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(a) (b)

(c) (d)

Fig. 3. Examples of detection performances with different change types:
(a) abrupt and (b) drift changes. (c) and (d) Detection results, the blue line
refers to the estimated LSDD values; and the red dotted line is the threshold.
A change is detected once an LSDD value is above the threshold.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Real FP rates versus the expected FP rates over different experiments.
Lines represent the results with different (n, m) sizes. In the abscissas we
have the expected FP value, on the ordinates the real computed FP rates.
(a)–(f) D1–D6.

works on a nonstationary dataset where p(x) �= q(x). Finally,
the real FP rate is computed on the first test, as the ratio of
FPs on Mt tests, while the FN rate is experimentally assessed
on the second experiment as the ratio of FNs.

In order to show the effectiveness of self-adaptive thresh-
olds and the influence on FN rates, various combinations of
sizes n′, m′ ≥ 100 are considered during the test phase. The
new threshold Tμ′′ is derived according to (20). In this exper-
iment, Mt is set to 2000, the predefined FP rates belong to set
{10%, 2%, 1%, 0.2%, 0.1%}, and sizes n′, m′ to {100, 200}.
Experiments are repeated 200 times to compute averaged FP
and FN rates.

Results are shown in Figs. 4 and 5, respectively. Each
subfigure in both figures shows the results on each applica-
tion: (a)–(f) D1–D6 in Fig. 4; (a) D2, (b) D3, (c) D5, and
(d) D6 in Fig. 5. In the two figures, the abscissas refer to
the predefined FP rates, while ordinates refer to averaged FP

(a) (b)

(c) (d)

Fig. 5. Real FN rates under different predefined FP rates. Lines represent
the results with different (n, m) sizes. In the abscissas we have the predefined
FP rates, on the ordinates the real computed FN rates. (a) D2. (b) D3. (c) D5.
(d) D6.

and FN rates, respectively. Lines represent results with differ-
ent (n, m) sizes. Since drift changes in applications D1 and
D4 are with different change rates, we do not record their
FN rates.

As shown in Fig. 4, the real FP rates with n, m = 100
are close to the predefined ones, situation which indicates
that the proposed method is effective in controlling the FP
rates. Moreover, the FP rates with sizes n(m) > 100 are
much smaller than the predefined values with n = 100, which
yields to the expected conclusion that a larger window size
helps to achieve lower FP rates. Results with cases (100, 200)

and (200, 100) are similar and the corresponding lines
overlap.

In Fig. 5(a) and (b), lower FP rates correspond to higher
FN rates when the two distributions �Ho and �H1 overlap,
which can be verified in Fig. 1. When changes are significant,
the FN rates stay at zero as shown in Fig. 5(c) and (d).

F. Change Detection Performance

In this section, we compare the LSDD-Inc detection method
with existing methods. Two different window sizes with n =
m = 100 and n = m = 200 are applied to all methods, and dur-
ing the test phases with LSDD-Inc and LogKStest, we update
the reference Zp with the whole training set, i.e., n′ = Nt.
For LSDD-Inc2, n = m = 100 during the training phase and
n = Nt, m′ = 200 in the test phase. The detection performance
is shown in Table II; ND represents not detected.

In order to show performances of different methods, we
apply statistical tests on the detection accuracy [Acc(%)].

For instance, the Friedman test verifies the significance of
differences [37]. The test ranks the jth method for application
Di r j

i performance (1 is the best method). Ranking results are
given in Table III, where average ranks are assigned in case of
ties. The ranks for each method are averaged Rj = (1/7)

∑
r j

i
to compute the statistics

FF = 11.51

where FF satisfies an F-distribution with 9 and 54 degrees
of freedom. However, the critical value of such a distribu-
tion F(9, 54) with confidence level α = 0.05 is 2.0585,
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TABLE II
CHANGE DETECTION PERFORMANCE ON DIFFERENT APPLICATIONS

which is much smaller than FF . Therefore, the null hypoth-
esis is rejected, which means these detection accuracies are
significantly different.

Then, we considered the Nemenyi test. The test investi-
gates the differences between averaged ranks and the critical
difference (CD)

CD = 5.1205.

However, most of the differences between Rj(j = 1, . . . , 10)

are smaller than CD, which rejects the hypothesis about
significant difference. Here, we can claim that LSDD-Inc2 sig-
nificantly outperforms LogKStest, whereas no such conclusion
can be confirmed for tests LSDD-Inc2 and LSDD-CDT.

