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METHODOLOGIES AND APPLICATION

Distributed algorithm for dissensus of a class of networked
multiagent systems using output information
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Abstract In this paper, a distributed algorithm is developed
to solve the dissensus of a class of networked multiagent sys-
tems only using output information. By introducing a gauge
transformation, the dissensus problem is transformed to the
problem of demonstrating that (A, B,C) is stabilizable and
detectable. If the networked multiagent systems can reach
dissensus, the signed digraph is structurally balanced con-
taining a spanning tree. Furthermore, by solving a Riccati
equation, the necessary condition becomes a necessary and
sufficient condition. Finally, two examples are provided to
illustrate our results. There are three main contributions in
this paper: (1) a distributed algorithm with output informa-
tion is introduced to deal with the difficulty of obtaining
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relative full-state observations; (2) the undirected commu-
nication graph is extended to the signed digraph which is
more practical in physical implementations; (3) the method
established in this paper is also applicable to discrete-time
networked multiagent systems by using a gauge transforma-
tion, which further demonstrates the generality of our results.

Keywords Distributed control · Dissensus · Multiagent
systems · Output feedback

1 Introduction

In recent years, networked multiagent systems have been a
hot topic within the control community (Cheng et al. 2010;
Zhang et al. 2015a; He and Ge 2016; Liu and Kroll 2015;
Quteishat et al. 2011; Cheng et al. 2014; Shen et al. 2015;
Ma et al. 2015b; Liang et al. 2014; Liu and Jiang 2014; Luo
et al. 2015; Ma et al. 2016a, b, 2015a;Wang et al. 2016c; Xie
and Wang 2014; Wang et al. 2016b). The idea of distributed
or decentralized algorithms can be traced back to Bertsekas
and Tsitsiklis (1989) and Tsitsiklis (1984) to adapt to the
advent of networks. Then, Jadbabaie et al. (2003) introduced
nearest neighbor rules into networked multiagent systems
according to Vicsek’s model (Vicsek et al. 1995). After that,
there has been tremendous interest in consensus of networked
multiagent systems (Olfati-Saber et al. 2007;Cao et al. 2013).

There are various types of consensus in networked multi-
agent systems. To begin with, Lin and Ren (2014) proposed
a constrained consensus with communication delays where
the system can be transformed into an equivalent undelayed
system to tackle the complex properties of delays. Cheng
et al. (2014) discussed a mean square consensus algorithm
for linear networked multiagent systems with communica-
tion noises and fixed topologies. Distributed algorithms for
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networked multiagent systems are widely investigated in dif-
ferent fields such as particle swarm optimization (Scheepers
and Engelbrecht 2016), fuzzy systems (Zhang et al. 2015b),
mobile robots (Liu and Jiang 2013), adaptive dynamic pro-
gramming (Zhang et al. 2014; Liu et al. 2014; Wang et al.
2016a).Due to the generality of the consensus problemsmen-
tioned above, the studyof dissensus is ameaningful extension
to the field of networked multiagent systems.

Bipartite graph (Diestel 2000) is one of the basic concepts
in graph theory, and it is appropriate for representing the
communication topology of dissensus. In several physical
scenarios, it is suitable to assume that some of the agents are
cooperative while the rest are competitive. For example, the
polarization of the community can be divided into two groups
holding the opposite opinions, such as two-group political
systems in Fig. 1. In traditional consensus problems, a con-
sensus condition onwhen to converge and converging towhat
values was given in Wieland et al. (2011). Furthermore, in
Ma and Zhang (2010), the consensusability of the networked
multiagent systemsnot only depends on the agents’ dynamics
but also on the communication topology. Dissensus has some
similar aspects to consensus problems. Therefore, the discus-
sion about under what conditions dissensus can be reached
is essential.

To the best of authors’ knowledge, pioneering works of
dissensus can be referred to Smith (1995). Altafini (2013)
introduced the negative weights to the communication topol-
ogy and demonstrated that dissensus can be reached in the
presence of antagonistic interactions. However, it only dealt
with the simplest situation where the dynamics of each agent
was related to the distributed control without any information
of the system matrix A. Subsequently, Hu and Zheng (2013)
extended the dissensus to the formation control (Hu et al
2013) and directed signed networks (Hu and Zheng 2013)
with the same dynamics. Additionally, Valcher and Misra
(2014) discussed amore complex situationwhere the dynam-
ics of networked multiagent systems were high-order with
antagonistic interactions and dissensus can be reached under
the stabilizability assumption with an equilibrium between
two fully competing groups.

