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An Incremental Change Detection Test Based
on Density Difference Estimation
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Abstract—We propose incremental least squares density
difference (LSDD) change detection method, an incremental test
to detect changes in stationarity based on the difference between
the unknown prechange and the post-change probability den-
sity functions (pdfs). The method is computationally light and,
hence, adequate to process continuous datastreams, as those
emerging from the Internet of Things and the big data frame-
work. The incremental change detection test operates on two
nonoverlapping data windows to estimate the LSDD between
the two pdfs. We construct a theoretical framework that shows
how the distribution of LSDD values follows a linear combi-
nation of χ2 distributions and provides thresholds to control
false positive rates. The proposed test can operate online, with
needed estimates and thresholds computed incrementally as fresh
samples come. Comprehensive experiments validate the effec-
tiveness of the test both in detecting abrupt and drift types of
changes.

Index Terms—Change detection, incremental computing,
incremental least squares density difference change detection
method (LSDD-Inc), probability density function (pdf)-free.

I. INTRODUCTION

T IME invariance is a strong hypothesis to make when
dealing with datastreams, no matter whether refer-

ring to learning problems [1]–[4] or control ones [5], [6].
In fact, in the long acquisition run, we cannot guaran-
tee anymore that the interaction between sensors and the
environment/system or the environment/system itself will not
change [7], [8].

In order to cope with this very relevant issue, researchers
have developed methods for an online detection of changes
in stationarity, and methodologies to learn in such evolving
environments. Most of existing research aims at detecting
changes in stationarity in the datastreams by extracting fea-
tures and inspecting associated statistics. Not rarely, features
are extracted from two nonoverlapping data windows referring
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to prechange and possibly postchange conditions, respectively.
The prechange window is composed of stationary samples x
extracted according to some unknown, but fixed, probability
density function (pdf) p(x) to constitute the nominal reference
set Zp. The latter sliding window collects instead fresh sam-
ples as they come, extracted according to unknown pdf q(x) to
populate the test set Zq. A change occurs in the sliding win-
dow when q(x) �= p(x). Following this comment, and given
the fact we have only information about the prechange and
post-change samples, a change occurs when “data in Zq do
not follow the distribution that generated Zp according to a
defined confidence level.” The opposite holds.

Some change detection methods operate by comparing
features extracted from the two windows, e.g., the sample
mean or rank-based statistics, to detect changes in sta-
tionarity. In this direction, a change-point formulation is
proposed in [9] to inspect changes affecting mean or vari-
ance in normally distributed samples. The method is then
extended in [10] and [11] to deal with univariate non-Gaussian
sequences. Changes are detected when designed statistics
based on Mann–Whitney [12] and Lepage [13] tests exceed
thresholds associated with predefined false positive (FP) rates.
In order to deal with multivariate cases, [14] proposes a
KNN-based test measuring the proportion of samples among
k nearest neighbors that belong to a given window. It is shown
that the derived statistics asymptotically satisfy a normal dis-
tribution, from which a threshold can be derived to meet a
tolerated FP rate.

Only few papers attempt at directly comparing the known
pdfs, e.g., with the KL-divergence or the Hellinger distance.
The main restriction here is that reality is mostly pdf-free, in
the sense that the distribution families are unknown. In order
to handle this issue, researchers have found ways to estimate
the pdfs directly from collected samples, with all associated
limits, commonly by relying on histograms or kernel density
estimation methods [15]. Most of the methods work incre-
mentally to reduce the computational load associated with the
integration of new samples in the change detection test. For
instance, [16] suggests to extract frequency histograms from
Zp and Zq and compare them according to the KL-divergence;
a partition incremental discretization algorithm is applied to
guarantee incremental computation. A different approach is
proposed in [17], where frequency histograms are estimated
with a kdp-tree computing the relative entropy: the tree is
updated incrementally by adapting the corresponding nodes
with new instances. A Gaussian mixture model (GMM) is con-
sidered in [18] to approximate the pdfs of the neighborhood
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of each pixel in SAR images: the KL-divergence is then
used to detect changes. However, the work in [19] shows
how the Hellinger distance seems to be more attractive than
the KL-divergence for change detection given its symmetry
and boundedness properties. In [20], pdf p(x) is approxi-
mated with GMM, while Lepage and one-sided t-tests are
applied to monitor the changes in the log-likelihood of
instances.

