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Abstract-Underactuated and weakly coupled mechanical sys­
tems of power integrators is Ubiquitous in physical implementa­
tions. Due to the presence of negative communication weights, 
whether bipartite output consensus can be reached remains 
unknown. Thus, it is of practical significance to investigate this 
issue. Furthermore, with input noises, an adaptive disturbance 
compensator, along with the technique of adding power integra­
tors, is established for the complex multi-agent systems to improve 
the stability and robustness performance of the system. 

I. INTRODUCTION 

In the last few years, tremendous progress has been made 
towards multi-agent systems [1]-[5]. A novel type of phase 
transition of self-driven particles was proposed by Vicsek, 
which was the origin of nearest neighbour rules [6]. Conse­
quently, according to Vicsek's model, Iadbabaie [7] introduced 
nearest neighbour rules into the multi-agent systems. Follow­
ing the above idea, bipartite consensus is a new branch in 
multi-agent systems. 

Bipartite graph is a basic concept in graph theory [8] which 
is suitable to represent the communication topology of bipartite 
consensus. In several physical scenarios, it is more reasonable 
to suppose that some of the agents are competitive while the 
rest are cooperative. Altafini introduced the negative weights 
to the communication topology and demonstrated that bipartite 
consensus can be reached in the presence of antagonistic 
interactions. Consequently, bipartite consensus was extended 
to formation control [9] and directed signed networks [10], 
[11] with the same dynamics. Moreover, Valcher talked about 
a more complex situation that the dynamics of multi-agent 
systems were in high-order with antagonistic interactions and 
bipartite consensus can be reached under the stabilizability 
assumption with a sort of equilibrium between two fully 
competing groups. However, all the aspects mentioned above 
are associated with linear system, while in physical implemen­
tations, power integrator system is more ubiquitous [12]. 

High-order power integrator system is both practically 
interesting because a class of weakly coupled, unstable and 
underactuated mechanical systems [13], which are difficult to 
obtain stable control, are inherently nonlinear; and conceptu­
ally interesting because it is more complex than traditional 
linear systems in the aspect of analysis technique. A feedback 
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design tool called adding a power integrator was proposed 
and used to deal with the problem of global robust stabiliza­
tion when the nonlinear systems were in a lower-triangular 
form [14]. In addition, adding a power integrator was also 
introduced in [12] to deal with the global strong stabilization 
with the similar form of power integrator. Furthermore, in 
[15], it shed light on cooperative output-synchronisation in 
multi-agent systems of high-order power integrator with input 
noises and undirected topology. Nevertheless, we concentrate 
on a directed graph, particularly, where the weights among 
agents are partly negative. Compared with the advances in 
the area of consensus [5], less progress has been made in 
bipartite consensus [16], especially, bipartite output consensus. 
Therefore, it is of great practical interest to investigate that 
on what conditions multi-agent systems of high-order power 
integrators can reach bipartite output consensus. 

The remainder of this paper is organized as follows. Basic 
definitions of bipartite output consensus and properties of 
signed graph are provided in Section II. In view of input noises, 
an adaptive noise compensator is introduced in Section III to 
enhance the robustness of networked multi-agent systems. In 
Section IV, numerical examples are conducted to demonstrate 
the etlectiveness of the criterion established in Section IV, 
while closing with the concluding remarks of the whole paper 
in Section V. 

II. BACKGROUNDS AND P RELIMINARIES 

A triplet 9 = {V, E, A} is called a (weighted) signed graph 
if V = {I, 2, ... ,N} is the set of nodes, E C;; V x V is the set 
of edges, and A = (Aij) E jRNxN is the matrix of the signed 
weights of g. Here we denote Aij as the element of the ith 
row and jth column of the matrix A. A is called the adjacency 
matrix of the signed graph 9 with real numbers and we use 
the notation 9(A) : Aij cf ° <=} (j, i) E E to represent the 
signed graph corresponding to A. Note that self-loops will not 
be considered in this paper, i.e., Aii = 0, Vi = 1,2, ... ,N. In 
a directed graph (digraph), a pair of edges sharing the same 
nodes (i,j), (j,i) E E is called a digon [16]. We assume 
that AijAji ::,. 0, which means that all digons cannot have 
the opposite signs. In this paper we call this property digon 
sign-symmetry. Otherwise, we call it digon sign-nonsymmetry. 
Given a signed digraph 9(A), Cr is termed as the row 



connectivity matrix of A and 
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with diagonal elements Cr,ii = LjEN, IAij I, where Hi = 
{j E VI(j, i) E E} includes the neighbour nodes of node i. 
The column connectivity matrix Ce is defined likewise, where 

Ce,ii = LjEN, IAjil· In addition, if Cr = Ce, the signed digraph 
is called weight balanced. 