Nevertheless, in all the papers mentioned above, the
communication topologies are undirected or the distributed
algorithms are based on full-state-feedback measurements
which are impractical in real-world implementations. There-

Fig. 1 Two groups with cooperative behaviors inside and competitive
behaviors between each other

fore, in this paper, a distributed algorithm is developed to
guarantee the dissensus of networked multiagent systems
over directed networks. Moreover, the necessary condition
can be extended to the corresponding discrete-time systems.

The main contributions of this paper are listed as follows.

1. Output information is introduced to the distributed algo-
rithm to deal with the difficulty of obtaining relative
full-state observations.

2. The undirected signed graph (Valcher and Misra 2014)
is extended to a structurally balanced digraph which is
more practical in physical implementations.

3. The conclusions obtained in this paper can be generalized
to discrete-time networked multiagent systems.

The rest of the paper is organized as follows. Basic defin-
itions of dissensus and properties of signed graph are given
in Sect. 2. Distributed algorithm with output information is
developed for directed networks in Sect. 3. Implementations
of dissensus are conducted to demonstrate the validity of the
developedmethod in Sect. 4. The concluding remark is given
in Sect. 5.

2 Preliminaries

2.1 Signed digraph

A triplet G = {V, E,A} is called a (weighted) signed graph
if V = {1, 2, . . . , N } is the set of nodes, E ⊆ V × V is
the set of edges, and A = (Ai j ) ∈ R

N×N is the matrix of
signed weights of G. Here, we denote Ai j as the element of
the i th row and j th column of the matrixA. The i th node in
a signed graph G represents the i th agent, and a directed path
from node i to node j is denoted as an ordered pair (i, j) ∈ E
which means that agent i can directly transfer its information
to agent j .

A is called the adjacency matrix of a signed graph G
with real elements, and we use the notation G(A) : Ai j �=
0 ⇔ ( j, i) ∈ E to represent the signed graph correspond-
ing to A. Note that self-loops will not be considered in
this paper, i.e., Ai i = 0, i = 1, 2, . . . , N . In a directed
graph (digraph), a pair of edges sharing the same nodes
(i, j), ( j, i) ∈ E is called a digon (Altafini 2013).We assume
thatAi jA j i ≥ 0,whichmeans that all digons cannot have the
opposite signs. We call this property digon sign-symmetric.
Otherwise, we call it digon sign-nonsymmetric. Given a
signed digraph G(A), Cr is termed as the row connectiv-
ity matrix of A with diagonal elements cr,i i = ∑

j∈Ni
|Ai j |,

where Ni = { j ∈ V|( j, i) ∈ E} is the set of neighboring
nodes of agent i and other elements cr,i j = 0, i �= j . Antag-
onistic networks contain competing interactions among some
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agents. Thus, the signed digraph G(A) is a good choice to
represent the competing behaviors when Ai j < 0.

2.2 Dissensus

Weconsider a class of networkedmultiagent systems consist-
ing of N agents with continuous-time dynamics as follows:

ẋi (t) = Axi (t) + Bui (t),

yi (t) = Cxi (t), i = 1, 2, . . . , N , (1)

where xi (t) ∈ R
n , ui (t) ∈ R and yi (t) ∈ R

m , are the
state, control and output of the i th agent, respectively. Here
we assume that A ∈ R

n×n , B ∈ R
n×1 and C ∈ R

m×n

are constant matrices. The communication topology can be
represented by a signed digraph G = {V, E,A} defined in
Sect. 2.1. The interaction between the i th and the j th agent
is cooperative if Ai j > 0; otherwise, it is competitive if
Ai j < 0.

Following the definition of unsigned graphs in most liter-
atures, we define the row Laplacian matrix corresponding to
the adjacency matrix A of the signed digraph G(A) as:

L = Cr − A, (2)

where Cr is the row connectivity matrix of A. Thus,

Li j =
⎧
⎨

⎩

∑

k∈Ni

|Aik |, if i = j;

−Ai j , if i �= j.
(3)

To prove our theorems, the following two definitions are
needed.