Last methods are based on a two-step procedure requir-
ing at first to estimate the two pdfs and then evaluate their
distance; variability associated with the finiteness of the data
window and presence of noise in input data reduce the effec-
tiveness of the methods. In order to mitigate this problem,
some results present in the literature aim at directly mea-
suring the density-ratio of the two distributions [21] or their
density-difference [22] directly from available data windows.
In our previous work [23], we investigated the performance
and extended the least squares density difference (LSDD)
method. A family of ensemble LSDD-based methods was also
introduced in [24]. Even though effective, these last meth-
ods are computational intensive and lighter solutions must be
proposed when computation is an issue.

In this paper, we investigate the LSDD method for change
detection, shed light on some properties associated with the
method and propose an incremental change detection test to
reduce the computational request. The novel contributions
reside as follows.

1) A theorem stating that the estimated LSDD values D̂2
λ

are distributed as a linear combination of noncentral chi-
square distributions.

2) A theorem linking window size with FP and negative
rates. As a consequence, the change detection test can
adaptively enlarge the window size to improve detection
performance without requesting any retraining phase.

3) Computationally light incremental algorithm for D̂2
λ.

The structure of this paper is as follows. Section II briefly
recalls the LSDD method. Section III provides the main
theoretical results and introduces the adaptive threshold mech-
anism. The detailed description of the incremental LSDD
change detection method (LSDD-Inc) is given in Section IV.
Finally, experiments showing the validity of the proposed
change detection method are presented and commented in
Section V.

II. LSDD METHOD

The LSDD is defined as the scalar

D2(p, q) =
∫

(p(x) − q(x))2dx (1)

where x ∈ Rd is a real vector, and p(x), q(x) are two unknown
pdfs. Instead of estimating p(x) and q(x), we directly estimate
the difference p(x) − q(x) with the Gaussian kernel model

g(x,�) =
k∑

i=1

θi exp

(
−‖x − ci‖2

2

2σ 2

)
(2)

where k is the number of kernel functions, ci the ith kernel
center, � = [θ1, θ2, . . . , θk] a parameter vector, and σ is a
scale parameter.

The optimal parameter � is the one minimizing the loss

J(�) =
∫

(g(x,�) − (p(x) − q(x)))2dx + λ�T�. (3)

λ > 0 is an L2-regularizer controlling overfitting.
After some calculus, we obtain that

J(�) =
∫

g(x,�)2dx − 2
∫

g(x,�)(p(x) − q(x))dx

+
∫

(p(x) − q(x))2dx + λ�T�

= �TH� − 2hT� +
∫

(p(x) − q(x))2dx + λ�T� (4)

where H is a k × k matrix, and h a k × 1 vector

Hi,j =
∫

exp

(
−||x − ci||22

2σ 2

)
exp

(
−||x − cj||22

2σ 2

)
dx

=
(
πσ 2

)d/2
exp

(
−||ci − cj||22

4σ 2

)
(5)

hi =
∫

exp

(
−||x − ci ||22

2σ 2

)
p(x)dx

−
∫

exp

(
−||x − ci ||22

2σ 2

)
q(x)dx (6)

i, j = 1, . . . , k. Defined Zp = {xp,1, . . . , xp,n} as the data set
drawn according to p(x) and Zq = {xq,1, . . . , xq,m} that from
q(x), Monte Carlo sampling provides estimates

ĥi = 1

n

n∑
l=1

exp

(
−||xp,l − ci ||22

2σ 2

)

− 1

m

m∑
l=1

exp

(
−||xq,l − ci ||22

2σ 2

)
. (7)

Finally, �̂ is

�̂ = arg min
�

(
�TH� − 2ĥT� + λ�T�

)

= (H + λI)−1ĥ. (8)

By replacing p(x) − q(x) with g(x, �̂), two equivalent
expressions of the D2-distance can be obtained

D̂2
1(p, q) =

∫
g
(

x, �̂
)
(p(x) − q(x))dx = ĥT�̂ (9)

D̂2
2(p, q) =

∫
(g(x, �̂))2dx = �̂TH�̂. (10)

In order to reduce the bias introduced by λ, we can write
(details in Appendix A)

D̂2
λ(p, q) = 2ĥT�̂ − �̂TH�̂

= ĥTH−1
λ ĥ (11)

where H−1
λ = 2(H + λI)−1 − (H + λI)−TH(H + λI)−1.

We comment that the higher D̂2
λ the larger the discrepancy

between p(x) and q(x).
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III. SOME THEORETICAL RESULTS ABOUT LSDD

Estimate D̂2
λ is a random variable depending on the particu-

lar realization of sets Zp and Zq as well as their cardinalities n
and m, respectively. As such, in order to introduce a confidence
level for FP, we need to determine the generating distribution
and, then, the influence of the windows sizes n and m on the
proposed method. Subsequent theorems address these aspects.