Definition 1 (ef [l6]): 9(A) is said to be structurally bal­
anced if it contains a bipartition of the nodes VI, V2, V = 
VI U V2, VI n V2 = 0 such that Aij 2' 0, vi, j E Vp (p E 
{1, 2}) ;Aij � O, vi E Vp, j  E Vq, p -I- q (p,q E {1, 2}) . 
Otherwise it is called structurally unbalanced. 

In this and the subsequent sections, we assume that the 
signed digraph 9 is digon sign-symmetric and structurally 
balanced. We consider the case when input channels of sys­
tem (2) are contaminated with unknown disturbances 5 = 
(5I,52, . . .  ,5N)T E�NxI. 

Assumption 1: There is an unknown external system 

iJ = re, 
5= <I>Te, (1 ) 

where e E �2X I, r E �2X 2, <I> E �2xN and the eigenvalues 
of r are all on the imaginary axis. The marginal stability of 
the exosystem implies that 5i is bounded by constant 5i, i.e., 

15il � 5i, vi. 
Suppose that the network contains N agents and the 

dynamic of each agent 'i is as follows: 

XiI = xf� 
Xi2 = xf� 

Xi,n-l = Xf�- l 
Xin = ufn + 5i 
Yi = XiI 

(2) 

where Pk 2' 1, vk E p, 2, . . .  , n} are odd integers and 

Xi = (XiI, Xi2, ···, Xin) E �n, Yi E �, Ui E � are the 
states, output and control input of agent 'i, respectively. Before 
proceeding, we introduce the definition of bipartite output 
consensus in concert with the subsequent analyses. 

Definition 2: If for any initial condition Xi (0), 
{ tErrooIIYj(t) - Yi(t) 11 = 0, vi, j E VI or vi, j E V2; 

lim IIYj(t) + Yi(t) 11 = 0, vi E VI and vj E V2, t--++oo 
(3) 

where VI and V2 are the distinct node sets defined in Definition 
1, then we say that the multi-agent systems (2) can reach 
bipartite output consensus. 

It should be noted that we suppose that the communication 
capability is sufficient and the communication intensity is 
not related to the distance between each pair of agents. 

Furthermore, if there is a path from agent i to agent j where 
j E Hi, then agent i can transfer its output information Yi and 
the information of communication weight Aji to agent j with 
no data loss. Therefore, agent i can obtain the information of 
both Aij and Aji in a digraph. 

Before proceeding, we give three important lemmas fre­
quently used throughout this article. 

Lemma I (ef [l2]): x,y,m,n,a,/3 are all positive real 
numbers, then the following inequality holds 

axffiyn � {'3xffi+n + _n_ (m + n) -';;: a m�n (3-';;:ym+n. m+n n 
(4) 

Lemma 2 (ef [12]): With X E �, Y E � and P 2' 1 is an 
integer, the following two inequalities hold 

Ix + yiP � 2P-I IxP + yPI, (5) 
1 1 1 � 1 (Ixl + IYI) i> � Ixli> + Iyli> � 2 p (Ixl + IYI) i> . (6) 

If P 2' 1 is an odd integer, then 

Ix - yiP � 2P-I IxP - yPI. (7) 

Lemma 3 (ef [12]): Suppose that a E �, (3 E � are both 
nonnegative real numbers and P 2' 1, q 2' 1 are integers, then 

(8) 

III. BIPARTITE OUTPUT CONSENSUS WITH INPUT NOISES 

Theorem 1: The dynamic of each agent in the network is 
(2) and , I = 2, 3, . . .  , n, can be seen as internal reference 
states, then with the following distributed controllers: 

i{'il = L IAij I (Yi - sgn(Aij ) Yj) 
JEN; 
+ L IAji I (Yi - sgn(Aji) Yj), 

JEN, 
Ui = - [(kni{'in) l/PI Pn- l + sgn(i{'i;;-l/PI Pn- l ) 5i] 1/Pn, 

X:�' = - kI i{'il 
x:rp2 = - k2i{'i2 

i{'i2 = xf� - x:f' 
i{'i3 = Xf�P2 - x:f,P2 

'''Pn- l 

i = � ' lln2-
I/Pl'''Pn- 1 1 (9) 

� 2 't'tn , 

where 5i is the adaptive disturbance compensator, �i is positive 
gain parameter, kI, k2, . . .  , kn and PI, P2, . . .  , Pn are positive 
constant control gains and positive odd integers, respective­
ly, then the multi-agent systems can asymptotically achieve 
bipartite output consensus and Xi2, Xi3, . . .  , Xin, vi E V are 
bounded to zero, if the signed digraph 9 is strongly connected. 

