∗

ε (x)− 4
∫ ∞

t xT
1 Qεx2dτ with V∗

3 (0) = 0. The
proof is complete.
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