Definition 1 (Structurally balanced, cf. Altafini (2013)) A
signed digraph G(A) is said to be structurally balanced if it
contains V1 and V2 as a bipartition of the node set V , where
V = V1 ∪ V2,V1 ∩ V2 = ∅ such that Ai j ≥ 0,∀i, j ∈
Vp (p ∈ {1, 2});Ai j ≤ 0,∀i ∈ Vp, j ∈ Vq , p �= q (p, q ∈
{1, 2}). Otherwise, it is called structurally unbalanced.

Definition 2 (Gauge transformation) A gauge transforma-
tion is a change of the orthant order inR

n operated by amatrix
D1 ∈ D = {D1|D1 = diag(ξ), ξ = [ξ1, ξ2, . . . , ξn]T, ξi =
+1 or − 1, i = 1, 2, . . . , n} which contains all the gauge
transformations in R

n .

We assume that the signed digraph G is structurally bal-
anced and digon sign-symmetric throughout this paper. In
addition, the corresponding adjacency matrix A is strongly
connected. According to Definition 1, this is equivalent to
saying that the agents can be split into two disjoint groups,
the cooperative behaviors between any two agents belonging
to the same group and the competitive behaviors between any

two agents belonging to the different groups. In Valcher and
Misra (2014), the multiagent system with the dynamics (1)
can evolve as follows:

lim
t→∞ xi (t) =

{
ε(t), ∀i ∈ V1,

−ε(t), ∀i ∈ V2.
(4)

Then, the multiagent system can reach dissensus, where ε(t)
is a function with some certain value related to time t .

3 Dissensus using only output information

Over the antagonistic networks, Valcher and Misra (2014)
adopted the static state-feedback distributed algorithm:

ui (t) = −K̃
∑

j∈Ni

|Ai j | [xi (t) − sgn(Ai j )x j (t)],

t ≥ 0, i = 1, 2, . . . , N , (5)

where K̃ ∈ R
1×n is the feedback weighted constant vector to

be designed and sgn(·) is the sign function. Algorithm (5) is
distributed andonly depends on the relative errors of the static
states between the i th agent and its corresponding neighbors.
In Valcher and Misra (2014), it is mentioned that with the
state-feedback distributed algorithm, the N agents can reach
dissensus in an undirected signed graph. However, it requires
the whole information of the N agents’ relative states which
is usually impractical in physical implementations. Hence, it
is more practical to take the available output measurements
into consideration. We assume that the output information of
all the agents can be measured without external noises.

In this paper, the distributed algorithm is designed as fol-
lows:

ui (t) = −K
∑

j∈Ni

|Ai j | [yi (t) − sgn(Ai j )y j (t)],

t ≥ 0, i = 1, 2, . . . , N , (6)

where K ∈ R
1×m is the feedback weighted constant vector

to be designed. Note that Ai j �= 0 ⇔ ( j, i) ∈ E . Thus, the
equivalent form of (6) is

ui (t) = −K
N∑

j=1

|Ai j | [yi (t) − sgn(Ai j )y j (t)],

t ≥ 0, i = 1, 2, . . . , N . (7)

Before proceeding, we need to specify the definition of the
dissensus analogous to Ma and Zhang (2010).

Definition 3 For the networked multiagent system (1), if for
any initial conditions xi (0), i ∈ V , the distributed algorithm
makes the following conditions hold:
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⎧
⎨

⎩

lim
t→∞‖x j (t) − xi (t)‖ = 0, ∀i, j ∈ V1 or ∀i, j ∈ V2;
lim
t→∞‖x j (t) + xi (t)‖ = 0, ∀i ∈ V1 and ∀ j ∈ V2,

(8)

whereV1 andV2 are distinct node sets defined inDefinition 1,
then we say that the networked multiagent system (1) can
reach dissensus.

Remark 1 The traditional dissensus requires that the states of
the agents must converge to two different certain final values.
Here whether the states themselves will converge or not, the
differences of the states between any pair of agents in the
same group and the summations of the states between any
pair of agents in the opposite groups are both required to be
zero. Therefore, it is a more relaxed condition.

Nowwe are in the position to establish ourmain theorems.