A. Distribution of D̂2
λ

Theorem 1: In stationary conditions, the distribution � of
D̂2

λ is a linear combination of k(k + 1) noncentral chi-square
distributions provided that kernel centers are given.

The proof derives from the central limit theorem and is
given in Appendix B. The theorem also implicitly states that
once n and m are fixed, so it is the resulting distribution
of D̂2

λ.
Since the underlying distribution is now available, we can

derive the threshold Tμ permitting to detect changes in sta-
tionarity at confidence level 1 −μ (the FP rate is hence set to
μ). If the number of available samples is not enough to con-
figure the parameters of the distributions, we can derive the
required threshold, as suggested [17], as the 1 − μ percentile
of the estimates so that

Pr
(

D̂2
λ > Tμ

)
= μ. (12)

As a consequence, the hypothesis test behind the change
detection test can be written as

H0 : p(x) = q(x)

H1 : p(x) �= q(x).

Whenever pdf q(x) differs from p(x), values D̂2
λ exceed Tμ

with confidence level 1 − μ, i.e., H0 is rejected, and a change
is detected. It has to be noted that the detected change occurs
in the current sliding window Zq, and we do not know the
exact change location within the window. Other methods can
be used to improve the location estimate, e.g., as proposed
in [25].

In those cases where the training set is small and we cannot
generate enough estimates for D̂2

λ (say [Nt/(n + m)] < 100),
we propose to use a bootstrap procedure [17], [23] to gen-
erate enough D̂2

λ values to configure H0. This procedure is
appropriate since it is proved that bootstrap approximates the
source distribution provided the pooling set is sufficiently
informative [26].

In this paper, bootstrap operates as follows. At first, win-
dows Zp of size n, Zp,i, i = 1, . . . , M and Zq of size m,
Zq,i, i = 1, . . . , M are drawn from the stationary training set
with replacement. The first M subsets are assumed to be gener-
ated from p(x) and the second ones from q(x). For the generic
ith window couple {Zp,i, Zq,i}, the ith estimate D̂2

λ is computed
according to (11). The M couples are then representative of
the situation in the stationary condition and used to configure
test H0. The needed threshold is then computed according to
the predefined FP rate as shown above once a tolerated FP
rate has been given.

Fig. 1. Distribution of D̂2
λ with different n. We centered the distributions

and shifted threshold Tμ (to T ′
μ) so that the new expectations of D̂2

λ under
H0 are zero.

It should be emphasized that the proposed method only
assumes the training set to be stationary to design the change
detection test associated with H0. This hypothesis is reason-
able since time variance generally develops late in time, e.g.,
think of sensor aging.

B. Influence of the Window Size

The influence of the window size on the change detection
test is presented as follows.

Theorem 2: The relationship between the window size and
the LSDD statistics

1) The expectation of D̂2
λ shows an inverse dependence in

n and m

E
(

D̂2
λ

)
= f

(
1

n
,

1

m

)
. (13)

2) The difference of expectations EH1(D̂
2
λ) − EH0(D̂

2
λ)

inversely depends on m only

EH1

(
D̂2

λ(p, q)
)

− EH0

(
D̂2

λ(p, q)
)

= f0

(
1

m

)
. (14)

3) The probability of an ε > 0 deviation bound diminishes
when n and m increase

Pr
(∣∣∣D̂2

λ(p, q) − E
(

D̂2
λ(p, q)

)∣∣∣ ≥ ε
)

≤ f1

(
1

n
,

1

m

)
. (15)

The proof and functions f , f0, and f1 are given in Appendix C.
Theorem 2 indicates that the ε deviation bound decreases

with n, whereas the difference between expectations does not,
so that the overlap between the distributions �H0 and �H1 of
D̂2

λ diminishes.
The schematic of Fig. 1 shows how distributions change

when the window size moves from n to n′ > n. Define Tμ′
to be the threshold associated with the larger size n′, in turn
associated with FP rate μ′. Since point 2) of Theorem 2 states
that the difference of the expectations does not depend on n,
we keep the distance between EH0n′(D̂2

λ) and Tμ′ constant,
that is

EH0n′
(

D̂2
λ

)
− Tμ′ = EH0n

(
D̂2

λ

)
− Tμ. (16)
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Fig. 2. Description of the enlarged reference set. The green points represent
continuously generated samples and the red ones are samples included in
subsets Zp and Zq, respectively. A change occurs in Zq and the location is
shown with a black arrow.

