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Abstract- In this paper, we establish a neural-network-based 
online learning algorithm to solve the finite horizon linear 
quadratic regulator (FHLQR) problem for partially unkno� 
continuous-time systems. To solve the FHLQR problem with 

partially unknown system dynamics , we develop a time-varyin
.
g 

Riccati equation. A critic neural network is used to approxI
mate the value function and the online learning algorithm is 
established using the policy iteration technique to solve the time
varying Riccati equation. An integral policy iteration method 
and a tuning law are used when the algorithm is implemented 
without the knowledge of the system drift dynamics. We give a 
simulation example to show the effectiveness of this algorithm. 

1. INTRODUCTION 

T HE purpose of the optimal regulator is to obtain an 
optimal control law that minimizes the value function 

and moves the system states to the origin. The objective in 
finite horizon controller design is to seek a control law which 
satisfies the system demands over a specified time interval. In 
the field of optimal control theory [1], [2], the finite horizon 
liner quadratic regulator (FHLQR) is an important problem. 
The FHLQR problem tries to find a control law that not only 
minimizes a predefined value function, but also moves the 
states to the origin and satisfies a final condition constraint 
over a specified time interval. The standard solution of the 
optimal control law to the FHLQR problem can be obtained 
by solving a differential equation backward using the exact 
system dynamics and boundary conditions. This procedure 
is a kind of backward-time schemes which are not practical 
for real-time control and generally offline methods which 
require the system dynamics completely. An ideal FHLQR 
optimal control law using forward-in-time control design and 
partial knowledge of the system dynamics can overcome this 
weakness. 

Dynamic programming (DP) [3] provides a principled 
method for determining optimal control policies for dy
namic systems. Due to the nature of exhaustive search, DP 
is often computationally and it also requires the accurate 
system representation. Among the methods of solving the 
optimal control problem, adaptive dynamic programming 
(ADP) has received increasing attention owing to its learning 
and optimal capabilities [4]-[15]. Reinforcement learning 
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(RL) is another computational method and it can interac
tively find an optimal policy [18]-[21]. The ADP and RL 
schemes relax the need for a complete and accurate model 
of the process to be controlled in DP by using compact 
parameterized function representations whose parameters are 
adjusted through adaption. In the existing literatures of ADP
based optimal control, either policy iteration (PI) or value 
iteration is utilized to solve the Bellman equation or the 
Hamilton-Jcaobi-Bellman equation. Liu et al. [22] extended 
the PI algorithm to nonlinear optimal control problem with 
unknown dynamics and discounted cost function. Wang et 
al. [23] investigated a neural-network-based robust optimal 
control design for a class of uncertain nonlinear systems 
via ADP approach. Wang et al. established a novel strategy 
to design a robust controller for a class of continuous
time nonlinear systems with uncertainties in [24]. Vrabie 
and Lewis [25] derived an integral RL method to obtain 
direct adaptive optimal control for nonlinear input-affine 
continuous-time systems with partially unknown dynamics. 
Jiang and Jiang [26] presented a novel PI approach for 
continuous-time linear systems with completely unknown 
dynamics. Lee et al. [27], [28] presented an integral Q
learning algorithm for continuous-time systems without the 
exact knowledge of the system dynamics. 

Although ADP-based and RL-based algorithms are widely 
used to solve the infinite horizon optimal regulator problem, 
there are few results about the FHLQR problem. The FHLQR 
problem is more challenging since the solution is time
varying and a terminal constraint has to be satisfied. The 
novelty of this paper is that we establish an online learning 
algorithm to solve the FHLQR problem with partially un
known system dynamics. To obtain the optimal control law 
with partially unknown system dynamics, we develop a time
varying Riccati equation. Using the PI technique, we estab
lish an online learning algorithm to solve the time-varying 
Riccati equation. To implement this algorithm, a critic neural 
network (NN) is used to approximate the value function. 
An integral PI method and a tuning law are implemented 
to obtain the optimal control policy. The effectiveness of the 
optimal control law is demonstrated by a simulation example. 

The rest of this paper is organized as follows. In Section 
II, we present the FHLQR problem and its standard solution. 
In Section III, we establish an online learning algorithm 
using PI and NN to obtain the solution of the time-varying 
Riccati equation with partially unknown system dynamics. In 
Section IV, a simulation example is provided to illustrate the 
effectiveness of the derived optimal control law. In Section 
V, we conclude the paper with a few remarks. 



