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Abstract— Travel time is one of the key concerns among
travelers before starting a trip and also an important indicator
of traffic conditions. However, travel time acquisition is time
delayed and the pattern of travel time is usually irregular. In
this paper, we explore a deep learning model, the LSTM neural
network model, for travel time prediction. By employing the
travel time data provided by Highways England, we construct
66 series prediction LSTM neural networks for the 66 links in
the data set. Through model training and validation, we obtain
the optimal structure within the setting range for each link.
Then we predict multi-step ahead travel times for each link on
the test set. Evaluation results show that the 1-step ahead travel
time prediction error is relatively small, the median of mean
relative error for the 66 links in the experiments is 7.0% on
the test set. Deep learning models considering sequence relation
are promising in traffic series data prediction.

I. INTRODUCTION

Travel time is an important indicator of traffic capacity
and traffic efficiency. As a kind of dynamic traffic infor-
mation, real-time travel time is one of the key concerns
among travelers. With real-time travel time, the intelligent
transportation system (ITS) [1] can offer information services
to decision makers for traffic control or guidance operations
and to travelers for route selection and planning. However,
real-time travel time cannot be real-time observed, since
travel time counts from the start to the end of a trip. When
travel time is observed, it has already been historical data
rather than real-time data. Therefore travel time prediction
is an effective way to obtain the real-time travel time before
starting a trip.

There have been many researchers studying travel time
prediction using various methods. These methods are main-
ly classified into two categories: data-driven methods and
model-driven methods. Data-driven methods usually employ
historical travel time [2], and other related variables e.g.
speed, volume, occupancy [3], time of day, day of week etc.
[4]. Among the models and algorithms applied in data-driven
methods, the ARIMA model [5] uses the historical series
of travel time to fit a time series model and then predicts
the future travel time one by one. The linear model [6], [7]
predicts the travel time of one trip departing at current time

*This work was supported in part by the National Natural Science
Foundation of China under Grants 61233001, 61203166, 71232006 and
61533019, and the Early Career Development Award of SKLMCCS.

1The State Key Laboratory of Management and Control for Complex
Systems Institute of Automation, Chinese Academy of Sciences, Beijing,
100190, China

2Qingdao Academy of Intelligent Industries, Qingdao, Shandong,
266109, China

3University of Chinese Academy of Sciences, Beijing, 100049, China
**Yisheng Lv is the corresponding author of this paper. E-mail:

yisheng.lv@ia.ac.cn

by combining the latest calculated travel time of the trip and
the historical mean travel time of the same trip departing
at the same time. The k nearest neighbors method [7], [8]
finds the most similar historical k days to the present day,
and takes the mean travel time at current time of that k days
as the travel time at the current time of the present day.
The Kalman filtering algorithm [9] estimates the predicted
travel time and updates the prediction continually as a new
observation becomes available. The support vector regression
model [10] maps the historical travel time into a higher
dimensional feature space from the lower input space and fits
a function predicting the future travel time from the higher
dimensional features. The gradient boosting regression tree
method [4] combines simple regression trees to produce
high accuracy travel time prediction with previous multiple
time periods travel times and related variables as model
inputs. Apart from the above models and algorithms, neural
network model is applied to travel time prediction in various
forms and structures. The spectral basis neural networks [11]
perform a sinusoidal transformation to the input features
including travel times of current, upstream and downstream
links in previous time periods, obtain the spectral expansion
of the input features, then utilize the conventional artificial
neural network to predict the future multiple time periods
travel times of the current link from the spectral expansion.
The objected-oriented neural network approach [12] uses the
current observed speed and flow data of the upstream and
downstream stations on the freeway section as the network
input, and predicts the future travel time on that section at the
network output. The state-space neural network (SSNN) [13]
with a topology of recurrent neural network (RNN) connects
each hidden unit with the traffic flow and average speed
data collected from one of the detectors on the concerned
section and the hidden layer in previous time period. Then
the SSNN predicts the future travel time in its output layer.
The RNN considering temporal-spatial input dynamics [3]
takes speed, volume and occupancy of current, upstream and
downstream segments in the present time period as network
input and predicts the travel time in the next time period
at the network output. Model-driven methods typically need
to build a virtual road network and perform simulation on
it with the principle of dynamic traffic assignment. The
travel time of one link or path can be detected from the
virtual road network through the simulation. DynaSmart
[14], DynaMIT [15], Vissim [16], Paramics [17], TransWorld
[18] are transportation softwares for building virtual road
networks and conducting traffic simulations, all of which
need the travel demand data named origin-destination matrix
or population data within the road network. However, these
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travel demand data are difficult to acquire.
Data-driven methods [19], [20] have attracted more and