This comment leads to a major outcome since it permits us
to both express the FP and false negative (FN) rates in terms
of n′

FP rate : Pr
(

D̂2
λH0n > Tμ

)
= μ > Pr

(
D̂2

λH0n′ > Tμ′
)

= μ′

FN rate : Pr
(

D̂2
λH1n < Tμ

)
> Pr

(
D̂2

λH0n′ < Tμ′
)
. (17)

In particular, (17) shows that a larger n′ permits to achieve a
better change detection performance by both lowering FP and
FN rates. In addition, since the probability associated with the
ε deviation bound also decreases with the increase of m (15),
m also controls the FP rates so that a larger m reduces FPs.
However, its influence on the FN rate is unknown at this stage
of research.

C. Self-Adaptive Thresholds

During the operational phase, a single window of size n
extracted from the training set represents a set of realizations
following p(x). At the same time m samples compose the slid-
ing window associated with q(x). A reservoir sampling method
was proposed in [27] to mitigate the fact that a single window
is considered, which updates Zp to achieve lower FP rates [23].
Other approaches consider ensemble methods to include sev-
eral reference windows to better represent p(x) [24]. However,
despite the fact we might consider those approaches, a natural
question arises: “can we adapt the reference set Zp to host more
than n instances during the operational phase of the change
detection test?” The answer to the question is clearly “yes,” but
it would a priori request a computationally expensive train-
ing phase. We then search for methods that can host more
data with size n′ (n′ > n), and compute the new threshold Tμ′
directly from the available estimate D̂2

λH0n.
We propose in the sequel an adaptive mechanism for gen-

erating online the new thresholds as data come from the
datastream. Initially, at training time, the change detection test
undergoes a configuration phase where the limited size of the
training set forces the designer to consider small values for n
and m. Given n and m, threshold Tμ is derived accordingly.
Then, during the operational phase, more stationary instances
with size n′ so that n′ > n are added to Zp. We follow (16) to
determine the new associated threshold Tμ′ , which permits to
control the FP rates. An intuitive description of the enlarged
reference set is shown in Fig. 2, where more stationary samples
are included in Zp.

Appendix C shows that in a stationary situation (H0 holds),
the expectation of D̂2

λ with sizes n and m can be expressed as

EH0n

(
D̂2

λ

)
=
(

1

n
+ 1

m

)
C1 (18)

where C1 is a constant depending on p(x) and q(x) = p(x). It
can be proved that having n′ and m, the new threshold becomes

Tμ′ = EH0n′
(

D̂2
λ

)
−
(

EH0n

(
D̂2

λ

)
− Tμ

)

=
(

1
n′ + 1

m
1
n + 1

m

− 1

)
EH0n

(
D̂2

λ

)
+ Tμ (19)

where both the required expectation EH0n(D̂2
λ) and threshold

Tμ are available.
Since Theorem 2 tells us that a larger m lowers the FP rate,

it might be worth to enlarge the Zq with size m′(m′ > m) and
compute the associated threshold Tμ′′ with μ′′ < μ′ < μ. We
can write that

Tμ′′ =
(

1
n′ + 1

m′
1
n + 1

m

− 1

)
EH0n

(
D̂2

λ

)
+ Tμ. (20)

This mechanism permits the method to operate online and,
once a potential change is detected, to host more samples
to decide whether confirm or reject the change in stationary
hypothesis with better confidence by operating on n and m
directly.

IV. LSDD-INC: INCREMENTAL LSDD-BASED

CHANGE DETECTION TEST

An incremental computational approach is always appre-
ciated when dealing with datastreams both to speed up the
computation and relieve the storage needs. This section moves
in this direction by proposing an incremental change detection
test.

We comment that when the k kernel centers are given, both
matrix H and H−1

λ are fixed for a given λ. As a result, the
online computation of (11) only requires ĥ to be estimated, as
Zq updates with new instances. Value ĥ at the (i+m)th sample
can be expressed as

ĥj(i) = C2 − 1

m

i+m∑
l=i+1

exp

(
−||xq,l − cj ||22

2σ 2

)

= C2 − f2 (21)

where C2 = (1/n′)
∑n′

l=1 exp(−[(||xp,l − cj ||22)/2σ 2]) repre-
sents a constant value associated with Zp. Since we assume
that the training set is stationary, we add the whole set into
Zp with n′ = Nt in this paper. It should be noted that Zp can
be enlarged further with n′ > Nt provided that new incoming
are granted to be stationary.

When the test window Zq slides and collects the (i+m+1)th
instance, we have that

ĥj(i+1) = C2 − 1

m

i+m+1∑
l=i+2

exp

(
−||xq,l − cj ||22

2σ 2

)

= C2 − f ′
2
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Algorithm 1 LSDD-Inc
1: Input: Training set Nt, window sizes n and m, FP rate μ, number

of resampled subsets 2M;
Output: Change location.