Theorem 1 Consider the networked multiagent system (1)
with distributed algorithm (7), where K ∈ R

1×m is a vector
to be determined. If all the agents can asymptotically reach
dissensus, then (A, B,C) is stabilizable and detectable, and
the communication digraph G(A) contains a spanning tree
with structural balance.

Proof Without loss of generality, we renumber the order
of agents and assume that V1 = {1, 2, . . . , k} and V2 =
{k+1, k+2, . . . , N }. The agents in V1 or V2 are cooperative
but antagonistic between the two groups. With the former
assumptions and Lemma 1 in Altafini (2013), we can choose
a gauge transformation D1 from the set D defined in Defini-
tion 2, such that

D1 =
[

Ik 0k×(N−k)

0(N−k)×k −IN−k

]

(9)

satisfies thatD1AD1 is a nonnegative matrix and 0m×n is an
m × n matrix with all elements equal to 0. Let

η = [η1, η2, . . . , ηN ]T ∈ R
N

be a left eigenvector of L with λ1(L) = 0, where λ1(L)

denotes the zero eigenvalue ofL. ηTD1 is the left eigenvector
of D1LD1, which corresponds to the zero eigenvalue, and
D1LD1 is the Laplacian matrix related to the nonnegative
matrix D1AD1. Thus, we assume that

ηi =

⎧
⎪⎪⎨

⎪⎪⎩

1

N
, if i ∈ V1;

− 1

N
, if i ∈ V2.

Let 1n denote a column vector with all elements equal to 1
and⊗ denote theKronecker product. Construct a nonsingular

matrix as follows:

Φ =
⎡

⎢
⎣

η1 η2 · · · ηk ηk+1 · · · ηN

−1k−1 Ik−1 0(k−1)×(N−k)

−1N−k 0(N−k)×(k−1) −IN−k

⎤

⎥
⎦ , (10)

where k ≥ 2 and N ≥ 3. Thus, the corresponding coordinate
transformation is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

χ(t)
δ2(t)

...

δk(t)
...

δN (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=(Φ ⊗ In)x(t)

=
⎡

⎢
⎣

η1 In Υ1 Υ2

−1k−1 ⊗ In In×(k−1) 0n(k−1)×n(N−k)

−1N−k ⊗ In 0n(N−k)×n(k−1) −In×(N−k)

⎤

⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(t)
x2(t)

...

xk(t)
...

xN (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

Υ1 = [η2 In η3 In · · · ηk In],
Υ2 = [ηk+1 In ηk+2 In · · · ηN In].

Note that χ(t) is a column vector and δi (t) = xi (t) − x1(t),
δi (t) ∈ R

n,∀i ∈ V1, while δi (t) = −xi (t) − x1(t), δi (t) ∈
R
n , ∀i ∈ V2. Thus, if all the δi (t), ∀i ∈ V = V1 ∪ V2,

converge to zero as t → ∞, thenwecan say that the dissensus
is achieved.

According to the definition of the Laplacian matrix L, 0
is an eigenvalue of L. Then by simple calculation, we can
make a linear transformation as follows:

ΦLΦ−1 =
[

0 ∗
0(N−1)×1 L̃

]

, (11)

where

Φ−1 =

⎡

⎢
⎢
⎣

1 − 1
N 1

T
k−1 − 1

N 1
T
N−k

1k−1 Ik−1 − 1
N Fk−1 − 1

N Fk−1,N−k

−1N−k
1
N FN−k,k−1 −IN−k + 1

N FN−k

⎤

⎥
⎥
⎦

(12)

123



Distributed algorithm for dissensus of a class of networked multiagent systems using output information

and F is the corresponding matrix whose elements are all
equal to 1. Furthermore, let

ũ(t) = [
ũ1(t), ũ2(t), . . . , ũN (t)

]T

= Φ × [u1(t), u2(t), . . . , uN (t)]T .

Then, with yi (t) = Cxi (t), i = 1, 2, . . . , N , we have

⎡

⎢
⎣

δ̇2(t)
...

δ̇N (t)

⎤

⎥
⎦ = (IN−1 ⊗ A)

⎡

⎢
⎣

δ2(t)
...

δN (t)

⎤

⎥
⎦

+(IN−1 ⊗ B)

⎡

⎢
⎣

ũ2(t)
...

ũN (t)

⎤

⎥
⎦ , (13)

⎡

⎢
⎣

ũ2(t)
...