Proof' 9 is a digraph, then denote Lu = Cu - Au as an 
undirected graph, where 

A +AT Au = ---2 



We first define a potential function V1 associated with the 

Laplacian matrix Lu as follows: 

N 
V1 = �xT Lux = � L IAu,ij I (Xi1 - sgn(Au,ij )Xj1?' 

(i,j)EE 
(10) 

where X = (X11' X21"" , XN1) T and Au,ij is the element of 
matrix Au. Then 

(II) 

Let 'Pi2 = xf� - X:�', then with Lemma I, we can imply that 

(12) 

i=l i=l 
where b11 and b12 are two positive constants satisfied with the 
inequality zooming in (12). 

In the sequel, we make use of the form of xf� to define a 
new potential function 

S, _ lXi.2 ( PI _ *PI)2-1IPI d 22 - r xi2 r, 
x72 

vi E V. (13) 

Similar to Proposition B.I in [12], Si2 > 0 and the corre­
sponding partial derivatives of Si2 are 

as,2 _ 2-11Pl 
aXi2 - 'P22 
aSi2 (2 _ �) a

a
x:�l lX

, 
i.2 (rPl _ X;�') 1-11PI dr, aXil P1 xi1 X:2 

aSi2 (2 _ �) a x:�' lXi.2 (,.Pl _ .*Pl)1-1IP1 d 
a r X,2 r, aXj1 P1 Xj1 XT2 

where j E Ni. Similarly, define another potential function 
containing the information of first and second order of all the 
agents as follows: 

N N lXi.2 _ _ PI .*Pl 2-11Pl V2 - V1 + L Si2 - V1 + L * (r - Xi2 ) dr. 
i=l i=l Xi2 

(14) 
Hence, the derivative of V2 with time t is 

N 
V2 = V1 + L 5'i2 

i=l 

N N as _ 11 '" 2-11Pl [ *P2 ( P2 *P2)] '" i2 . - 1 + L 'Pi2 xi3 + xi3 - xi3 + L a x, Xi1 
i=l i=l 11 

N 
+L L 

aSi2 . --X'l aXj1 J i=l JENi 
N N N 

< b '" 2 b '" 2 '" 2-11Pl *P2 
- - 11 L 'Pi1 + 12 L 'Pi2 + L 'Pi2 Xi3 

i=l i=l i=l 
N 

+ L l'Pi212-1IPl lxfJ - x:X21 
i=l 

(15) 

Furthermore, from (9) we can derive that <X2 = -k�/pl'Pi£Pl 
and 

With Lemma I, we obtain that 

N N 
'" I PI - 1 '"""" I I L I'Pi212-1 PIlxfJ -<X21 <::: 2 1'1 L I'Pi212-1 PII'Pd1 PI 
i=l i=l 

N N 
<::: b�2 L 'P;2 + b�3 L 'P�3' 

i=l i=l 

where b�2 and b�3 are two positive constants. 

(16) 

Now we are in the position to concentrate on the latter two 
items in (15). Note that with similar proof steps in Proposition 
B.5 in [12], the following two inequalities hold: 

I aa�'2 1 Ixi11 <::: 41'Pi21 1 aax��l 
Xi1 1 <::: 4'�11'Pi21 ( l'Pi11 + l'Pd), X11 X11 

I �:;: I IXj11 <::: 41'Pi21 1 ��:1' Xj1 1 <::: 47]�jl'Pi21(I'Pj11 + l'Pj21), 

where j E Ni, 1�1 and 7]�j are positive constants. By virtue 
of Lemma 1, we obtain 

i=l i=l 

where b�l and b�2 are positive constants. 

