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Abstract— In this paper, an online learning algorithm based
on policy iteration is established to solve the optimal control
problem for weakly coupled nonlinear continuous-time systems.
Using the weak coupling theory, the original problem is
transformed into three reduced-order optimal control problems.
To obtain the optimal control laws without system dynamics,
we construct an online data-based integral policy iteration
algorithm which is used to solve the decoupled optimal control
problems. The actor-critic technique based on neural networks
and the least squares method are used to implement the model-
free learning algorithm. A simulation example is given to verify
the applicability of the developed algorithm.

I. INTRODUCTION

Many large-scale systems such as transportation systems,
electrical networks, power systems, and chemical reactors
are naturally weakly coupled [1], [2]. A common challenging
problem for these real physical systems is the optimal con-
trol. A traditional approach splits the large-scale optimal con-
trol problem into some related sub-problems using the decen-
tralized control method [3], [4]. But this approach neglects
the coupling effect and the obtained results usually do not
have an ideal performance. Since the weakly coupled linear
systems were introduced to the control systems community
by Kokotovic [5], many theoretical aspects of this problem
have been studied. The optimal control law is obtained
through a decoupling transformation which leads to solving
two independent reduced-order optimal control problems [6],
[7]. In a similar way, the optimal control problems for
weakly coupled bilinear systems have been solved [8], [9].
Due to the intractable form of the Hamilton-Jacobi-Bellman
(HJB) equations that arise in the nonlinear optimal control,
obtaining closed-form optimal controllers by directly solving
the HJB equations is difficult. By using the reduced-order
scheme, the optimal control problems for weakly coupled
nonlinear systems have been studied. For instance, Kim and
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Lim [1] constructed an optimal control law for the weakly
coupled nonlinear system based on the solutions of two
independent reduced-order HJB equations using successive
Galerkin approximation. Carrillo et al. [2] proposed a model-
based algorithm for controlling weakly coupled nonlinear
systems using the current data and previously stored data
with a three-critics/four-actors approximator structure. For
large-scale systems, there are many difficulties to obtain the
exact knowledge of their dynamics . Therefore, a kind of
model-free algorithms is needed to solve the weakly coupled
optimal control problem with unknown system dynamics.

Due to the “curse of dimensionality” [10], dynamic pro-
gramming which provides a method for determining the
optimal control laws is often computationally untenable
even in the case of completely known dynamics. Adaptive
dynamic programming (ADP) and reinforcement learning
(RL) relax the need for a exact model of the dynamic systems
by using compact parameterized approximators when solv-
ing the HJB equations. ADP is an effective computational
method due to its optimal learning capabilities [11]–[20].
RL has attracted increasing attention and it can find the
optimal policy interactively [21]–[24]. Value iteration and
policy iteration (PI) are utilized to solve the HJB equations as
main methods of ADP-based and RL-based optimal control.
Vrabie and Lewis [25] obtained the direct adaptive optimal
control law with partial system dynamics by the established
integral RL algorithm for nonlinear continuous-time systems.
With completely unknown dynamics, Jiang and Jiang [26]
presented a novel PI method to solve the optimal control
problem for linear continuous-time systems. Lee et al. [27],
[28] derived an integral Q-learning approach for nonlinear
system optimal control without the exact knowledge of
system dynamics. Li et al. [29] developed an integral RL
algorithm to solve two-player zero-sum differential games
with completely unknown linear system dynamics. Liu et
al. [30] established an online model-free synchronous ap-
proximate optimal learning algorithm to solve a multiplayer
non-zero-sum differential game.

Among ADP-based and RL-based algorithms, there are
few results about the weakly coupled systems. The novelty
of this paper is that we establish an online learning algorithm
to solve the optimal control for weakly coupled nonlinear
systems with completely unknown dynamics. We formulate
the original problem into three reduced-order optimal control
problems by partitioning the HJB equation. To obtain the
optimal control laws without system dynamics, we construct
the data-based integral PI algorithm to solve the decoupled
optimal control problems. The actor-critic technique based
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on neural networks (NNs) and the least squares method are
used to implement the integral PI algorithm. We demonstrate
the effectiveness of the optimal control law by a simulation
example.