ũN (t)

⎤

⎥
⎦ = −(L̃ ⊗ KC)

⎡

⎢
⎣

δ2(t)
...

δN (t)

⎤

⎥
⎦ . (14)

For convenience of analysis, we define

δ̇(t)
Δ=

⎡

⎢
⎣

δ̇2(t)
...

δ̇N (t)

⎤

⎥
⎦ =

[
IN−1 ⊗ A − L̃ ⊗ BKC

]
δ(t). (15)

If the networked multiagent system (1) can reach dissensus,
then there exists a vector K ∈ R

1×m with the distributed
algorithm

ui (t) = −K
N∑

j=1

|Ai j | [yi (t) − sgn(Ai j )y j (t)],

t ≥ 0, i = 1, 2, . . . , N ,

such that lim
t→∞ δi (t) = 0, i = 2, 3, . . . , N . Hence, all the

eigenvalues of the matrix IN−1⊗ A− L̃⊗BKC in (15) are in
the open left half plane. Suppose that λ1 = 0, λ2, . . . , λN are
the eigenvalues of theLaplacianmatrixL. Then, the eigenval-
ues of L̃ are λ2, λ3, . . . , λN . Hence, we can find an invertible
matrix T such that L̃ is similar to a Jordan canonical matrix,
i.e.,

T−1L̃T = J = diag{J1, J2, . . . , Jl},

where Jk, k = 1, 2, . . . , l, are upper triangular Jordan
blocks, and their diagonal elements are λi , i = 2, 3, . . . , N .

Furthermore,

(T ⊗ In)
−1

[
IN−1 ⊗ A − L̃ ⊗ BKC

]
× (T ⊗ In)

= IN−1 ⊗ A − J ⊗ BKC

is also an upper triangular block matrix implying that the
eigenvalues of IN−1⊗A−L̃⊗BKC are given by the eigenval-
ues of A − λiBKC, i = 2, 3, . . . , N . Hence, the eigenvalues
of A − λi BKC are all in the open left half plane.

Next, we demonstrate that (A, B,C) is stabilizable and
detectable. Suppose that at least one of λi , i = 2, 3, . . . , N ,
is real, for example, λ2, then (A, B,C) is stabilizable and
detectable because all the eigenvalues of A − λ2BKC are in
the open left half plane. In addition, if λi , i = 2, 3, . . . , N ,
are all complex numbers, i.e., none of their imaginary parts
are zeros, then since L̃ is a real matrix, the eigenvalues will
appear in conjugate pairs.Without loss of generality, we sup-
pose that λ2 and λ3 are one of the corresponding conjugate
pair of rootswithλ2 = σ+ j ′ω andλ3 = σ− j ′ωwhere j ′2 =
−1. Then ∀λ ∈ C, where C is the set of complex numbers,

∣
∣
∣
∣

λIn − (A − σBKC) −ωBKC
ωBKC λIn − (A − σBKC)

∣
∣
∣
∣

= |λIn − (A − λ2BKC)| |λIn − (A − λ3BKC)| .

Considering the fact that all the eigenvalues of the matrices
A − λ2BKC and A − λ3BKC are in the open left half plane,
we obtain that all the eigenvalues of the matrix

[
A − σBKC ωBKC
−ωBKC A − σBKC

]

=
[
A 0
0 A

]

+
[−σ BK ωBK

−ωBK −σ BK

] [
C 0
0 C

]

are also in the open left half plane, which is equiv-

alent to that

([
A 0
0 A

]

,

[
C 0
0 C

])

is detectable. Thus,

rank

[
s In − A

C

]

= n,∀s ∈ C and Re(s) ≥ 0, where Re(s)

represents the real part of the complex number s, i.e., (A,C)

is detectable.
Following similar steps, we can verify that (A, B) is

stabilizable. In summary, we have the conclusion that if
the networked multiagent system (1) can reach dissensus,
(A,B,C) is stabilizable and detectable.