We further conducted a pairwise comparison with
the Wilcoxon Signed-Ranks Test. The method ranks the

differences in accuracy of two methods for each dataset, and
computes a statistic z, where the null hypothesis is rejected if
z is smaller than −1.96 at confidence 0.95 [37]. It should be
noted that for fair comparison, only different methods with the
same window sizes or the same methods with different sizes
are tested in pairs. Those above average rank 5.5, are removed
because of their poor performance.

Results are shown in Table IV, where 1 indicates the rejec-
tion of the null hypothesis so that the compared methods are
significantly different, 0 means nonrejection and * says that no
comparison can be carried out. We can conclude the following.

1) H-ICI shows no significant detection performance dif-
ferences when compared with other methods.

2) LSDD-Inc2 is significantly better than other methods
except H-ICI.
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TABLE III
COMPARISON ON DETECTION ACCURACY: FRIEDMAN TEST

TABLE IV
PAIRWISE COMPARISON: WILCOXON SIGNED-RANKS TEST

3) Methods with larger window sizes, i.e., n = m = 200,
outperform those with smaller ones, as expected.

4) Given the same window sizes, LSDD-Inc works signif-
icantly better than LSDD-CDT and LogKStest, but only
slightly better than HDDDM.

It can be concluded that LSDD-Inc can detect changes
more accurately than H-ICI and other methods when apply-
ing the same window sizes, and enlarging the test set Zq will
improve the detection performance with smaller FP rates, like
LSDD-Inc2.

LogKStest shows the worst performance with the highest
FP rates, although it reports a contained latency. Moreover, it
can not deal with applications with categorical features, i.e.,
discrete values, because the estimation of pdfs with GMM fails
to converge. In other cases with continuous pdfs, increasing
sizes n, m will reduce the FP rates but cause larger detection
delays.

HDDDM demonstrates similar performance as LogKStest
especially with small window sizes, whereas it does not limit
the attribute types. With the increase of n and m, the FP rates
decrease, while the FN rates and detection delays unexpectedly
increase. This mainly results from the inappropriate updating
of the reference set. The data set has to be large enough to
perceive the difference. In this case, if changes are not detected
timely, nonstationary instances in Zq will be removed into Zp

which may change the underlying pdf of the reference set.
H-ICI has the highest accuracy in some applications, but it

fails to detect changes in multidimensional applications (D2-3)
and application with categorical features (D6).

The LSDD-CDT presents acceptable results. However, since
the reference set Zp is almost fixed with only n samples, the
FP rate appears to be high. Furthermore, the execution time

is high because of the exhaustive computation of deriving �̂

and ĥ with (n + m) samples each time.
LSDD-Inc shows excellent performance with accurate detec-

tion in most applications. The detection delay is smaller than
other methods when dealing with abrupt changes, and com-
parable when detecting drift ones. It also shows that with the
increase of window sizes, the delay decreases in the drift cases,
whereas it increases in the abrupt ones. This happens since in
the drift case, more nonstationary samples in Zq help to reveal
the differences between Zp and Zq earlier. However, in the
abrupt case, a larger window includes more stationary samples
which lowers the differences. LSDD-Inc fails in application D7
where a small fluctuation occurs before the artificial change.
The problem can be solved by considering a larger window
size. In addition, thanks to the incremental computation, the
execution time reduces compared to LSDD-CDT.

LSDD-Inc2 provides the highest accuracy. Thresholds Tμ′′
with n′ = Nt, m′ = 2m contribute to reduce the FP rates as ana-
lyzed in Section III. FN rates are 0 in all the applications, since
distributions �H0 and �H1 of estimates D̂2

λ weakly overlap.
Even if H-ICI works perfectly in 1-D applications with con-

tinuous data, LSDD-Inc and LSDD-Inc2 tests outperform other
methods.