more research interest and achieved inspiring results with
the improvement of computing capability and the growth of
traffic data quantity. Among them, the deep learning based
methods lead the trend of big data processing. Exploring
deep learning models in the application to travel time pre-
diction is of great significance. In this paper, we explore the
Long Short-Term Memory (LSTM) neural network model,
which can automatically reserve historical sequence infor-
mation in its model structure, for travel time prediction. The
model has a deep structure in term of time but is with low
dimension in term of single step prediction. To the best of our
knowledge, it is the first time that the LSTM neural network
is used for travel time prediction.

The rest of this paper is organized as follows. Section II
introduces travel time and travel time acquisition approach-
es. Section III describes the LSTM Neural Network for
travel time prediction. Section IV presents the experiments
conducted on the LSTM neural network using real travel
time data, analyses the experiments results and discusses the
model performance. Section V concludes this paper.

II. TRAVEL TIME

Travel time xt shown in Fig. 1 is the time cost to complete
a journey L from the starting point A to the end point B
departing at time t. In this paper, we focus on the travel time
of each link on highways. Travel time cannot be detected
directly. There are multiple ways to acquire travel time. One
way is to calculate travel time using the detected or estimated
occupancy and speed, e.g. the PCSB method and the PLSB
method [21]. The other way is to estimate travel time using
Global Positioning Systems (GPS) data of vehicles [22].
Another way is to measure travel time from Automatic
Vehicle Identification (AVI) stations [11] at ends of a journey.

A B

L
txtt

Fig. 1. Travel time

In this paper, we employ the travel time data provided
by Highways England [23]. In this dataset, journey(travel)
times are estimated using a combination of sources, including
Automatic Number Plate Recognition (ANPR) cameras, in-
vehicle GPS and inductive loops built into the road surface,
and imputed using adjacent time periods or the same time
period on different days. Specifically, the travel times in this
data set are 15-minute interval average travel times for each
link. We utilize the travel time data in Year 2013 of 66 links
on highway M25, which almost encircles Greater London,
England, in the United Kingdom. We focus on exploring the
LSTM neural network model for link travel time prediction
in the following sections.

III. METHODOLOGY

LSTM neural network [24] has been successfully applied
in many real-world problems [25] involving sequence data,
e.g. music generation [26], image captioning [27], speech
recognition [28], machine translation [29]. In this paper, we
explore the application of LSTM neural network in travel
time prediction. LSTM neural network is closely connected
with and can be seen as a specific RNN [30], which is
proposed before LSTM neural network and also considers
the sequence relation in data samples. Therefore we firstly
introduce the structure of RNN, then describe the LSTM cell
and the construction of the LSTM neural network for travel
time prediction. Here travel time prediction is defined as
predicting future time periods travel times {x̃t+1, x̃t+2, · · · }
from the acquired historical travel times {· · · , xt−1, xt}.

A. Recurrent Neural Network

RNN incorporates temporal dynamics in its structure
shown in Fig. 2, which is a basic structure of regular RNN
[31]. The hidden layer of each neural network is connected
with the hidden layer of the next neural network later in time
sequence. This connection style takes the influence of the
former sample on the latter one into account. There is another
connection style considering the relation between the former
and the latter samples by connecting the hidden layer of each
neural network with the hidden layers of its former and latter
neural networks. RNN with this bidirectional connection
style is called bidirectional recurrent neural network [32].
In this paper, travel time prediction adopts the structure of
regular unidirectional RNN, since the prediction from history
to future is what concerns us. Typically, the neural networks
in RNN shown in Fig. 2 have the same parameters such as
W1, W2 which are the weight matrices between layers and
Wh which is the weight matrix between neural networks.
Each historical sample is fed into RNN in order and the
predicted future output will be obtained in sequence.