The rest of this paper is organized as follows. In Section II,
we present the optimal control problem for weakly coupled
nonlinear systems. In Section III, we transform the original
problem into three reduced-order optimal control problems
and establish an online learning algorithm using model-free
integral PI with unknown system dynamics. A simulation
example is provided to illustrate the effectiveness of the
derived optimal control policy in Section IV. We give the
conclusion with a few remarks in Section V.

II. PROBLEM FORMULATION

Consider the weakly coupled nonlinear continuous-time
system
[

ẋ1(t)

ẋ2(t)

]

=

[

f11(x1) + εf12(x)

εf21(x) + f22(x2)

]

+

[

g11(x1) εg12(x)

εg21(x) g22(x2)

][

u11(t) + εu12(t)

εu21(t) + u22(t)

]

, (1)

where x1(t) ∈ R
n1 , x2(t) ∈ R

n2 are the system state vectors,
u11(t), u12(t) ∈ R

m1 , u21(t), u22(t) ∈ R
m2 are the control

input vectors, ε is a small positive coupling parameter. Using
the following equations

x(t) =

[

x1(t)

x2(t)

]

, f(x) =

[

f11(x1) + εf12(x)

εf21(x) + f22(x2)

]

,

g(x) =

[

g11(x1) εg12(x)

εg21(x) g22(x2)

]

, u(t) =

[

u11(t) + εu12(t)

εu21(t) + u22(t)

]

,

the system dynamics (1) can be rewritten as

ẋ(t) = f(x) + g(x)u(t). (2)

We assume that f : Rn → R
n and g : Rn → R

n×m are
Lipschitz continuous on the set Ω ⊆ R

n and f(0) = 0,
where n = n1 + n2, m = m1 +m2.

The main purpose of the optimal control problem is to
find the optimal control law u∗(x(t)) to control system (2)
with minimum expenditure of control effort. For this reason,
the value function are chosen as

V (x(t)) =

∫

∞

t

[

xT(τ)Qx(τ) + uT(τ)Ru(τ)
]

dτ, (3)

where Q ∈ R
n×n and R ∈ R

m×m are positive definite sym-
metric matrices , and r(x, u) = xT(t)Qx(t) + uT(t)Ru(t)
is the utility function. The matrices Q and R possess the
following weakly coupled structures,

Q =

[

Q1 εQε

εQε Q2

]

, R =

[

R1 0

0 R2

]

.

The optimal value function can be formulated as

V ∗(x(t)) = min
u

∫

∞

t

[

xT(τ)Qx(τ) + uT(τ)Ru(τ)
]

dτ.

The Hamiltonian function of system (2) is defined by

H(x, u, Vx) = V T

x [f(x) + g(x)u] + r(x, u), (4)

with V (0) = 0, the term Vx = ∂V (x)/∂x denotes the partial
derivative of the value function with respect to the state. By
minimizing the Hamiltonian function (4), the optimal control
law can be obtained as

u∗(x) = argmin
u
H(x, u, Vx) = −

1

2
R−1gT(x)V ∗

x . (5)

From the optimal control theory, it is well known that the
optimal value function V ∗(x) is a unique positive-definite
solution of the following HJB equation

0 = V ∗T

x [f(x) + g(x)u∗(x)] + r(x, u∗(x)). (6)

III. COMPUTATIONAL CONTROLLER DESIGN USING

ONLINE MODEL-FREE POLICY ITERATION ALGORITHM

In this section, we formulate the original problem into
three reduced-order optimal control problems by partitioning
the HJB equation. To obtain the optimal control law without
system dynamics, we construct the model-free integral PI
algorithm to solve the decoupled optimal control problems.
To implement this algorithm, the actor-critic technique based
on NNs and the least squares method are used.