VI. CONCLUSION

In this paper, we propose an incremental change detection
algorithm based on the LSDD method (LSDD-Inc). We prove
that in stationary conditions, the estimate D̂2

λ with fixed ker-
nel centers is distributed as a linear combination of k(k + 1)

nonindependent noncentral Chi-square distributions. We pro-
vide a theoretical bound between the window size and FP rate,
which permits the test to adapt the window size to improve
detection performance without the need to retrain. During the
training phase, a bootstrap-based distribution is considered to
approximate the real one, and thresholds are derived accord-
ing to the desired FP rates. When the window sizes increase,
new thresholds can be determined directly from already avail-
able estimates. For online detection, we also estimate D̂2

λ

incrementally.
Comprehensive experiments show that the proposed method

LSDD-Inc provides good performances in terms of promptness
and accuracy.

APPENDIX A

CHOICE OF THE REGULARIZATION PARAMETER λ

Properties of Matrix H

As shown in (5), H is a real symmetric matrix. As such:
1) H can be decomposed as H = V	VT , where V is an

orthogonal matrix and 	 is a diagonal one;
2) all the elements on the diagonal Hj,j(j = 1, . . . , k) are

equal to (πσ 2)
d/2

. Furthermore, Hj,j = max(H) >

min(H) > 0, where max(H) and min(H) describe
the maximum and minimum values of elements in H,
respectively.
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Given any nonzero vector Z = {zj, j = 1, . . . , k}

ZTHZ =
k∑

i=1

k∑
j=1

zizjHi,j

> min(H)

k∑
i=1

k∑
j=1

zizj

= min(H)

(
k∑

i=1

zi

)2

> 0

and matrix H is positive definite.
Write the diagonal matrix 	 as

	 =

⎛
⎜⎜⎝

r1
r2

· · ·
rk

⎞
⎟⎟⎠

where without loss of generality r1 > r2 > · · · > rk > 0. We
have that r1r2 · · · rk = |H| < (πσ 2)

kd/2
, and

∑k
i=1 ri = k.

Two Equivalent Expressions

From (9) and (10), the two equivalent expressions can be
expressed as

D̂2
1(p, q) = ĥT�̂ = ĥT(H + λI)−1ĥ

D̂2
2(p, q) = �̂TH�̂ = ĥT(H + λI)−TH(H + λI)−1ĥ.

Since (H +λI) could be decomposed as V	λVT with 	λ =
	 + λI, we transform the two expressions as

D̂2
1(p, q) = ĥTV	−1

λ VTĥ

D̂2
2(p, q) = ĥTV	−1

λ 		−1
λ VTĥ

where

	−1
λ =

⎛
⎜⎜⎜⎝

1
r1+λ

1
r2+λ

· · ·
1

rk+λ

⎞
⎟⎟⎟⎠

	−1
λ 		−1

λ =

⎛
⎜⎜⎜⎝

r1
(r1+λ)2

r2
(r2+λ)2

· · ·
rk

(rk+λ)2

⎞
⎟⎟⎟⎠.

When λ > 0, (1/ri) > [1/(ri + λ)] > [ri/((ri + λ)2)] >

0, i = 1, . . . , k, where (1/ri) is the ith eigenvalue of H−1. We
can therefore conclude that D̂2

1(p, q) > D̂2
2(p, q) > 0.

Choice of Parameter λ

D̂2
1(p, q) and D̂2

2(p, q) can be weighted with parameter a to
reduce the bias introduced by λ as

D̂2
λ(p, q) = aĥT�̂ + (1 − a)�̂TH�̂.

We have that

D̂2
λ(p, q) = ĥTV

⎛
⎜⎜⎜⎝

1
r̂1

1
r̂2 · · ·

1
r̂k

⎞
⎟⎟⎟⎠VTĥ (23)

where (1/r̂i) = [(ri + aλ)/((ri + λ)2)] and its derivative with
respect to λ is

d
(

1
r̂i

)

dλ
= (a − 2)ri − aλ

(ri + λ)3
. (24)

In addition, the ratio between the original eigenvalue (1/ri)

and the new one is
1
ri

1
r̂i

= 1

ri
× (ri + λ)2

ri + aλ
= 1 + (2 − a)riλ + λ2

ri(ri + aλ)
. (25)

From (24), when 0 ≤ a ≤ 2, the derivative is smaller
than 0, which indicates the decreasing property of the new
eigenvalues. The right-hand side of (25) is greater than 1 so
that (1/ri) > (1/r̂i). Thus, with the decrease of λ, the value
of (1/r̂i) increases and approaches (1/ri), i.e., the smaller λ

the smaller the bias.
By expanding (1/r̂i) with Taylor

1

r̂i
= 1

ri
+ (a − 2)λ

ri
2

− (2a − 3)λ2

ri
3

+ · · · + (−1)n+1 (na − (n + 1))λn

ri
n+1

+ Rn(λ) (26)

when 0 < λ < 1, the setting of a = 2 could eliminate the
influence brought by the low-order terms of λ. Finally, we have