Wh Wh

Input layer

Hidden layer

W1

Output layer

W2

Input layer

Hidden layer

W1

Output layer

W2

Fig. 2. The structure of RNN

B. Long Short-Term Memory

LSTM neural network as a specific RNN has a complex
structure named LSTM cell in its hidden layer. The LSTM
cell shown in Fig. 3 has three gates namely input gate, forget
gate and output gate, which control the information flow
through the cell and the neural network. At time t the input
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is xt, the hidden layer output is ht and its former output is
ht−1, the cell input state is C̃t, the cell output state is Ct and
its former state is Ct−1, the three gates’ states are it, ft and
ot. The structure of the LSTM cell indicates that both Ct

and ht are transmitted to the next neural network in RNN.
To calculate Ct and ht, we use the following equations in
order. Firstly, calculate the three gates’ states and the cell
input state, input gate:

it = σ(W i
1 · xt +W i

h · ht−1 + bi), (1)

forget gate:

ft = σ(W f
1 · xt +W f

h · ht−1 + bf ), (2)

output gate:

ot = σ(W o
1 · xt +W o

h · ht−1 + bo), (3)

cell input:

C̃t = tanh(WC
1 · xt +WC

h · ht−1 + bC), (4)

where W i
1, W f

1 , W o
1 , WC

1 are the weight matrices connecting
xt to the three gates and the cell input, W i

h, W f
h , W o

h , WC
h

are the weight matrices connecting ht−1 to the three gates
and the cell input, bi, bf , bo, bC are the bias terms of the
three gates and the cell input, σ represents the sigmoid func-
tion 1

1+exp(−x) and tanh represents the hyperbolic tangent

function exp(x)−exp(−x)
exp(x)+exp(−x) . Secondly, calculate the cell output

state:
Ct = it ∗ C̃t + ft ∗ Ct−1, (5)

where it, ft, C̃t, Ct−1 and Ct have the same dimension.
Thirdly, calculate the hidden layer output:

ht = ot ∗ tanh(Ct). (6)

× output gate

input gate

＋ tanh× ×

tanh

ti

tf
to

tC~

1tC
tC

th

tx1thtx1th

tx1th

forget gate

tx1th

Fig. 3. The structure of LSTM cell

C. Series Prediction LSTM Neural Network

For the purpose of travel time prediction, we construct a
LSTM neural network shown in Fig. 4 using RNN and LSTM
cell. At time t, the input of the network is the observed
history data xt and the output is the predicted future data

x̃t+1. Through the above LSTM calculation, ht is obtained.
Then calculate the network output:

x̃t+1 = W2 · ht + b (7)

where W2 is the weight matrix between the output layer
and the hidden layer, b is the bias term of the output layer.
In real applications, we can only use N historical data to
feed the series prediction LSTM neural network shown in
Fig. 4 since historical data are limited. In this way, the
history information goes through the networks by recurrent
calculation and the prediction is to absorb the long-short term
memory from the network states.

Ntx  )( 1 Ntx tx

)(~ 1 Ntx )(~ 2 Ntx 1tx~

Input layer

LSTM

W1

Output layer

W2

Input layer

LSTM

W1

Output layer

W2

Input layer

LSTM

W1

Output layer

W2

Nth  )( 1 Nth th

Fig. 4. The structure of series prediction LSTM neural network

IV. EXPERIMENTS

We construct a series prediction LSTM neural network for
each link in the travel time data set. The dimension of the
network input and output at each time step equals the dimen-
sion of the travel time in each time period. Thus both the
input and output dimensions equal 1. As for the dimension
of the hidden layer at each step, we conduct experiments
to determine the number of hidden units nh ranging from 1
to 5 given the input dimension. Considering the time delay
in travel time collection, we predict multiple time periods
travel times ahead the latest observed one with the trained
model to see how well the model performs. Here we predict
1,2,3,4 time periods travel times: {x̃t+1, x̃t+2, x̃t+3, x̃t+4}
with observed data {· · · , xt−1, xt}. Thus the predicted travel
time is to feed the model input when the observed one has
not been acquired.

