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Abstract. Nonlinear time-delayed multi-agent systems with connectiv-
ity preservation are investigated in this paper. For each agent, the dis-
tributed controller is divided into five different parts which are designed
to meet the requirements of the nonlinear time-delayed multi-agent sys-
tems, such as preserving connectivity, learning the unknown dynamics,
eliminating time delays and reaching consensus. In addition, a σ-function
technique is utilized to avoid the singularity in the developed distributed
controller. Finally, simulation results demonstrate the effectiveness of the
developed control protocol.
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1 Introduction

With the growth of scale in large networked multi-agent systems, it is difficult
to design an appropriate centralized controller to maintain the performance of
the whole systems. Thus, distributed control is a good choice for solving this
problem. Distributed control for multi-agent systems has been a hot topic in
the last decade [1–3]. In [4], an output-based distributed control was proposed
for nonlinear multi-agent systems with small-cyclic theorem. In [5], an online
optimal learning approach was added to the decentralized control for a class
of continuous-time nonlinear interconnected systems. To the best of authors’
knowledge, it is the first time to investigate second-order nonlinear time-delayed
multi-agent systems with connectivity preservation. In [6], in order to drive a
group of ocean vessels to track a moving target and maintain the connectivity,
adaptive neural network region tracking control was proposed. In [7], by virtue of
neural networks, a decentralized robust adaptive control was designed to achieve
consensus. In [8], a rendezvous protocol was proposed for the double-integrator
multi-agent systems with preserved network connectivity. However, none of them
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takes time-delay into consideration. Thus, in this paper a Lyapunov-Krasovskii
functional method is borrowed from [9,10] to eliminate the negative effect of
time delays. Moreover, a σ-function is developed to circumvent the singularity
in the distributed controller.

The remainder of this paper is given as follows. In Sect. 2, fundamental pre-
liminaries and the problem statement are introduced. In Sect. 3, the distributed
control protocol is developed which guarantees the achievement of consensus.
Simulation example and conclusion are given in Sects. 4 and 5, respectively.

Notations: (·)T represents the transpose of a matrix. tr (·) is the trace of a given
matrix and ‖ · ‖ is the Frobenius norm or Euclidian norm.

2 Preliminaries

2.1 Graph Theory

A triplet G = {V, E ,A} is called a weighted graph if V = {1, 2, . . . , N} is the
set of N nodes, E ⊆ V × V is the set of edges, and A = (Aij) ∈ R

N×N is the
N×N matrix of the weights of G. Here we denote Aij as the element of the ith
row and jth column of the matrix A. The ith node in graph G represents the
ith agent, and a directed path from node i to node j is denoted as an ordered
pair (i, j) ∈ E , which means that agent i can directly transfer its information
to agent j. L = D − A is the Laplacian matrix, where D is the N×N diagonal
matrix whose diagonal elements are di =

∑
j∈Ni

Aij , i = 1, 2, . . . , N and Ni =
{j ∈ V|(j, i) ∈ E} is the set of neighbour nodes of node i.

2.2 Radial Basis Function Neural Network

In this paper, radial basis function neural networks (RBFNNs) are used for
approximating the unknown dynamics of the multi-agent systems. If h(x) is
a continuous unknown nonlinear function, then it can be approximated by
RBFNNs as follows:

h(x) = W ∗TΦ(x) + θ, (1)

where x is the input vector, W ∗ is the ideal weight matrix with suit-
able dimensions and θ is the approximating error with ‖θ‖ < θN . Φ(x) =
[γ1(x), γ2(x), . . . , γp(x)]T is the activation function vector and

γi(x) = exp
[−(x − μi)T(x − μi)

α2
i

]

, i = 1, 2, . . . , p, (2)

where αi is the width of Gaussian function, p is the number of neurons and
μi is the center of the receptive field. We denote Ŵ as the estimation of the
ideal weight matrix W ∗. Thus, the estimation of h(x) can be written as ĥ(x) =
ŴTΦ(x), where Ŵ can be updated online. The online updating algorithm is
provided in Sect. 3.
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2.3 Problem Statement

In this paper, the second-order nonlinear time-delayed multi-agent system is
modeled as follows:

ṗi = vi,

v̇i = ui + fi(pi(t), vi(t)) + gi(vi(t − τi)), i = 1, 2, . . . , N, (3)

where pi ∈ R
2 is the position of agent i, vi ∈ R

2 is the velocity of agent i,
τi is the unknown time delay of agent i, fi(·) : R2 → R

2 and gi(·) : R2 → R
2

are continuous but unknown nonlinear vector functions, and ui(·) ∈ R
2 is the

control input. For simplicity, we will ignore time expression t in case there is no
confusion.