With (16) and (17), V2 can be rewritten as 

N N N 
V2 <::: - b11 L 'P;1 + b12 L 'P�2 - k�/pl L 'P�2 

i=l i=l i=l 
N N N N 

(17) 

' ''' 2 ' ''' 2 " ", 2 " ", 2 + b22 L 'Pi2 + b23 L 'Pi3 + b21 L 'Pi1 + b22 L 'Pi2 
i=l i=l i=l i=l 

(18) 

i=l i=l i=l 

VI =~[(Cr - A)x + (Ce - AT)x]T i! 
1 N 

=2 ~ CPilXf~ 
i=l 

1 N 1 N 
- '""" (,~ X*Pl + '"""~ (xPI X*Pl) -2 ~ .,.-il i2 2 ~ 'f'il i2 -. i2 . 

i=l i=l 

N N 
. k 1 '""" 2 1 '""" 

VI = -2 ~ CPil + 2 ~ CPilCPi2 

i=l i=l 
N N 

'""" ') '""" 2 <::: -bll ~ CPil + b12 ~ CPi21 

(T P1 X*Pl)l-l/PI 
. 72 

*Pl 
X i2 

N N N 
. '""" 8Si2 . '""" 8Si2 . '""" '""" 8Si2 . 

= V 1 + ~8x Xi2+ ~8x Xil+ ~ ~ 8x' Xjl 
i=l 22 i=l 21 i=l JEN, )1 

~ ~-

~ ~ ~ 

~ 1 8Si 2
1 1 ' I ~ '""" 1 8Si 2

1 1 ' I + ~ 8x XiI + ~ ~ 8x' Xjl· 
i=l d i=l JEN, Jl 

TI] -1 . . PI -1 

IXfl - x:X2 1 <::: 2 PI IXnp2 - X:X,P211/P, = 2 PI Icpd I/PI. 

~ Icpi2!2-1 ~ ICPi21 2- 1 

8Si 2
1 . 

8X*Pl 

8 lXiII 
~ 
8 

8Si2 8 *Pl x i2 

8Xjl 8Xjl 

~ 1 8Si2
1' ~ '""" 1 8Si2

1 . ~ 8x lXiII + ~ ~ 8x IXjll 
i=l d i=l JEN, Jl 

N N 
" '""" ') ",""" ') <:::b21 ~ CPil + b22 ~ CPi2' 

I ~ 2 I ~ 2 "~ 2 "~ 2 

N N N 
,"",,2 ,"",,2 ,"",,2 

<::: - b21 ~ CPil - b22 ~ CPi2 + b23 ~ CPi31 



where k2 and bl l  are chosen properly such that - bll +b�l < 0 l/Pl , 1/ 
and -k2 + b12 + b22 + b22 < 0, and b21, b22, b23 are positive 
constants. 

In what follows we utilize inductive technique with similar 
proof steps above when 2 < Tn :s; n - 1. Define that 

_jX. im (�Pl .. p 1 *Pl ··Pm_l)2-1/Pl ... Pm- l d�, Sirn - I tn- - xim f 

x:rn 

then 

N 
Vm =Vrn-1 + LSim 

i=l 
=Vrn-1 

(rPl"'Pm- l _ x:P1 "P,m,_1)2-1/Pl'''Pm- l dr. ,m 

Thus, the derivatives of Vrn is 

N 

_ x*Pm I i,m+1 

< V: -1 - (k ) l /Pl···Pm- l '"'" In2 _ m m � 't'2rn 
i=l 

i=l 

i=l 
N m-1 l ox*Pl.,.pm- l I + L L 41'Piml . "8 . Xil 
i=l 1=1 X ,l 

+ t L 41'Piml l °x:�'
x �m- ' 

Xj1 1 
i=l JENi J 

N 
< V: -1 - (k ) l /Pl···Pm- l '"'" .�2 _ rn rn � � 1,m 

i=l 
N 

'"'" (b' 2 b' 2 ) + � im'Pim + i,m+1 'Pi,m+1 
i=l 
N m-1 

+ L L 4,:nll'PimI ( l'PilI + ... + l'Piml) 
i=l 1=1 
N 

+ L L 4rJ:njl'Piml(I'Pj11 + l'Pj21) 
i=l JENi 

N N 
:s; - bm-1,l L 'P�1 - bm-1,2 L 'P�2 - . . .  

i=l i=l 
N N 

- bm-1,m-1 L 'P�,m-1 + bm-1,m L 'P�,m 
i=l i=l 

N N 
- (km) l/Pl Pm- l L 'P�m + L(b;m'P�m + b;,m+1 'P�,m+1) 

i=l i=l 

(19) 

Therefore, by appropriately choosing the parameters in (19), 
we rewrite Vrn as 

N N . '"'" 2 '"'" 2 Vm :s; - bm1 � 'Pi 1 - bm2 � 'Pi2 - . . .  
i=l i=l 

N N 
- bmm L 'P�m + bm,m+1 L 'P�,m+1' (20) 

i=l i=l 

Finally, we come up to demonstrating Vn :s; O. To that end, 
we define 

where Ji = c5i - Ji and "'i > O. Then 

i=l i=l 

(rP1 ' dr, 

+ tl~,m 
i=l X I1n 

N ~ N m-l ~ 
. . "" USim . "" "" USim . 