II. PROBLEM FORMULATION 

Consider the linear time-invariant continuous-time system 

x(t) = Ax(t) + B u(t) (1) 

where x(t) E �n is the system state vector, u(t) E �r is 
the control input vector, and the matrices A and B have 
appropriate dimensionalities. 

The objective of the FHLQR problem is to find the optimal 
control policy u*(t) to control the system (1) in such a way 
that the state x(t) goes to the origin as close as possible 
during the interval [ to, tf] with minimum expenditure of 
control effort. For this, we choose the value function as 

1 V(t) = 2xT(tf)Fx(tf) lit! 
+ - [x T (T)QX(T) + u T (T)Ru(T)] dT 2 t 

where t E [ to, tf]' tf is the fixed final time, F E �nxn, 
Q E �nxn and R E �rxr are positive definite symmetric 
matrices, and x T (t)Qx(t) + u T (t)Ru(t) is the utility func
tion. 

The standard solution of the optimal control u * (t) to the 
FHLQR problem is given as [1] 

III. THE ONLINE LEARNING ALGORITHM AND ITS 

IMPLEMENTATION 

In this section, we establish a NN-based online learning 
algorithm to obtain the solution of the FHLQR problem 
with partially unknown system dynamics. Compared with 
the infinite horizon problem, a time-varying Riccati equation 
is developed. The online algorithm consists of an online 
integral PI method and an online tuning law for different 
time intervals of the time-varying Riccati equation. 

For the system (1), we consider a value function with 
infinite horizon 

A(t) = - [XT(T)QX(T) + UT(T)R u(T)]dT . 1 100 
2 t (4) 

According to the optimal theory [1], the optimal control with 
respect to this value function is given by 

J-L*(t) = _R-1 BT Px*(t) (5) 

where P E �nxn is a constant positive definite symmetric 
matrix. P is the solution of the nonlinear matrix algebraic 
Riccati equation (ARE) 

Using the constant matrix P, the value function can be 
(2) represented in a quadratic form as 

where x*(t) is the optimal system state, P(t) can be obtained 
by solving the matrix differential Riccati equation (DRE), 

with the final condition P(tf) = F. 
Using the optimal state, the optimal value function V*(t) 

can be represented as 

1 V*(t) = 2x*T(t)p(t)x*(t). 

By solving the differential equation (3) backward using 
the boundary condition, we can obtain the standard solution 
of the FHLQR problem. Once the system dynamics and the 
value function are specified, we can independently compute 
P(t) before the system operates in the forward direction from 
its initial condition. 

Remark 1: The feedback part of the control input is 
calculated in a backward-time manner which is not practical 
for real-time control. The standard solution described in this 
section is a kind of offline methods which require the system 
dynamics completely. To obtain the time-varying control 
input online with partial knowledge of the system dynamics, 
we establish an online learning algorithm. 

Remark 2: We do not need the controllability condition 
on the system for solving the optimal feedback control. As 
long as we deal with a finite time system, the contribution 
of those uncontrollable states to the value function is still a 
finite quantity. 
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1 T -A(t) = 2x (t)Px(t). (7) 

Now we consider the relationship between the solution of 
the matrix DRE (3) and the solution of the matrix ARE (6). 
We make a simple time transformation T = t f - t. Then, in T 
scale we can consider the final time t f as the "starting time", 
P( t f) as the "initial condition", and P as the "steady-state 
solution" of the matrix DRE. As t f -+ 00, the "transient 
solution" is pushed to near t f which is at infinity. Then for 
the begining time interval, the matrix P(t) becomes a steady 
state, i.e., a constant matrix P which is the solution of the 
ARE (6), as shown in Fig. 1. 

P(t} = P 

P(t} 

t / P(tf} 

o 1 iC t 
�- - - -Steady-state Interval- - - -� - - - - -Transient Interval- - - -� tf 

r .... -+- - - - - - - -+ - - - - - - ---I 0 I tf I I 

Fig. 1. Interpretation of the Constant Matrix P. 

According to Fig. 1, the matrix P(t) in DRE becomes the 
constant matrix P during the steady-state interval. We give 



the following time-varying Riccati equation to solve P(t) 
during the interval [ to, t f], 

P(t) _ { P, t E [ to, tl) -
P(t), t E [ tl, tf] 

where tl is the terminal time of the steady-state interval. We 
will establish the online integral PI method to calculate the 
steady-state interval solution P and the online tuning law to 
solve the transient interval solution P(t). 