Assume that all the agents have a common sensing radius R and we adopt the
hysteresis function in [8] to avoid measurement noise. When the distance between
two agents is greater than R, we say that the two agents lose connectivity. Our
control objective is to make all the agents reach consensus with connectivity
preservation. That is, ∀i, j ∈ V,

{
lim

t→∞ ‖pi(t) − pj(t)‖ = 0,

lim
t→∞ vi(t) = vj(t) = 0,

(4)

and no agent will lose connection with its neighbors. We adopt the definition of
the potential function in [8] which is given as follows:

ϕ(‖pij‖) =
‖pij‖2

R − ‖pij‖ +
R2

P̂

, ‖pij‖ ∈ [0, R], (5)

where R is the radius of communication range, ‖pij‖ = ‖pi(t)−pj(t)‖ and P̂ > 0
is a large constant. It should be noted that we utilize A(t), N (t) and L(t) to
represent the switching topology.

3 Distributed Control for Nonlinear Time-Delayed
Multi-Agent Systems

Before proceeding, we introduce two important assumptions for demonstrating
our main theorem.

Assumption 1. gi(vi(t − τi)), i = 1, 2, . . . , N, are unknown smooth nonlinear
functions. The inequalities ‖gi(vi(t))‖ ≤ φi(vi(t)), i = 1, 2, . . . , N, hold, where
φi(·), i = 1, 2, . . . , N, are known positive smooth scalar functions. Furthermore,
gi(0) = 0 and φi(0) = 0, i = 1, 2, . . . , N .

Assumption 2. The unknown time delays τi, i = 1, 2, . . . , N, are bounded by a
known constant τmax, i.e., τi ≤ τmax, i = 1, 2, . . . , N.
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In order to avoid the singularity induced by the denominator of the developed
distributed controller, we define σ(·) as follows:

σ(vi) =
{

1, if vi = 0,
0, if vi �= 0.

(6)

In order to eliminate the effect of time delays, we introduce a Lyapunov-
Krasovskii functional as follows:

VU (t) =
1
2

N∑

i=1

t∫

t−τi

Ui(vi(ζ))dζ, (7)

where Ui(vi(t)) = φ2
i (vi(t)). Then, the developed distributed controller is divided

into five parts and they are given as follows:

ui(t) = ui1(t) + ui2(t) + ui3(t) + ui4(t) + ui5(t), (8)

ui1(t) = −
∑

j∈Ni(t)

∇pi
ϕ(‖pij‖),

ui2(t) = −
∑

j∈Ni(t)

Aij(t)(vi − vj),

ui3(t) = − 1
2

vi

‖vi‖2 + σ(vi)
φ2

i (vi(t)),

ui4(t) = − ki(t)vi,

ui5(t) = − ŴT
i Φi(pi, vi),

ki(t) = ki0 + 1 +
1
ωi

⎛

⎜
⎜
⎜
⎝

1
2

+

t∫

t−τmax

1
2
Ui(vi(ζ))dζ

‖vi‖2 + σ(vi)
+

∑
j∈Ni(t)

ϕ(‖pij‖)

‖vi‖2 + σ(vi)

⎞

⎟
⎟
⎟
⎠

. (9)

The online updating algorithm for the weight matrix of RBFNN is given as
follows:

˙̂
Wi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

χiΦi(pi, vi)vT
i , if tr

(
ŴT

i Ŵi

)
< Wmax

i , or

if tr
(
ŴT

i Ŵi

)
= Wmax

i and vT
i ŴT

i Φi(pi, vi) < 0,

χiΦi(pi, vi)vT
i − χi

vT
i ŴT

i Φi(pi, vi)

tr
(
ŴT

i Ŵi

) Ŵi, otherwise,
(10)

where W̃i = W ∗
i −Ŵi and χi is the updating rate. Moreover, the initial values of

Ŵi should satisfy tr
(
ŴT

i (0)Ŵi(0)
)

≤ Wmax
i . Before proceeding, we define the

potential energy function as follows:

Pi(t) =
∑

j∈Ni(t)

ϕ(‖pij‖) +
1
2
vT

i vi +
1
2

t∫

t−τi

Ui(vi(ζ))dζ +
1
2
tr

(
1
χi

W̃T
i W̃i

)

. (11)
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Then, the total potential energy function is P (t) =
N∑

i=1

Pi(t).