A. Problem Transformation

According to the reduced-order scheme [1], setting ε2 = 0,
the value function (3) can be partitioned as

V (x(t)) = V1(x1(t)) + V2(x2(t)) + εVε(x(t)),

where

V1(x1(t)) =

∫

∞

t

[

xT1Q1x1 + uT11R1u11
]

dτ,

V2(x2(t)) =

∫

∞

t

[

xT2Q2x2 + uT22R2u22
]

dτ,

Vε(x(t)) = 2

∫

∞

t

[

xT1Qεx2 + uT11R1u12 + uT22R2u21
]

dτ.

We give the following definitions

V1x1
=
∂V1
∂x1

, V2x2
=
∂V2
∂x2

,

Vεx1
=
∂Vε
∂x1

, Vεx2
=
∂Vε
∂x2

.

Partitioning the HJB (6), we get an O(ε2) approximation
in terms of three reduced-order decoupled HJB equations

0 =V ∗T

1x1
[f11(x1) + g11(x1)u

∗

11(x1)]

+ xT1Q1x1 + u∗T11 (x1)R1u
∗

11(x1),

0 =V ∗T

2x2
[f22(x2) + g22(x2)u

∗

22(x2)]

+ xT2Q2x2 + u∗T22 (x2)R2u
∗

22(x2),

0 =V ∗T

1x1
f12(x) + V ∗T

2x2
f21(x) + V ∗T

εx1
f11(x1)

+ V ∗T

εx2
f22(x2) + 2xT1Qεx2

− 2u∗T11 (x1)R1u
∗

12(x)− 2u∗T22 (x2)R2u
∗

21(x).
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The optimal control law (5) can be partitioned as

u∗11(x1) =−
1

2
R−1

1 gT11(x1)V
∗

1x1
,

u∗12(x) =−
1

2
R−1

1 [gT11(x1)V
∗

εx1
+ gT21(x)V

∗

2x2
],

u∗21(x) =−
1

2
R−1

2 [gT22(x2)V
∗

εx2
+ gT12(x)V

∗

1x1
],

u∗22(x2) =−
1

2
R−1

2 gT22(x2)V
∗

2x2
.

According to the optimal control theory, u∗11(x1) is the
optimal control law for the subsystem 1

ẋ1(t) = f11(x1) + g11(x1)u11(t),

u∗22(x2) is the optimal control law for the subsystem 2

ẋ2(t) = f22(x2) + g22(x2)u22(t),

u∗12(x) and u∗21(x) can be solved from the following integral
equation related to the subsystem 3

V ∗

3 (x) = 2

∫

∞

t

[

u∗T11 (x1)R1u
∗

12(x) + u∗T22 (x2)R2u
∗

21(x)

− xT1Qεx2
]

dτ,

where V ∗

3 (x) = V ∗

ε (x)− 4
∫

∞

t
xT1Qεx2dτ with V ∗

3 (0) = 0.

B. Model-free Algorithm

To deal with the optimal control problem with completely
unknown dynamics, we develop a data-based online integral
PI algorithm. Consider the following nonlinear system ex-
plored by a known bounded piecewise continuous probing
signal e(t)

ẋ(t) = f(x) + g(x)[u(t) + e(t)],

where

u(t) + e(t) =

[

[u11(t) + e1(t)] + εu12(t)

εu21(t) + [u22(t) + e2(t)]

]

.

Now we consider the subsystem 1 with exploration signal

ẋ1(t) = f11(x1) + g11(x1)[u11(t) + e1(t)]. (7)

The derivative of the value function V1(x1(t)) with respect
to time along the trajectory of the explored subsystem (7)
can be calculated as

V̇1(x1(t)) = V T

1x1

[

f11(x1) + g11(x1)[u11(t) + e1(t)]
]

= −r1(x1, u11(x1)) + V T

1x1
g11(x1)e1(t), (8)

where r1(x1, u11(x1)) = xT1Q1x1+u
T

11(x1)R1u11(x1) is the
utility function for the subsystem 1. Based on the traditional
PI algorithm and using the representations V i

1 (x1(t)) and
ui11(x1), the policy improvement can be represented as

ui+1
11 (x1) = −

1

2
R−1

1 gT11(x1)V
i
1x1
, (9)

where i is the iterative index. Integrating (8) form t to t+T
and considering the policy improvement (9), we have

V i
1 (x1(t))−V

i
1 (x1(t+ T )) =

∫ t+T

t

r1(x1, u
i
11(x1)dτ

+ 2

∫ t+T

t

(ui+1
11 (x1))

TR1e1(τ)dτ, (10)

where the time interval T > 0. Since f11(x1) and g11(x1)
do not appear in the integral equation (10), the integral
PI algorithm can be done without the complete system
dynamics. Thus, we describe the online model-free integral
PI algorithm in Algorithm 1.