D̂2
λ(p, q) = 2ĥT�̂ − �̂TH�̂

and (1/r̂i) = [(ri + 2λ)/((ri + λ)2)] where (1/r̂1) < (1/r̂2) <

· · · < (1/r̂k) < (2/λ).
On the other hand, λ is required to control overfitting which

is essential to avoid the singularity of H. A method to control
the RD between D̂2

1 and D̂2
2 has been proposed in [23]

RD = ĥT�̂ − �̂TH�̂

ĥT�̂
= 1 − �̂TH�̂

ĥT�̂

that the largest λ (λ < 1) with corresponding RD smaller than
a given constant is selected.

APPENDIX B

PROOF OF THEOREM 1

D̂2
λ(p, q) can be represented as D̂2

λ(p, q) = ĥTH−1
λ ĥ =∑k

i=1
∑k

j=1 H−1
λ(i,j)ĥiĥj with H−1

λ = V(2	−1
λ −	−1

λ 		−1
λ )VT .

ĥiĥj = (1/4)(ĥi + ĥj)
2 − (1/4)(ĥi − ĥj)

2 with

ĥi + ĥj = 1

n

n∑
l=1

(
ϕ
(
xp,l, ci

)+ ϕ
(
xp,l, cj

))

− 1

m

m∑
l=1

(
ϕ
(
xq,l, ci

)+ ϕ
(
xq,l, cj

))

ĥi − ĥj = 1

n

n∑
l=1

(
ϕ
(
xp,l, ci

)− ϕ
(
xq,l, cj

))

− 1

m

m∑
l=1

(
ϕ
(
xp,l, ci

)− ϕ
(
xq,l, cj

))

where ϕ(xl, ci) = exp(−[(||xl − ci||22)/2σ 2]). Assume
ϕ(xp,l, ci) + ϕ(xp,l, cj), ϕ(xq,l, ci) + ϕ(xq,l, cj), ϕ(xp,l, ci) −
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ϕ(xq,l, cj), and ϕ(xp,l, ci) − ϕ(xq,l, cj) follow distributions
with the means and variances as (upij+, δ2

pij+), (uqij+, δ2
qij+),

(upij−, δ2
pij−), and (uqij−, δ2

qij−), respectively. The central limit
theorem guarantees that, when n and m are sufficiently large,
the following terms converge to Gaussian distributions:

1

n

n∑
l=1

(
ϕ
(
xp,l, ci

)+ ϕ
(
xp,l, cj

)) d−→ N

(
μpij+,

δ2
pij+
n

)

1

m

m∑
l=1

(
ϕ
(
xq,l, ci

)+ ϕ
(
xq,l, cj

)) d−→ N

(
μqij+,

δ2
qij+
m

)

1

n

n∑
l=1

(
ϕ
(
xp,l, ci

)− ϕ
(
xq,l, cj

)) d−→ N

(
μpij−,

δ2
pij−
n

)

1

m

m∑
l=1

(
ϕ
(
yp,l, ci

)− ϕ
(
yq,l, cj

)) d−→ N

(
μqij−,

δ2
qij−
m

)
.

Considering the case with fixed kernel centers {ci, i =
1, . . . , k}, matrix H as well as H−1

λ are fixed. In this case,
since variables xp and xq are independent and the exponen-
tial functions are measurable, ĥi + ĥj and ĥi − ĥj also follow
gaussian distributions:

ĥi + ĥj
d−→ N

(
μpij+ − μqij+,

δ2
pij+
n

+ δ2
qij+
m

)

ĥi − ĥj
d−→ N

(
μpij− − μqij−,

δ2
pij−
n

+ δ2
qij−
m

)
.

Therefore, (ĥi + ĥj)
2/([(δ2

pij+)/n] + [(δ2
qij+)/m]) and (ĥi −

ĥj)
2/([(δ2

pij+)/n] + [(δ2
qij+)/m]) are noncentral Chi-square dis-

tributed with 1 degree of freedom. Since we have established
the preliminary results, the proof of Theorem 1 is as follows.