A. Model Training
Model training is the process of determining the param-

eters in the model structure. In the series prediction LSTM
neural network model, the dimension of the hidden layer nh

and the number of iterations are hyper parameters which
must be determined separately from the training process
of the other parameters Θ, which includes all the weight
matrices and biases in the model. We divide the whole data
set into three parts: training set (80%), validation set (10%)
and test set (10%). We adjust Θ relying on the training set,
choose the hyper parameters by calculating the cost function
on the validation set, and evaluate the prediction performance
on the test set. Adjusting Θ is the process of solving the
following optimization problem:

Θ = argmin
Θ

L(X, X̃)
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where X is the observed travel time sequence, X̃ is the
corresponding 1-step ahead predicted travel time sequence
and L is the cost function. Define

L(X, X̃) =

∑Num
(xt+1 − x̃t+1)

2

2Num
, (8)

where Num is the number of predicted travel times. Then
the gradient of L with respect to the weights are calculated
by backward propagation through time using the following
equations:

∂L

∂x̃t+1
= −xt+1 − x̃t+1

Num
(9)

∂L

∂W2
=

Num∑ ∂L

∂x̃t+1
· hT

t (10)

∂L

∂ht
=

∂L

∂x̃t+1
·WT

2 +
∂L

∂it+1
∗ it+1 ∗ (1− it+1) · (W i

h)
T

+
∂L

∂ft+1
∗ ft+1 ∗ (1− ft+1) · (W f

h )
T

+
∂L

∂ot+1
∗ ot+1 ∗ (1− ot+1) · (W o

h)
T

+
∂L

∂C̃t+1

∗ (1− C̃2
t+1) · (WC

h )T

(11)

∂L

∂Ct
=

∂L

∂ht
∗ ot ∗ [1− tanh2(Ct)] +

∂L

∂Ct+1
∗ ft+1 (12)

∂L

∂ot
=

∂L

∂ht
∗ tanh(Ct) (13)

∂L

∂ft
=

∂L

∂Ct
∗ Ct−1 (14)

∂L

∂it
=

∂L

∂Ct
∗ C̃t (15)

∂L

∂C̃t

=
∂L

∂Ct
∗ it (16)

∂L

∂WC
1

=

Num∑ ∂L

∂C̃t

∗ (1− C̃2
t ) · xT

t (17)

∂L

∂W o
1

=

Num∑ ∂L

∂ot
∗ ot ∗ (1− ot) · xT

t (18)

∂L

∂W f
1

=

Num∑ ∂L

∂ft
∗ ft ∗ (1− ft) · xT

t (19)

∂L

∂W i
1

=

Num∑ ∂L

∂it
∗ it ∗ (1− it) · xT

t (20)

∂L

∂WC
h

=

Num∑ ∂L

∂C̃t

∗ (1− C̃2
t ) · hT

t−1 (21)

∂L

∂W o
h

=

Num∑ ∂L

∂ot
∗ ot ∗ (1− ot) · hT

t−1 (22)

∂L

∂W f
h

=

Num∑ ∂L

∂ft
∗ ft ∗ (1− ft) · hT

t−1 (23)

∂L

∂W i
h

=

Num∑ ∂L

∂it
∗ it ∗ (1− it) · hT

t−1 (24)

where the critical steps are equation (11) and (12) con-
sidering sequence relation. The gradient of L with respect
to the bias terms are calculated similarly. Choosing hyper
parameters is embedded in the training iterations of the
LSTM neural network. The training and choosing process
is summarized in Algorithm 1. After training we obtain the
optimal nh within the range,

nh = argmin
nh

Lnh

best−val,

and the corresponding saved parameters Θ.

Algorithm 1 Training series prediction LSTM neural net-
work
Require: training set Xtraining = {(xt, xt+1), t =
1, 2, · · · , T1} and validation set Xvalidation =
{(xt, xt + 1), t = T1 + 1, T1 + 2, · · · , T2}, the range of nh:
1 ∼ 5, the max− epoch : 5000 and the min− epoch : 100.