A. Steady-State Interval Solution 
In this subsection, we discuss the online integral PI method 

during the steady-state interval and its implementation. P is 
the solution of the ARE (6). To obviate the need for the 
complete knowledge of the system dynamics, the Integral 
Reinforcement Learning (IRL) algorithm [25] can be used 
to solve for ARE . The IRL is a PI method which uses an 
equivalent formulation of the Lyapunov equation that does 
not involve the system dynamics. Hence, it is central to the 
development of the online integral PI method for continuous
time systems. To obtain the IRL Bellman equation, note that 
for time interval D.. t > 0, the value function satisfies 

A(t) = A(t + D.. t) 
1 1t+�t + - [xT (T)QX (T) + U T (T)Ru(T)]dT. 2 t 

The representation (7) yields the IRL Bellman equation 

- n(n+l) 
Pij is the i-row j-column element of P, P E � 2 

is unknown bounded ideal weight parameters which will 
be determined by the established integral PI method, and 

X(t) E � n(n,+l) 
is the continuously differentiable activation 

functions. Since the ideal weights are unknown, the outputs 
of the critic NN is 

where fi is the current estimated weight vector and ci E � 
is the bounded NN approximation errors. 

Using the expression (9), the IRL Bellman equation (8) 
can be rewritten in a general form 

(10) 

with 

where the measurement time is from t+(k- l)D.. t to t+kD.. t, 
D.. t is the time interval. Since equation (10) is only a one
dimensional equation, we cannot guarantee the uniqueness of 
the solution. Similar to [27], we use the least-square-based 
method to solve the parameter vector over a compact set O. 
For any positive integral K, we denote <I> 

= ['lh, -zP2"'" -zPK] 
and e 

= [fh, e2, ... , eKF. Then, we have the following K
dimensional equation 

<I>T pi 
= 

e. 

(8) If <I> T has full column rank, the weight parameters can be 
solved by 

The last term of (8) is known as the integral reinforcement. 
Equation (8) which is derived from (4) and (5) plays an 

important role in relaxing the assumption of knowing the 
system dynamics, since A is not appear in the equation. 
It means that the algorithm can be implemented without 
knowing the system dynamic A, but the knowledge of B 
is still required. 

Remark 3: We solve the linear quadratic problem over 
infinite horizon to obtain the "steady-state solution" P in 
this subsection. The admissibility of control is required to 
guarantee the existence of P. SO an admissible control is 
needed to implement this online integral PI method. 

We will discuss the NN-based implementation of the 
established online integral PI method. A critic NN is used 
to approximate the value function. We assume that for the 
system, A(t) is represented on a compact set 0 by single
layer NN as 

1 T - 1 T A(t) = "2x(t) Px(t) = "2P X(t) 

where 

pT = [pn,P12, ... ,Pln,P2 2,P23,'" ,Pn-l,n,Pn n], 
X T (t) = [xi, 2 X1X2, . . .  , 2 X1Xn, x�, ... , 2Xn-1Xn, x�]. 
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(11) 

Therefore, we need to guarantee that the number of collected 
points K satisfies K ?: rank( <I» = 

n( n2+1) , which will make 
(<I><I>T) -l exist. The least squares problem in (11) can be 
solved in real time by collecting enough data points generated 
from the system. 

B. Transient Interval Solution 
In this subsection, we will derive an online tuning law to 

obtain the solution P(t) of the DRE with the final condition 
P(tf) = F during the time interval [ tl, tf] . We assume that 
the value function V(t) is represented by single-layer NN as 

1 1 V(t) = "2x(t)T P(t)x(t) = "2pT (t)X(t). 

We define the ideal time-varying weights of the critic net
work as 

where we omit the time t in the elements of P(t). 
When we consider the time-varying function P(t) for the 

Bellman equation (8), there is a residual error caused by the 
estimated value function. We assume that P(t) is a constant 



matrix during the time interval [ t, t + �t]. The residual error 
can be expressed as 

el (t) =X T (t + �t)P(t)x(t + �t) - x(t) T P(t)x(t) 

. t+.6.t 
+J t 

[XT(T)QX(T)+UT(T)Ru(T)]dT. 

By defining the expressions 

I
t+.6.t 

O(t) = 
t 

[xT(T)QX(T) + UT(T)Ru(T)] dT 

1jJ(t) =X(t) - X(t + �t), 

the residual error e 1 ( t) can be rewritten as 

Next, the terminal constraint P(tf) = F need to be 
satisfied. The constraint error is given as 

where 1 is defined as 

where li j is the element of the terminal constraint matrix. In 
order to minimize both the residual error and the constraint 
error, we give the following online parameters tuning law 

where the learning rate 0: satisfies 0 < 0: < 1, c is a 
predefined constant. 