Vm = Vm- 1 + L OX Xim + L L ~Xil 
i=l 1m i=l 1=1 ' 11 

N 

L L OSim. + --Xjl 
OXI 

i=l JEN, J 

. N oS N oS _ v: + "" 1m *Pm +"" 1m ( Pm *Pm) - m-l L -~--Xi m+l L -~-- Xi.m+1 - Xi.m+1 
i=l UXim' i=l uXim' , 

N m-l 0S N oS 
"" "" 1m • "" "" 1m • + L L OXI Xii + L L OXI Xjl 
i=l 1=1 1 i=l JEN, J 

N 

< V, - (k ) l/Pl"'Pm-l "" .~2 _ rn-I m ~~trn 

i=l 
N 

+ L 1~:~l/p,pm-'1 
i=l 

N m-l 0S N oS 
LL 1m. L L 1m. + --Xii + --Xjl 
_ OXil_. OXjl 1-1 1=1 1-1 JEN; 

L~;m 
N 

+ L(b;m~;m + b;,m+l ~;,m+l) 
i=l 

N m-l 0S N oS 
LL 1m. L L 1m. + --Xii + --Xjl 

OXI OXI 
i=l 1=1 1 i=l JEN; J 

N 

< V, - (k ) l/Pl"'Pm-l "" .~2 _ rn-I m ~~trn 

N 
",,' 2 ' 2 + L(bim~im + bi.m+1 ~i.m+l) 

I 
~X~Pl "Pm-l 
u. trn 

AX'1 

Vm 

L 

N 

*Pl'''Pm-l 

I
OXim 

4 1~iml OXI 

",,~2 
L'hm 

,,"2 "2 "2 + L(bi1 ~il + bi2~i2 + ... + bim~im)' 
i=l 

L L 

N N 1 
Vn = Vn- 1 + LSin + L 2t:5;, 

i=l i=l' 

N N n-l 
. _ . "" OSin ( Pn )"" "" OSin . 

Vn - Vn- 1 + L OX U i +6i + LL OX Xil 
i=l In i=l 1=1 11 

N OSin. N 1 _ ~ 
+ "" "" -, -Xjl - "" -6i6i L L OXI L~. 

i=l JEN; J i=l 1 

N N "" ') "" ') ~ - bn- 1,1 L ~il - bn- 1,2 L ~i2 - ... 
i=l i=l 

N N 

- bn- 1,n-l L ~;,n-l + bn- 1,n L ~;n 
i=l i=l 

N N 
'",,2 '",,2 + bn1 L ~il + bn2 L ~i2 + ... 

(21) 



N N N l� � 
+ b' " 'P2 - kl/Pl Pn- l " 'P2 - " -55  nn � 2n n � 2n � 

""
. 2 2 

N 
i=l i=l i=l' 

+ L 'P;,:;-l/PI Pn- l (5i - sgn('Pi,:;-l/PI Pn- l ) 5i) . 
i=l 

Note that 

therefore 

i=l 
N 

i=l 
N 

" 'J " 'J - bn-1.n-1 � 'Pi,n-l + bn-1,n � 'Pin 
i=l 

N N 
i=l 

+ b�l L 'P�l + b�2 L 'P�2 + ... 
i=l i=l 

i=l i=l 
N 

+ � (1'P;,:;-1/PI Pn- 1 1_ :
i 
5i) ti. 

Let 5i update with 

t - · 1 · � 2-1/Pl'''Pn- l l '[ - ""1, 'f"in , 
then Vn can be simplified in the following form 

N N . " 2  " 2  Vn � - bn1 � 'Pil - bn2 � 'Pi2 - . . .  
i=l i=l 

N N 
" 'J " 'J - bn,n-l � 'Pi,n-l - bnn � 'Pin 

�O, 
i=l i=l 

where bn1, bn2, . . .  , bnn are all positive constants. 

Then by integrating (25) we have 

(22) 

(23) 

(24) 

(25) 

,,""............... 
",···

·····
4······ , '. /l 

( ! \2 : 
\, , __ """'<--":""":'r-<'- 5 ,/ 

.................. __ .............. .. ....................... .. 

Fig. I. Communication topology of five agents. 