Proof (Theorem 1): ĥiĥj = (1/4)(ĥi+ĥj)
2−(1/4)(ĥi−ĥj)

2 is
distributed as a combination of two nonindependent noncentral
Chi-square distributions.

Following the symmetry of matrix H, we have (H−1
λ )T =

2(H + λI)−T − (H + λI)−1HT(H + λI)−T = H−1
λ so that H−1

λ

is symmetric.
As a consequence, D̂2

λ(p, q) = ∑k
i=1

∑k
j=1 H−1

λ(i,j)ĥiĥj is dis-
tributed as a linear combination of k(k + 1) nonindependent
noncentral Chi-square distributions.

APPENDIX C

PROOF OF THEOREM 2

Expectation With Finite Samples

Based on the analysis in Appendix B, we compute the
expectations

E

((
ĥi + ĥj

)2
)

= D
(

ĥi + ĥj

)
+ E2

(
ĥi + ĥj

)

= δ2
pij+
n

+ δ2
qij+
m

+ (
μpij+ − μqij+

)2

E

((
ĥi − ĥj

)2
)

= D
(

ĥi + ĥj

)
+ E2

(
ĥi + ĥj

)

= δ2
pij−
n

+ δ2
qij−
m

+ (
μpij− − μqij−

)2

E
(

ĥiĥj

)
= 1

4
E

((
ĥi + ĥj

)2
)

− 1

4
E

((
ĥi − ĥj

)2
)

= 1

4

((
δ2

pij+
n

+ δ2
qij+
m

)
+ (

μpij+ − μqij+
)2

−
(

δ2
pij−
n

+ δ2
qij−
m

)
− (

μpij− − μqij−
)2
)

.

Proof [Theorem 2 1)]: When xp and xq are generated from
the same distribution, i.e., under H0 with p(x) = q(x), we have
δ2

pij+ = δ2
qij+, δ2

pij− = δ2
qij−, μpij+ = μqij+, and μpij− = μqij−.

Therefore

EH0

(
D̂2

λ(p, q)
)

=
k∑

i=1

k∑
j=1

H−1
λ(i,j)E

(
ĥiĥj

)

= 1

4

(
1

n
+ 1

m

) k∑
i=1

k∑
j=1

H−1
λ(i,j)

(
δ2

pij+ − δ2
pij−

)

which shows that by increasing sizes n and m, the expectation
values of estimated LSDD values under H0 decrease. When
H1 holds, i.e., p(x) �= q(x)

EH1

(
D̂2

λ(p, q)
)

= 1

4

k∑
i=1

k∑
j=1

H−1
λ(i,j)

((
δ2

pij+
n

+ δ2
qij+
m

)
+ (

μpij+ − μqij+
)2

−
(

δ2
pij−
n

+ δ2
qij−
m

)
− (

μpij− − μqij−
)2
)

which indicates in the nonstationary conditions, the expecta-
tion values of D̂2

λ also decrease with the increase of n and m.
Proof [Theorem 2 2)]: The difference

EH1

(
D̂2

λ(p, q)
)

− EH0

(
D̂2

λ(p, q)
)

= 1

4

k∑
i=1

k∑
j=1

H−1
λ(i,j)

(
1

m

(
δ2

qij+ − δ2
pij+ − δ2

qij− + δ2
pxj−

)

+ (
μpij+ − μqij+

)2 − (
μpij− − μqij−

)2)
(27)

which is independent of n, but on m only. In other words,
EH1(D̂

2
λ(p, q)) decreases with the increase of n, whereas the

difference between the expectations under H0 and H1 is fixed
no matter how n varies.

Deviation Bounds for Tests With Finite Samples

In order to obtain the upper bound of the difference between
D̂2

λ(p, q) and its expectation E(D̂2
λ(p, q)) under both hypothe-

ses H0 and H1, we apply the McDiarmid bound [38], [39] on
the estimate D̂2

λ(p, q).
Proof [Theorem 2 3)]: Let n + m independent vari-

ables xp,1, . . . , xp,n, xq,1, . . . , xq,m sampled from some set A,
and assume that D̂2

λ(p, q) = f (xp,1, . . . , xp,n, xq,1, . . . , xq,m):
Am+n → R. Changing either xp,l or xq,l in f results in changes
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of ĥ of at most (1/n) or (1/m). We first consider the case with
ĥ′

i = ĥi + (1/n), and −1 ≤ ĥi, ĥ′
i ≤ 1

sup
xp,1,...,xq,m,x̂p,l

∣∣∣D̂2
λ(p, q) − D̂′2

λ (p, q)