Theorem 1: The parameters update law of the value func
tion is given by (12). Within the finite time interval [ tl' t f], 
there exists a positive constant learning rate 0 < 0: < 1 such 
that the value function parameter estimation error is bounded. 

Prool We consider the following definite Lyapunov func
tion candidate given as 

II(t) = pT (t)p(t) 

where p(t) = p(t) - p(t). Using this expression, we have 

el (t) = 1jJ T (t)p(t) - 1jJ T (t)fJ(t) = 1jJ T (t)p(t), 
e2(t) = 1 - [P(t) - p(t)] = 1 - p(t) + p(t). 

We define p(t + �t) = p(t) - p(t + �t) and have 

p(t + �t) = p(t) + p(t) - fJ(t + �t) 
_ 1jJ(t)el(t) e2(t) = p(t) - 0: 'ljJT(t)'ljJ(t) + 1 - 0: (1 + tf - W 
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Then using online parameters tuning law (12), first differ
ence of II(t) can be derived as 

�II(t) = pT (t + �t)p(t + �t) - pT (t)p(t) 

= -T(t)-(t) _ 20:PT(t)'ljJ(t)e1(t) 
_ 20: pT (t)e2 (t) 

p p 1jJT(t)1jJ(t)+1 ( l+tf - t)c 
2 1jJT(t)1jJ(t)ei(t) 2 eI(t)e2(t) + 0: ['ljJT(t)'ljJ(t) + 1 ]2 + 0: (1 + tf - t)2c 

2 2 'ljJT(t)el(t)e2(t) -T t - t + 0: [1jJT(t)1jJ(t)+I](I+tf - t)C- P ()p()  

< (1 ) [ 1jJ T (t)1jJ(t) + 1 ] -T(t) -(t) - - 0: - 0: 1jJT(t)1jJ(t) + 1 ( 1 + tf _ t)c P p 

+20:2 111 - p(t) + p(t)112 
( 1 +tf - W 

:::;- O:(I- O:) [W! 1 +2] pT(t)p(t)+Y 

where W = mintE[hhl ['ljJT(t)'ljJ(t)], 2 = (1+tf1-tdc. Since 
learning rate 0: is selected as 0 < 0: < 1, the first term of 

�II(t) is negative the second term Y = 20:21If-p(t)+P(t)112 , (l+tf-t)c 
is bounded.Using standard Lyapunov theory, the value func-
tion parameter estimation error can be proven to be bounded 
with a bound which is dependent upon initial condition of 
the system and the fixed final time instant t f. 

Assume that the initial value function parameter estimation 
error is bounded such that IIp(td 112 :::; roo According to stan
dard Lyapunov theory, value function parameter estimation 
error at time t can be expressed as 

II(t) =�II(t) + �II(t - �t) + . . .  + �II(tl) + II(t1) 
Nt-l 

= L �II(h + i�t) + II(td 
i =O 

where Nt = I t!:,.�J 1, I x 1 is the ceiling operation represents 
the smallest integer not less than x. Note that �t is a 
small sampling interval. The bound for the value function 
parameter estimation error r t can be expressed as 

Nt-l 
rt = IIp(t)112 = II(t) = L �II(tl + i�t) + II(td 

i =O Nt-l Nt-l 
:::; L [- ,8( 1 - ,8)i II(td] + L [ ,8( 1 - ,8)i -ly] + II(tl) 

i =O i =l 

where ,8 = 0:(1 - 0:) [ W!l + 2] , since 0 < 0: < 1, we 

know 0 < ,8 < 1. The value function estimation error r t is 
dependent upon initial bound r 0 and Y. 

The proof is completed. 
We have already obtained the Riccati coefficient matrix 

P ( t) during the interval t E [ to, t f] using the online integral 
PI method and the online tuning law. Then we will describe 
the online learning algorithm as Algorithm 1 which can be 
used to solve the FHLQR problem with partially unknown 
system dynamics. 



Algorithm 1 Online Learning Algorithm 
Part I: Steady-State Interval 

1: Give a small positive real number E. Let i = 0 and 
start with P(O) which makes the control policy u(O)(t) 
is admissible. 