Algorithm 1 (Integral Policy Iteration Algorithm)
1: Give a small positive real number ǫ. Let i = 0 and start

with an initial admissible control law u011(x1).
2: Policy Evaluation and Improvement: Based on the con-

trol policy ui11(x1), solve V i
1 (x1) and ui+1

11 (x1) from the
integral equation (10).

3: If ‖ui+1
11 (x1) − ui11(x1)‖ ≤ ǫ, stop and obtain the

approximate optimal control law for the subsystem 1;
else, set i = i+ 1 and go to Step 2.

Theorem 1: Give an initial admissible control law u011(x1)
for the subsystem 1. Using the integral PI algorithm estab-
lished in Algorithm 1, the value function and the control law
converge to the optimal ones as i→ ∞, i.e.,

V i
1 (x1) → V ∗

1 (x1), ui11(x1) → u∗11(x1).

Proof: If the initial control law u011(x1) is admissible,
during the iteration process of Algorithm 1, all the sub-
sequent control laws will be admissible [25]. Considering
the formation process of (10) and the equivalence between
(8) and the traditional PI algorithm, the iteration result
in Algorithm 1 will converge to the solution of the HJB
equation. So we can conclude that the proposed integral PI
algorithm will converge to the solution of the optimal control
problem for the subsystem 1 without using the knowledge
of system dynamics. The proof is completed.

Subsystem 2 has the same structure with subsystem 1,
we can use Algorithm 1 to calculate the optimal control
law u∗22(x2) applying some replacements. After obtaining
the optimal control laws u∗11(x1) and u∗22(x2), we derive the
following equation to solve for u∗12(x) and u∗21(x) iteratively,

V i
3 (x(t))− V i

3 (x(t+ T )) = −2

∫ t+T

t

xT1Qεx2dτ

+ 2

∫ t+T

t

[u∗T11 (x1)R1u
i
12(x) + u∗T22 (x2)R2u

i
21(x)]dτ

+ 2

∫ t+T

t

[(ui+1
12 (x))TR1e1(τ) + (ui+1

21 (x))TR2e2(τ)]dτ.

Using this equation to replace (10) in Algorithm 1, we can
obtain u∗12(x) and u∗21(x).
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C. Algorithm Implementation

For the subsystem 1, we assume that V i
1 (x1) and ui+1

11 (x1)
can be represented on a compact set Ω by single-layer
networks as

V i
1 (x1) =

Nc
∑

j=1

ωijφj(x1) + δc(x1),

ui+1
11,p(x1) =

Na
∑

j=1

νij,pψj(x1) + δa,p(x1),

where p = 1, 2, . . . ,m1, ωij ∈ R and νij,p ∈ R are the
bounded ideal weight parameters which are unknown and
will be calculated by the established integral PI algorithm,
φj(x1) ∈ R and ψj(x1) ∈ R, {φj}

Nc

j=1 and {ψj}
Na

j=1 are the
sequences of real-valued activation functions that are linearly
independent and complete, and δc(x) ∈ R and δa,p(x) ∈ R

are the bounded NN approximation errors. Since ωij and
νij,p are unknown, the outputs of the critic NN and the action
NN are represented as

V̂ i
1 (x1) =

Nc
∑

j=1

ω̂ijφj(x1) = ω̂T

i φ(x1), (11)

ûi+1
11,p(x1) =

Na
∑

j=1

ν̂ij,pψj(x1) = ν̂Ti,pψ(x1), (12)

where ω̂i and ν̂i,p are the current estimated weights, and

φ(x1) = [φ1(x1), φ2(x1), . . . , φNc
(x1)]

T ∈ R
Nc ,

ψ(x1) = [ψ1(x1), ψ2(x1), . . . , ψNa
(x1)]

T ∈ R
Na ,

ω̂i = [ω̂i1, ω̂i2, . . . , ω̂iNc
]T ∈ R

Nc ,

ν̂i,p = [ν̂i1,p, ν̂i2,p, . . . , ν̂iNa,p]
T ∈ R

Na ,

ν̂Ti = [ν̂i,1, ν̂i,2, . . . , ν̂i,m1
]T ∈ R

m1×Na .