∣∣∣
=
∣∣∣ĥTH−1

λ ĥ − ĥ′TH−1
λ ĥ′

∣∣∣

=
∣∣∣∣∣∣

k∑
i=1

k∑
j=1

H−1
λ(i,j)ĥiĥj

−
k∑

i=1

k∑
j=1

H−1
λ(i,j)

(
ĥi + 1

n

)(
ĥj + 1

n

)∣∣∣∣∣∣

=
∣∣∣∣∣∣

k∑
i=1

k∑
j=1

(
2

n
ĥiH

−1
λ(i,j) + 1

n2
H−1

λ(i,j)

)∣∣∣∣∣∣

≤ 2

n

k∑
i=1

k∑
j=1

∣∣∣ĥi

∣∣∣
∣∣∣H−1

λ(i,j)

∣∣∣+ 1

n2

∣∣∣∣∣∣
k∑

i=1

k∑
j=1

H−1
λ(i,j)

∣∣∣∣∣∣.

H−1
λ can be expressed as

H−1
λ = V

⎛
⎜⎜⎜⎝

1
r̂1

1
r̂2 · · ·

1
r̂k

⎞
⎟⎟⎟⎠VT (28)

and H−1
λ(i,j) = ∑k

l=1 (1/r̂l)Vi,lVj,l. Since V is an orthogo-

nal matrix, it is obvious that (1/r̂1) < H−1
λ(i,i) < (1/r̂k),

i = 1, . . . , k. We then estimate the bound of H−1
λ(i,j) as

H−1
λ(i,i) + H−1

λ(j,j) + 2H−1
λ(i,j) =

k∑
l=1

1

r̂l

(
Vi,l + Vj,l

)2

<
1

r̂k

k∑
l=1

(
Vi,l + Vj,l

)2 = 2

r̂k

H−1
λ(i,i) + H−1

λ(j,j) + 2H−1
λ(i,j) >

1

r̂1

k∑
l=1

(
Vi,l + Vj,l

)2 = 2

r̂1
.

Therefore, (2/r̂1) < H−1
λ(i,i)+H−1

λ(j,j)+2H−1
λ(i,j) < (2/r̂k), and we

can derive that |H−1
λ(i,j)| < (1/r̂k) − (1/r̂1) < (1/r̂k) < (2/λ).

In addition

∣∣∣∣∣∣
k∑

i=1

k∑
j=1

H−1
λ(i,j)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
k∑

i=1

1

r̂i

⎛
⎝ k∑

j=1

Vji

⎞
⎠

2
∣∣∣∣∣∣∣

<

∣∣∣∣∣∣∣
1

r̂k

k∑
i=1

⎛
⎝ k∑

j=1

Vji

⎞
⎠

2
∣∣∣∣∣∣∣

= k

r̂k
<

2k

λ
.

The upper extreme satisfies

sup
xp,1,...,xq,m,x̂p,l

∣∣∣D̂2
λ(p, q) − D̂′2

λ (p, q)

∣∣∣

<
2k2

n

2

λ
+ 1

n2

2k

λ
= 2k(2nk + 1)

n2λ
.

The same procedure can be applied when considering ĥ′
i =

ĥi + (1/m), and we obtain

sup
xp,1,...,xq,m,x̂q,l

|D̂2
λ(p, q) − D̂

′2
λ (p, q)| <

2k(2mk + 1)

m2λ
.

Consequently, according to McDiarmid’s
Inequality [38], [39], for any ε > 0, we have

Pr
(∣∣∣D̂2

λ(p, q) − E
(

D̂2
λ(p, q)

)∣∣∣ ≥ ε
)

≤ exp

⎛
⎝− ε2λ2

4k2(2nk+1)2

n3 + 4k2(2mk+1)2

m3

⎞
⎠

where Pr denotes the probability over n samples with pdf p(x)
and m with q(x).

The inequality reveals some properties:
1) with the increase of sizes n and m, the deviation bounds

decrease;
2) a larger λ or a smaller k (less centers) will bring a larger

deviation bound;
3) without adding other restrictions, the above inequality

applies to both cases under H0 and H1.
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