Finally, we will focus on the latter part of the theorem,
i.e., the communication digraph G(A) contains a spanning
tree with structural balance. Due to the fact that linear
transformation does not affect the eigenvalues of matrix,
from Lemma 3.3 in Ren and Beard (2005), λi = 0 or
Re(λi ) > 0, i = 2, 3, . . . , N . By contradiction, because
not all of the eigenvalues of A are in the open left half
plane, then λi �= 0, i = 2, 3, . . . , N . Otherwise, there exists
i ′ ∈ {2, 3, . . . , N } such that λi ′ = 0. Thus, A = A− λi BKC
and the eigenvalues of A are all in the open left half plane,
which is a contradiction. Therefore, the signed digraph G(A)

has only one zero eigenvalue, and by Lemma 3.3 in Ren and
Beard (2005), it must contain a spanning tree. ��
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Remark 2 Although Theorem 1 provides a necessary condi-
tion, it is useful to check whether the networked multiagent
systems have the possibility of reaching dissensus. If any of
the conditions is unsatisfied, i.e., (A, B,C) is not stabiliz-
able or undetectable or the signed digraph G is structurally
unbalanced or G contains no spanning tree, then the net-
worked multiagent systems cannot reach dissensus over the
antagonistic networks. Algorithm 1 shows the usage of the
distributed algorithm for Theorem 1.

When the system matrices of (1) satisfy the following
conditions in Theorem 2, the necessary condition in The-
orem 1 becomes a necessary and sufficient condition. Before
proceeding, Lemma 1 is introduced for demonstrating The-
orem 2.

Lemma 1 (cf. Cheng and Ma (2006)) When (A, B) is sta-
bilizable, the following Riccati equation:

ATP + PA − PBBTP + In = 0 (16)

has a unique nonnegative definite solution P. In addition, the
eigenvalues of A− BBTP are all in the open left half plane.

Algorithm 1 Distributed algorithm for Theorem 1
1. In: Give the initial conditions G and (A, B,C) for the networked

multiagent system (1) and the corresponding output information
yi (0).

2. Out:
{ ‖x j (t) − xi (t)‖, ∀i, j ∈ V1 or ∀i, j ∈ V2;

‖x j (t) + xi (t)‖, ∀i ∈ V1 and ∀ j ∈ V2.

3. If topology G is structurally unbalanced:
4. Terminate the algorithm.
5. While dissensus is not reached:
6. Design the distributed algorithm for every agent as

ui (t) = −K
∑

j∈Ni

|Ai j | [yi (t) − sgn(Ai j )y j (t)], t ≥ 0;

7. Choose stabilizable and detectable (A, B,C);
8. Choose K relatively large and positive;
9. Choose G(A) which contains a spanning tree;
10. Use input signal ui to control agent i ;
11. Terminate the algorithm.

Theorem 2 If P is a nonnegative definite solution of equa-
tion (16) and assume that

rank[C] = rank

[
C

BTP

]

, (17)

then (A, B) is stabilizable and the signed digraph G(A) con-
tains a spanning tree if and only if the networked multiagent
system (1) can reach dissensus.

Proof Theorem 1 has demonstrated the necessary and we
will focus on the proof of the sufficiency. Similar to the proof
of Theorem1, since the signed digraphG(A) contains a span-
ning tree, we have that λi , i = 2, 3, . . . , N are all in the open
right half plane, i.e., Re(λi ) > 0, i = 2, 3, . . . , N . Let

β
Δ= min

2≤i≤N
{Re(λi )} . (18)

If condition (17) holds, then the solution of the matrix equa-
tion

XC = BTP (19)

exists. Without loss of generality, we choose one of these
solutions denoted by Q. Then, let the constant gain matrix
of the distributed algorithm (6) be

K = max{1, β−1}Q. (20)

Thus, A − λiBKC = A − λi max{1, β−1}BBTP , i =
2, 3, . . . , N . Note that for any σ ≥ 1 and ω ∈ R, the eigen-
values of A − (σ + j ′ω)BBTP are all in the open left half
plane (Ma 2009). Thus, the eigenvalues of A − λiBKC, i =
2, 3, . . . , N are in the open left half plane. Thus, ‖δi (t)‖ = 0,
as t → ∞, i = 2, 3, . . . , N , implying that the networked
multiagent system (1) can reach dissensus. ��

We summarize the distributed algorithm for Theorem 2 in
Algorithm 2.

Algorithm 2 Distributed algorithm for Theorem 2
1. In: Give the initial conditions G and (A, B,C) for the networked

multiagent system (1) and the corresponding output information
yi (0).