Define col{ν̂Ti } = [ν̂Ti,1, ν̂
T

i,2, . . . , ν̂
T

i,m1
]T ∈ R

m1Na , then

(ûi+1
11 (x1))

TR1e1(t) = (ν̂Ti ψ(x1))
TR1e1(t)

= (ψ(x1)⊗ (R1e1(t)))
Tcol{ν̂Ti },

where ⊗ represents the Kronecker product. Substituting the
expressions (11) and (12) into the integral equation (10), we
obtain the following general form

λTk

[

ω̂i

col{ν̂Ti }

]

= θk (13)

with

θk =

∫ t+kT

t+(k−1)T

[xT1Q1x1 + ûiT11(x1)R1û
i
11(x1)]dτ.

λk =

[

(

φ(x1(t+ (k − 1)T ))− φ(x1(t+ kT ))
)T

,

− 2

∫ t+kT

t+(k−1)T

(ψ(x1)⊗ (R1e1(τ)))
Tdτ

]T

,

where the data collection time is from t+(k−1)T to t+kT .
We cannot guarantee the uniqueness of the solution of (13)
which is only a 1-dimensional equation. We use the least

squares method to solve the weights over the compact set
Ω as in [27]. For any positive integer K, we denote Λ =
[λ1, λ2, . . . , λK ] and Θ = [θ1, θ2, . . . , θK ]T. Then, we have
the following K-dimensional equation

ΛT

[

ω̂i

col{ν̂Ti }

]

= Θ.

If ΛT has full column rank, the parameters can be solved by
[

ω̂i

col{ν̂Ti }

]

= (ΛΛT)−1ΛΘ. (14)

Therefore, the number of collected points K should be satis-
fied K ≥ rank(Λ) = Nc+m1Na, which will make (ΛΛT)−1

exist. The least squares problem in (14) can be solved in
real time by collecting enough data points generated from
the explored system (7). The implementation procedures for
subsystems 2 and 3 are same as subsystem 1.

IV. NUMERICAL EXAMPLE

We provide a simulation example to demonstrate the
effectiveness of the optimal control law established for the
weakly coupled system.

We consider a weakly coupled nonlinear system (1) with
the following parameters

f11(x1) =

[

−1.93x211
−1.394x11x12

]

,

f12(x) =

[

0
−4.26x21x22

]

,

f21(x) =

[

−1.3x212
0.95x11x21 − 1.03x12x22

]

,

f22(x2) =

[

−0.63x221
0.413x21 − 0.426x22

]

,

g11(x1) =

[

−1.274x211
0

]

, g12(x) =

[

0
−6.5x22

]

,

g21(x) =

[

0.75x11
0

]

, g22(x2) =

[

−0.718x21
0

]

.

x1 = [x11, x12]
T ∈ R

2 and u11(x1) ∈ R are the state and
control variables of subsystem 1, and x2 = [x21, x22]

T ∈
R

2 and u22(x2) ∈ R are the state and control variables of
subsystem 2. The initial state is x(0) = [3.4, 2.7, 4.3, 1.2]T.
The weak coupling parameter ε = 0.05. The matrices Q and
R are chosen as

R = Q1 = Q2 =

[

1 0
0 1

]

, Qε =

[

1 0
0 0.05

]

.

During the simulation, the exact knowledge of the dynamics
is assumed to be completely unknown. We use the estab-
lished algorithm to solve the optimal control problem.