Theorem 1. The multi-agent system (3) consists of N agents and all the agents
are driven by the distributed controller (8). With Assumptions 1 and 2, if the
initial network topology G(0) is connected and undirected, and the initial energy
P (0) is finite, then the consensus of the multi-agent system (3) can be achieved
while preserving connectivity.

Proof. The derivative of P (t) is

Ṗ (t) =
N∑

i=1

∑

j∈Ni(t)

ϕ̇(‖pij‖) +
N∑

i=1

vT
i v̇i + V̇U (t) −

N∑

i=1

tr
(

1
χi

W̃T
i

˙̂
Wi

)

=
N∑

i=1

vT
i

∑

j∈Ni(t)

∇pi
ϕ(‖pij‖) +

1
2

N∑

i=1

(
φ2

i (vi(t)) − φ2
i (vi(t − τi))

)

+
N∑

i=1

vT
i

(

− ki(t)vi −
∑

j∈Ni(t)

∇pi
ϕ(‖pij‖) −

∑

j∈Ni(t)

Aij(t)(vi − vj)

− 1
2

vi

‖vi‖2 + σ(vi)
φ2

i (vi(t)) − ŴT
i Φi(·) + gi(vi(t − τi)) + W ∗T

i Φi(·) + θi

)

−
N∑

i=1

tr
(

1
χi

W̃T
i

˙̂
Wi

)

, (12)

where we denote Φi(·) as Φi(pi, vi) for short. If tr
(
ŴT

i (0)Ŵi(0)
)

≤ Wmax
i , it

is easy to demonstrate that tr
(
ŴT

i (t)Ŵi(t)
)

≤ Wmax
i . Thus, according to the

updating algorithm (10), the inequality tr
(

W̃T
i

(
1
χi

˙̂
Wi − Φi(·)vT

i

))

≥ 0 holds.

Merge the polynomial (12) we can obtain

Ṗ (t) =
1
2

N∑

i=1

(φ2
i (vi(t)) − φ2

i (vi(t − τi))) +
N∑

i=1

tr
(

1
χi

W̃T
i

˙̂
Wi

)

+
N∑

i=1

vT
i

(

− ki(t)vi

−
∑

j∈Ni(t)

Aij(t)(vi − vj) − 1
2

vi

‖vi‖2 φ2
i (vi(t)) − W̃T

i Φi(·) + gi(vi(t − τi)) + θi

)

= −
N∑

i=1

ki(t)‖vi‖2 − vT(L(t) ⊗ I2)v −
N∑

i=1

tr
(

W̃T
i

(
1
χi

˙̂
Wi − Φi(·)vT

i

))

− 1
2

N∑

i=1

φ2
i (vi(t − τi)) +

N∑

i=1

vT
i (gi(vi(t − τi)) + θi)
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≤ −
N∑

i=1

ki(t)‖vi‖2 − 1
2

N∑

i=1

φ2
i (vi(t − τi)) +

1
2

N∑

i=1

(‖vi‖2 + ‖gi(vi(t − τi))‖2
)

+
1
2

N∑

i=1

(‖vi‖2 + ‖θi‖2
)

(with Assumption 1)

≤ −
N∑

i=1

(ki(t) − 1)‖vi‖2 + ε,

where ε =
1
2

N∑

i=1

θ2Ni
, v = [v1, v2, . . . , vN ]T and ‖θi‖ < θNi

. Thus, with

Assumption 2, we have

Ṗ (t) ≤ −
N∑

i=1

ki0‖vi‖2 −
N∑

i=1

1
ωi

t∫

t−τmax

1
2
Ui(vi(ζ))dζ −

N∑

i=1

1
2ωi

‖vi‖2

−
N∑

i=1

1
ωi

∑

j∈Ni(t)

ϕ(‖pij‖) −
N∑

i=1

2Wmax
i

ωχi
+

N∑

i=1

2Wmax
i

ωχi
+ θ

≤ − 1
ω

P (t) +
N∑

i=1

2Wmax
i

ωχi
+ ε,

where ω = max
i∈V

ωi and ki0 > 0. Then, according to Lemma 1 in [7], we have

P (t) ≤ P (0)e− 1
ω t + ν

(
1 − e− 1

ω t
)

, (13)

where ν =
N∑

i=1

2Wmax
i

χi
+ ωε.