2. Out:
{ ‖x j (t) − xi (t)‖, ∀i, j ∈ V1 or ∀i, j ∈ V2;

‖x j (t) + xi (t)‖, ∀i ∈ V1 and ∀ j ∈ V2.

3. If topology G is structurally unbalanced:
4. Terminate the algorithm.
5. While dissensus is not reached:
6. Design the distributed algorithm for every agent as

ui (t) = −K
∑

j∈Ni

|Ai j | [yi (t) − sgn(Ai j )y j (t)], t ≥ 0;

7. Choose stabilizable (A, B) such that

ATP + PA − PBBTP + In = 0

has a nonnegative definite solution P;
8. Choose C = BTP;
9. Choose K according to (18)–(20);
10. Choose G(A) which contains a spanning tree;
11. Use input signal ui to control agent i ;
12. Terminate the algorithm.
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Remark 3 Consider a class of discrete-time networked mul-
tiagent systems containing N agents described as follows:

xi (k + 1) = Gxi (k) + Hui (k),

yi (k) = Fxi (k), i = 1, 2, . . . , N , k ∈ N
+. (21)

We can extend Theorem 1 to discrete-time networked mul-
tiagent systems by a similar proof. That is, if the agents can
asymptotically reach dissensus, then (G, H, F) is stabiliz-
able and detectable, and the communication digraph GD(A)

contains a spanning tree and is structurally balanced. How-
ever, when G is singular, stabilizable (G, H) does not imply
rank(s In − GH) = n,∀s ∈ C, |s| ≥ 1.

4 Implementations of dissensus

In this section, we investigate the implementations of dis-
sensus to demonstrate our conclusions.

Example 1 (Dissensus with stabilizable (A, B))
We consider the networked multiagent system containing

five agents with the given dynamics described as follows:

ẋi (t) =
[

2 3
−1 4

]

xi (t) +
[
2
1

]

ui (t),

yi (t) = [ 17.4660 − 22.2645 ]xi (t), i = 1, 2, 3, 4, 5,
(22)

where xi (t) ∈ R
2 is the state, ui (t) ∈ R is the control and

yi (t) ∈ R is the output of the i th agent. Solving the equation
(16) with function care(·) in MATLAB, we get

P =
[

42.3742 − 67.2823
−67.2823 112.3001

]

,

which is nonnegative definite. Then, in order to satisfy the
equation (17),we chooseC= BTP = [17.4660,−22.2645].
According to Theorem 2, we study the following two cases.

Case 1: The signed digraph G1 = (V1, E1,A1) in Fig. 2
represents the topology among the five agents. In addition,
V1={1, 2, 3, 4, 5}, E1={(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)},
A1 = (Ai j )5×5 where

A1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 −1
4 0 0 0 0
0 1 0 0 0
0 0 −0.5 0 0
0 0 0 1.5 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Fig. 2 The topology of signed digraph G1
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Fig. 3 Dissensus of five agents

Then,

L1 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 1
−4 4 0 0 0
0 −1 1 0 0
0 0 0.5 0.5 0
0 0 0 −1.5 1.5

⎤

⎥
⎥
⎥
⎥
⎦

.

Note that the eigenvalues of L1 are 0, 0.9245 ± 0.9194 j ′,
3.9598, 2.1912 which are all in the open right half plane
except the zero eigenvalue. Clearly, G1 is structurally bal-
anced containing a spanning tree.

Since we choose C = BTP in this example, according
to (19) we obtain Q = 1. Thus, with (18) and (20) we
choose K = 1.0816. Then, for any initial value xi (0), i =
1, 2, . . . , 5, the five agents can reach dissensus and it is shown
in Fig. 3, where the x-y plane contains x-axis and y-axis and
the axis perpendicular to the x-y plane is the running time.
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Fig. 4 Dissensus of five agents on two-dimensional plane
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Fig. 5 Dissensus with state feedback and undirected topology

xi1(t) and xi2(t) are the two components of the state xi (t). As
time goes on, agent 1, agent 2 and agent 3 reach a consensus,
while agent 4 and agent 5 reach another consensus with the
opposite direction. Fig. 4 shows 2-D trajectories of the five
agents. It further demonstrates that the networkedmultiagent
systems can reach dissensus if the conditions of Theorem 2
hold.