Therefore, 0 � Vn(t) � Vn(O) is bounded. Since Vn � 0, we 
can imply that 

lim Vn(t) = O. t--++oo 
The preceding analysis, along with Vn � 0, yield that 

lim Vn(t) = O. t--++oo 
According to the form of (25), we can infer that 

lim 'Pik(t) = 0, 't:/iEV,k = I, 2, ... , n. t--++oo 

(27) 

(28) 

Furthermore, with regard to (9), it is clear that Xi2, Xi3, . . .  , Xin 
all approach to zero when t ---+ +00, i.e., bounded to zero. 

Noting that ( 1/2) xT Lux, Si2, Si3, . . .  ,Sin are all nonnegative 
items and Q is strongly connected, along with (27) and (10), 
we have 

(29) 

and this implies that bipartite output consensus can be asymp­
totically achieved, which is satisfied with (3) in Definition 2 . 

IV. IMPLEMENTATIONS AND PERFORMANCE ANALYSIS 

• 

The multi-agent systems with input noises are given as 
follows: 

and 

r = [ 
w = [ 

. 5 Xi2 = Xi3 
Xi3 = ut + 5i, i = 1, 2, . . .  , 5, 

0 1 ] , - 1 0 
- 0. 1, 0, 
0. 2, 0. 05, 

- 0. 1, 0. 2, 
0.5, 0. 1, 

- 0. 3 ] 
0. 05 . 

(30) 

The topology is shown in Figure I and the graph is strongly 
connected and structurally balanced. Agent 1, 2 and 3 are in 
one group, while agent 4 and 5 are in the opposite group. 
Given kl = 0.5, k2 = 15, k3 = 25, �i = 0. 0 1, i = 1, 2, . . .  , 5, 
and the initial values of the five agents are chosen randomly. 

It is illustrated in Figure 2 that bipartite output consensus 
can be achieved in the presence of input noises if the signed 
digraph is strongly connected. In Figure 3 and Figure 4, we 
can see that Xi2 and Xi3 are bounded to zero, which is in 
accordance with Theorem 1 and in turn verify the validity of 
our distributed control laws (9). 

With several oscillations, the third dimensions of the six 
agents finally approach to zero, thus the developed distributed 

Lip2 Lip2 - L 

,~2-1/Pl "Pn-l (5 _' (,~2-1/Pl '''Pn-l)5) 'f-'in " sgn 'f-'in , 
<I 2-1/pl "Pn-1IJ _I 2-1/pl "Pn- 1 15 
- ipm "ip"n , 
=1,~2-1/Pl "Pn- 1 15 

'f"'2n 7, 

N N n-l 
. _ . """' 8Sin ( Pn ) """' """' 8Sin '. Vn - Vn - 1 + ~ 8x U i + 5i + ~ ~ 8x Xil 

i=1 m i=1 1=1 "I 
N N 

L L 8Sin L 1 ~,; + -.-Xjl - -5;6; 
8Xl ~' 

i=1 JEN; ] i=l" 

N N 

:::; - bn - 1,1 L ip~1 - bn - 1,2 L ip~2 - ... 

"""' ') ~ ipi,n-l 

N N 

"""' ') ~ipin 

+ b' """' ;/)2 _ k1/P1 "Pn-l """' I/)2 
nn L-t Y2n n L-t Y2n 

1 

~i 

I' 2-1/pl '''Pn-11 
. . -Pin 

L 2 

"""' ') ~ipi,n-l 

L 2 

"""' ') ~ipin 

N t 

Vn(t) - Vn(O) :::; - bn1 L 1 ip;l(a)da 
i=1 0 

N j.t 
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Fig. 2. Outputs trajectories Yi = XiI, i = 1,2, ... ,S. 
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control law (9) can solve the nonlinearity of high-order power 
integrator based merely on output information. Furthermore, 
due to the high nonlinearity of the third dimension in multi­
agent systems, although bipartite output consensus has been 
achieved, Xi3 is still varying. 

V. CONCLUSION 

We investigate bipartite output consensus in multi-agent 
systems of high-order power integrators with input noises 
and signed digraph. An adaptive disturbance compensator and 
the technique of adding power integrator are introduced to 
deal with the input noises and nonlinearity of the multi-agent 
systems, respectively. Moreover, in the presence of negative 
communication weights over the network, when the signed 
digraph is structurally balanced and strongly connected, then 
bipartite output consensus can be achieved. Our future work 
will focus on time delays and packet dropouts over the multi­
agent systems. 
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