2: Policy Evaluation: 
Based on the Riccati coefficients P(i) and control policy 
u(i)(t), solve the following Bellman equation for P(i+1) 

x(t)T P(i+1)x(t) - x(t + �t)T P(i+l)x(t + �t) 

I
t+�t 

= 

t 
[XT(T)QX(T) + U(i)T(T)Ru(i) (T)]dT. 

3: Policy Improvement: 
Update the control policy using 

u(i+1)(t) = _R-1 BT P(i+l)x(t). 
4: If IIP(i+1) - P(i) II ::; E, set tl = t, obtain the steady-state 

solution, and go to Part II; else, set i = i + 1 and go to 
Step 2. 

Part II: Transient Interval 
1: Start with P when t = t1 . 
2: Policy Evaluation: 

Update P(t + �t) using 

A A 
'Ij!(t)el(t) e2(t) p(t + �t) = p(t) + a 'lj!T(t)'Ij!(t) + 1 

+ a (1 + tf _ t)c · 
3: Policy Improvement: 

Update the control policy using 

u(t + �t) = _R-1 BT P(t + �t)x(t + �t). 
4: Repeat Step 2 and Step 3 while t < t f. 

Remark 4: This algorithm is a kind of PI algorithms 
which consist of policy evaluation and policy improvement. 
For the two different time intervals, the policy evaluation 
is implemented using (8) and (12), the policy improvement 
is implemented using (2) where the knowledge of system 
dynamics B is required. 

IV. SIMULATION 

In this section, we provide a simulation example to demon
strate the effectiveness of the online learning algorithm. 
Compared with the standard solution, the algorithm derived 
in Section III is implemented online without the knowledge 
of A. We use this algorithm to obtain the feedback control 
law and plot all the time histories of optimal states and 
control. 

We consider the following second order example to illus
trate the linear quadratic regulator system. A second order 
plant 

x(t) = [_� �] x(t) + [�] u(t) 

205 

0.8 

0.6 

���--����4--�5--�6��--��9��10 
Time(s) 

Fig. 2. Evolutions of the Riccati coefficients P (t). 
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Fig. 3. Evolutions of the system state x(t). 
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Fig. 4. Evolutions of the system control u(t). 

is to be controlled to minimize the value function with 
parameters 

[ 1 
F-

0.5 
R = 0.25. 

0.5] 
2 ' 

The initial condition x(O) = [2 , - 3F. The final time tf is 
specified at lOs and the final state x(tf) is free. 

Now we assume that the system drift dynamics is un
known, that is, we can not use the knowledge of A when 
the online learning algorithm is applying. Algorithms 1 is 



implemented online to solve the FHLQR problem. The 2 x 2 
symmetric Riccati coefficient matrix P(t) can be represented 
as 

P(t) = 

[P11 (t) 
Pl2 (t) 

PI2(t)] 
P22(t) 

The activation functions are chosen as 

X T (t) = [xi, 2 XI X2, x�]. 
The weight parameters of the critic NN can be represented 
as 

Using the online integral PI method, we solve the "steady
state solution" P of the matrix DRE. To implement this 
algorithm, we let the integral K = 3, the period time 
D.. t = 0.05s and the initial weights as p(O)T = [1, 0, 1 ]. The 
least squares problem is solved after 3 samples are acquired, 
and the weights of the critic NN are updated every 0.15s. 
It is clear that the weights approximately converge to the 
steady ones after five updates at t = 0.75s in Fig. 2. 

To implement the online parameters tuning law, we let 
the period time D.. t = 0.05s, learning rate a = 0.6 and 
the constant c = 4. We obtain the near optimal solution 
P(t) of the matrix DRE during the time interval [1.8,10 ]s. 
The system states and control are obtained at the same time 
interval. Figs. 2, 3 and 4 illustrate the evolutions of the 
Riccati coefficients, system states and optimal control with 
partial system dynamics. It is clear that using the derived 
algorithm the states Xl (t) and X2 (t) go to origin during the 
simulation. 

V. CONCLUSION 

A neural-network-based online learning algorithm was 
established using PI to solve the FHLQR problem for par
tially unknown linear time-invariant continuous-time sys
tems. Compared with the infinite horizon problem, the time
varying Riccati equation was developed to obtain the optimal 
control with partially unknown system dynamics. The online 
learning algorithm consists of an online integral PI method 
and an online tuning law for different time intervals of the 
time-varying Riccati equation. A simulation example was 
given to show the efficiency of the proposed algorithm. 
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