Remark 4 In order to compare the performance of the
designed method in this paper with the performance of the
method in Valcher and Misra (2014), we change the digraph
to undirected graph in Case 1 with communication weights
unchanged and use the state-feedback information to control
the multiagent system (22). In Fig. 5, the running time is
the same as that of Case 1 and we can see that the multia-
gent system has the trend to achieve the dissensus. However,
in Case 1, the dissensus is obtained in 2s. Furthermore, the
undirected communication topology transfers information
in both directions and the state-feedback protocol provides

Fig. 6 The topology of signed digraph G2

more information than the protocol using only the output
information in this paper. Therefore, our designed method
utilizes concise output information and attains the dissensus
faster than the method in Valcher and Misra (2014).

Case 2: The signed digraph G2 = (V2, E2,A2) in Fig. 6
represents the topology among the five agents. In addi-
tion, V2 = {1, 2, 3, 4, 5}, E2 = {(1, 2), (2, 3), (2, 5), (5, 4),
(5, 1)}, A2 = (Ai j )5×5 where

A2 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 3
1 0 0 0 0
0 2.5 0 0 0
0 0 0 0 0.5
0 −2 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Then,

L2 =

⎡

⎢
⎢
⎢
⎢
⎣

3 0 0 0 −3
−1 1 0 0 0
0 −2.5 2.5 0 0
0 0 0 0.5 −0.5
0 2 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

.

Note that the eigenvalues of L2 are 2.5, 0.5, 4, 1± 1.4142 j ′,
which are all in the open right half plane. However, G2 is
structurally unbalanced though containing a spanning tree.

With the similar steps in Case 1, we choose K = 1. Then
for any initial value xi (0), i = 1, 2, . . . , 5, the five agents
cannot reach dissensuswhich is shown in Fig. 7. As time goes
on, the five agents reach a consensus instead of dissensus due
to the structurally unbalanced G2. Therefore, besides the
properties of systems, communication topology is also a key
factor to dissensus. The distributed algorithm in Algorithm 2
provides the guidance of how to reach dissensus.
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Fig. 7 Five agents without dissensus
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Fig. 8 Five agents with divergence

Example 2 (Five agents with unstable (A, B))
We consider the networked multiagent system containing

five agents with the given dynamics described as follows:

ẋi (t) =
[
1 2
2 4

]

xi (t) +
[

2
−1

]

ui (t),

yi (t) = [ 0.625 −1 ]xi (t), i = 1, 2, 3, 4, 5, (23)

where xi (t) ∈ R
2 is the state, ui (t) ∈ R is the control and

yi (t) ∈ R is the output of the i th agent. The signed digraph is
the same as in Fig. 2. Thus, we choose the same K = 1.0816
as in Case 1 of Example 1. However, (A, B) is unstable.

Then for any initial value xi (0), i = 1, 2, . . . , 5, the five
agents can neither reach dissensus nor consensus which is
illustrated in Fig. 8. As time goes on, the five agents diverge
to different directions due to the unstable (A, B). There-
fore, besides the communication topology, the properties
of the systems are also important to the dissensus. This

demonstrates the effectiveness of the distributed algorithm
in Algorithm 2.

Remark 5 It should be mentioned that structural balance is
an important property of the signed digraph to guarantee dis-
sensus. In Case 2, we can see that G2 loses the property of
structural balance. Thus, consensus is achieved instead of dis-
sensus. Compared to Altafini (2013), due to the difficulty of
measuring the relative full-states in physical systems, we uti-
lize the output information to obtain dissensus. Furthermore,
using output information can reduce the communication
overheads. Please refer toAlgorithms 1 and 2 formore details
of the distributed algorithms using output information.

5 Conclusions

A distributed algorithm is developed to solve dissensus of a
class of networked multiagent systems under directed com-
petitive networks. When the networked multiagent systems
can reach dissensus, the signed digraph should be structurally
balanced and contains a spanning tree. In addition, (A, B,C)

is also stabilizable and detectable. Moreover, if there exists a
nonnegative definitematrix P satisfying theRiccati equation,
the necessary condition becomes a necessary and sufficient
condition which will be a great help to design the distrib-
uted algorithm. In future work, we will focus on the situation
where the dynamics is nonlinear or the communication topol-
ogy is switching.
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