1: for nh = 1 to 5 do
2: Initialization: initialize Θ randomly, Lnh

best−val =
+∞

3: Adjusting Θ:
4: for epoch = 1 to max− epoch do
5: Perform forward propagation recurrently using e-

quation (1)-(7) to compute x̃t+1, t = 1, 2, · · · , T1

6: Compute output error:
x̃t+1 − xt+1, t = 1, 2, · · · , T1

7: Perform backward propagation through time using
equation (9)-(24) to compute ∆Θ

8: Update Θ: Θ = Θ+∆Θ
9: Perform forward propagation recurrently to update

the network states using equation (1)-(6)
10: Perform forward propagation recurrently to com-

pute X̃ = {x̃t+1, t = T1 + 1, T1 + 2, · · · , T2}
11: Calculate the cost function on validation set

Lthis−val using equation (8)
12: if Lthis−val < Lnh

best−val then
13: if Lthis−val < Lbest−val × 0.995 then
14: min−epoch = max(epoch×2,min−epoch)
15: end if
16: Lnh

best−val = Lthis−val

17: Save the current Θ and Lnh

best−val

18: end if
19: if epoch ≥ min− epoch then
20: break
21: end if
22: end for
23: end for
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B. Model Evaluation

On the test set, we perform forward propagation recur-
rently using equation (1)-(7) to compute x̃t+1, t = T2 +
1, T2 + 2, · · · , Tend. In order to evaluate the performance
of the LSTM neural network for travel time prediction, we
adopt three criteria to measure the prediction error. They are
mean absolute error (MAE),

MAE =

∑Num |xt+1 − x̃t+1|
Num

,

root mean square error (RMSE),

RMSE =

√∑Num
(xt+1 − x̃t+1)2

Num
,

and mean relative error (MRE),

MRE =

∑Num |xt+1−x̃t+1|
xt+1

Num
,

where Num is the total number of test samples. Additionally,
we predict x̃t+2, x̃t+3, x̃t+4 on the test set.

C. Experiments Results and Discussions

In the model training part, we obtain the optimal nh within
the set range and the corresponding saved parameters Θ for
each link in travel time prediction. We show the distribution
of the optimal nh in Table I. The result in Table I indicates
that the structure of the LSTM neural network varies with
different links. Therefore model complexity of the LSTM
neural network must adapt to different travel time patterns
collected from different links.

TABLE I
THE DISTRIBUTION OF THE OPTIMAL nh

The optimal nh 1 2 3 4 5

The number of links 16 14 17 9 10

In the model evaluation part, we get the predicted multiple
time periods travel times: 1-step ahead, 2-step ahead, 3-
step ahead and 4-step ahead for each link. To see the
prediction performance of the LSTM neural network, we
present the MAE, RMSE, MRE results in Fig. 5-Fig. 7 and
the median and 95%th values of them in Table II. Obviously,
1-step ahead predictions have relatively minor errors while
the errors of multi-step predictions grow with the number
of steps. The MRE of 4-step ahead predictions can even
exceed 1 for two links illustrated in Fig. 7. Therefore timely
historical travel time acquisition is important in obtaining
accurate prediction of future travel time.

V. CONCLUSION

We explore a deep learning model, the LSTM neural
network model, for travel time prediction. Employing the
travel time data provided by Highways England, we con-
struct 66 series prediction LSTM neural networks for the

TABLE II
MODEL PERFORMANCE STATISTICS

Step ahead
Median 95%th

MAE RMSE MRE MAE RMSE MRE

1 16.9s 43.0s 0.070 60.4s 118s 0.173

2 23.1s 54.9s 0.092 89.1s 171s 0.298

3 27.8s 61.1s 0.113 136s 273s 0.446

4 27.8s 66.2s 0.108 193s 388s 0.770
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Fig. 5. The distribution of MAE for each link
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Fig. 6. The distribution of RMSE for each link

66 links in the data set. We obtain the optimal structure
within the setting range for each link after model training and
validation. We predict multi-step ahead travel times for each
link on the test set using the trained model. Evaluation results
show that the 1-step ahead travel time prediction error is
relatively small, the median of MRE for the 66 links is 7.0%
on the test set. Deep learning models considering sequence
relation are promising in traffic series data prediction. The
LSTM neural network model for travel time prediction is a
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Fig. 7. The distribution of MRE for each link

good example. For future work, we will go on the research to
improve prediction accuracy. One future direction is to apply
ensemble methods including ensemble models and ensemble
data sources to address bursts in travel time. Furthermore,
with the rapid development of deep learning, we will try to
apply more advanced models to solve prediction problems
in transportation.
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