For the subsystem 1

ẋ1 =

[

−1.93x211
−1.394x11x12

]

+

[

−1.274x211
0

]

u11(x1),

the weight vectors of the critic and action networks are
represented as

ω̂1 = [ω̂1
1 , ω̂

1
2 , ω̂

1
3 ]

T,

ν̂1 = [ν̂11 , ν̂
1
2 ]

T.
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We choose the activation functions as

φ1(x1) = [x211, x11x12, x
2
12]

T,

ψ1(x1) = [x11x12, x
2
12]

T.

According to the activation functions, we know N1
c = 3 and

N1
a = 2, so the simulation can be conducted with K1 = 10.

The initial weights are set as ω̂1 = [0, 0, 0]T and ν̂1 = [2, 1]T.
During the learning process, the period time T = 0.1s and
the probing signal e1(t) = 3 sin(2πt) + 3 cos(2πt) are used.
After 10 samples are obtained, the least squares problem can
be solved. Thus the weights of the networks are updated
every 1s. Fig. 1 illustrates the weights evolutions of the
action network 1. The precision ǫ = 10−4 is achieved after
52 iterations. At time t = 52s, ν̂1∗ = [−1.2557,−0.1067]T.

We choose the activation functions for the subsystem 2 as

φ2(x2) = [x221, x21x22, x
2
22]

T,

ψ2(x2) = [x21x22, x
2
22]

T.

As N2
c = 3 and N2

a = 2, the simulation can be con-
ducted with K2 = 10. The initial weights are set as
ω̂2 = [0, 0, 0]T and ν̂2 = [10, 2]T. During the learning
process, the period time T = 0.1s and the probing signal
e2(t) = 5 sin(2πt) + 5 cos(2πt) are used. Fig. 2 illustrates
the weights evolutions of the action network 2. The precision
ǫ = 10−4 is achieved after 50 iterations. At time t = 50s,
ν̂2∗ = [−9.9814, 0.0367]T.

For the subsystem 3, the weight vectors of the critic and
action networks are represented as

ω̂3 = [ω̂3
1 , ω̂

3
2 , ω̂

3
3 , ω̂

3
4 , ω̂

3
5 , ω̂

3
6 ]

T,

ν̂3 = [ν̂31 , ν̂
3
2 , ν̂

3
3 , ν̂

3
4 ]

T.

We choose the activation functions as

φ3(x) = [x211, x11x12, x
2
12, x

2
21, x21x22, x

2
22]

T,

ψ3(x) = [x11x12, x
2
12, x21x22, x

2
22]

T.

According to the activation functions, we know N3
c = 6

and N3
a = 4, so the simulation can be conducted with

K3 = 10. The initial weights are set as ω̂3 = [0, 0, 0, 0, 0, 0]T

and ν̂3 = [0,−2, 2, 3]T. During the learning process, the
period time T = 0.1s and the probing signals e1(t), e2(t)
are used. After 10 samples are obtained, the least squares
problem can be solved. Thus the weights of the networks
are updated every 1s. Fig. 3 illustrates the weights evo-
lutions of the action network 3. The precision ǫ = 10−4

is achieved after 20 iterations. At time t = 20s, ν̂3∗ =
[0.3830, 0.0533,−0.0899,−0.9548]T.

According to Section III, we obtain the following optimal
control law of the weakly coupled system

u∗(x) =

[

u∗11(x1) + εu∗12(x)

εu∗21(x) + u∗22(x2)

]

.

We use the optimal control law u∗(x) to control the weakly
coupled system for 20s. The evolution process of the system
state and control trajectories shown in Figs. 4 and 5. These
simulation results can verify the effectiveness of the integral
PI algorithm.
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Fig. 1. Weights evolutions of the action network 1.
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Fig. 2. Weights evolutions of the action network 2.

V. CONCLUSIONS

In this paper, a model-free integral PI algorithm for weakly
coupled nonlinear systems is developed. The optimal control
law is derived using the optimal controllers of the reduced-
order subsystems. To solve the reduced-order HJB equations
related to the subsystems, we use establish a model-free
integral PI algorithm. The actor-critic technique and the
least squares method are used to implement the constructed
algorithm. The applicability of the developed optimal control
law is testified by a simulation example.
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