The number of agents is finite, thus the switching times of the network
topology are finite. We denote the switching times as t0, t1, . . ., where t0 is
the initial time. By choosing appropriate parameters in (13) when t ∈ [t0, t1),
P (t) ≤ P (0) < Pmax holds. Therefore, network will not lose connectivity at t1
and new edges will be added at t1 because of the decrease of P (t). Following the
similar proof steps in the above analysis, when t ∈ [tk−1, tk), k = 2, 3, . . ., the
connectivity can be guaranteed. In summary, if the initial undirected network
topology G(0) is connected and the initial energy P (0) is finite, the connectivity
for t > 0 can be preserved. Then, we restrict the following discussion when the
network has been fixed. Since every term in P (t) is positive and bounded, all
the terms in P (t) will approach to zero, that is, lim

t→∞ p1 = p2 = · · · = pN and

lim
t→∞ v1 = v2 = · · · = vN = 0. Furthermore, lim

t→∞ ‖W ∗
i − Ŵi‖ = 0 shows that

RBFNNs can learn the unknown dynamics of each agent. �
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4 Simulation Example

We choose a multi-agent system with five agents which moves on a two-
dimensional plane. We set the sensing radius R = 2.5m and choose the ini-
tial positions and velocities randomly from [0, 4m] × [0, 4m] and [0, 2m/s] ×
[0, 2m/s], respectively. Assume that all the existing communication weights

are 1 and the time-delay vector is τ = [0.1, 0.05, 0.13, 0.08, 0.15].
[

l1
l2

]

=
[

0.4, −0.65, 0.5, −0.75, 0.1
0.5, 0.45, −0.6, 0.4, 1

]

and
[

m1

m2

]

=
[

0.9, 1.2, −1.1, 0.7, 0.6
1.2, −0.8, 0.6, 0.3, 0.8

]

are the

coefficients of f(·) and g(·), respectively. The dynamics of time-delay term is
given as follows:

gi(vi(t)) =
[

mi1vi1(t) cos(vi2(t))
mi2vi2(t) sin(vi1(t))

]

. (14)

Then, φi(vi(t)) =
√

(mi1vi1(t))2 + (mi2vi2(t))2. The unknown dynamics is cho-
sen to be

fi(pi(t), vi(t)) =
[

li1pi1(t) sin(pi2(t))vi1vi2

li2pi2(t) cos(pi1(t)) sin(vi1vi2)

]

. (15)

Suppose that all the five agents have the same parameters, P̂ = 1000, τmax =
0.15, ki0 = 10, ωi = 50, Wmax

i = 100 and χi = 100. The number of neurons
for each RBFNN is 16 and α2

i = 2. μi is distributed uniformly among the range
[0, 4] × [0, 4].

In Fig. 1, the red asterisks are the initial positions and the blue arrows are
the directions of initial velocities. In Fig. 2, the red pentagram is the final posi-
tion showing that consensus can be achieved with the developed distributed
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agents (Color figure online)
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Fig. 3. Trajectories of position in y-axis
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Fig. 4. Trajectories of velocity in y-axis

controller. We choose to show the trajectories of positions and velocities in y-
axis in Figs. 3 and 4, respectively.

5 Conclusion

Nonlinear time-delayed multi-agent systems are investigated in this paper. The
distributed controller is divided into five parts. By using RBFNNs, the distrib-
uted controller can learn the unknown nonlinear dynamics online. Furthermore,
by introducing Lyapunov-Krasovskii functional, the effect of time delays can be
eliminated. Finally, connectivity preservation can be guaranteed by designing a
high-threshold potential function. Simulation results show the effectiveness of
the developed distributed controller.
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