2: Bootstrap 2M subsets from the training set, the first M subsets
coming from distribution p(x) with size n, and the remaining M
ones from q(x) = p(x) with size m;

3: Provide the M LSDD estimates according to (11);
4: Derive thresholds Tμ according to (12);
5: Take advantage of the whole training set so that n′ = Nt; derive

the new threshold Tμ′ according to (19);
6: Prepare Zq with m recently collected samples; i = 1;
7: Estimate C2 and f2 according to (21);
8: while (1) do
9: Incrementally estimate f

′
2 and update ĥ according to (22);

10: Estimate the LSDD value D̂2
λ with (11);

11: if D̂2
λ > Tμ′ then

12: Change in stationarity is detected at location i, with confi-
dence 1 − μ;

13: Break;
14: else
15: Update sliding window Zq;
16: i = i + 1;
17: end if
18: end while

f ′
2 = f2 + 1

m

(
exp

(
−||xq,i+m+1 − cj||22

2σ 2

)

− exp

(
−||xq,i+1 − cj||22

2σ 2

))
. (22)

Within this incremental approach, at each time step, only
two instances xq,i+m+1 and xq,i+1 need to be recomputed, and
at most (m + 1) samples need to be stored.

The final incremental change detection method is given in
Algorithm 1. Since we deal with datasteams (i.e., data are
generated continuously), the loop terminates (step 13) only
when a change is detected. Reactions to the change, e.g., to
update the application or retrain the detection method, can be
considered.

V. EXPERIMENTS

A. Datasets

To contrast the performances of the proposed incremen-
tal method LSDD-Inc with other change detection methods,
seven applications are considered, including unidimensional
and multidimensional ones. Since the exact change location
in real applications is hardly available, most of the applica-
tions (D1–D6) are simulated. However, one real-world dataset
(D7) is considered to test the effectiveness of the method in a
real application.

1) Samples of application D1 follow a gaussian distribu-
tion N(0, 0.5). The change induces a slow drift in the
distribution toward distribution N(0.5, 0.5).

2) Application D2 is inspired by a 10-D problem [28],
whose instances satisfy a multivariate gaussian distri-
bution. Means are fixed at u1,i = u2,i = 0; the
covariance shifts from σ1,ij(i=j) = 0.5, σ1,ij(i�=j) = 0 to
σ2,ij(i=j) = 0.5, σ2,ij(i�=j) = 0.4, i, j = 1, . . . , 10.

TABLE I
DETAILS OF THE DATASETS

3) Application D3 refers to a two-class rotating mixture
of Gaussians application [29] with class centers shift-
ing from u1 = [1/

√
2, 1/

√
2], u2 = [−1/

√
2,−1/

√
2]

to u1 = [1/
√

2,−1/
√

2], u2 = [−1/
√

2, 1/
√

2].
Covariance matrices are fixed at 	1 = 	2 =
[0.5, 0; 0, 0.5].

4) Application D4 refers to problem [30] with samples
satisfying the restriction: (x1 − a)2 + (x2 − b)2 ≤ r2.
Changes occur with the radius r slowly drifting from 0.2
to 0.3. a = b = 0.5; variables x1 and x2 are uniformly
distributed in interval [0, 1].

5) Application D5 refers to a moving hyperplane prob-
lem [30] with y ≤ −a0 + a1x1 + a2x2. a1 = a2 = 0.1,
a0 shifts from −1 to −3.2; xi(i=1,2), y are uniformly
distributed in intervals [0, 1] and [0, 5], respectively.

6) Application D6 is the STAGGER problem [31] with
categorical features. We transform this classification
problem into a detection one by taking only one class
of samples. Changes occur with concept1 shifting to
concept2.

7) Application D7 is a real application with samples col-
lected from a combined cycle power plant [32], [33],
where hourly averaged temperature, ambient pressure,
relative humidity and exhaust vacuum measurements are
used to predict the net hourly electrical energy output.
We normalize the dataset to interval [−1, 1], and add a
change by shifting the normalized temperature from x1
to −x1.

We summarize these datasets in Table I to show their dif-
ferent properties, where Syn is short for synthetic, Dim for
dimension, ChgType for change type, and AttrType for attribute
type.

B. Other Methods

Four methods are introduced for comparison, includ-
ing our previous (LSDD-CDT test) [23], a statistical
test (LogKStest) [20], an incrementally distance-
based method (HDDDM) [19] and a hierarchical
method (H-ICI) [34]. We point out that the last three
methods are well established change detection methods,
working either on pdfs or in 1-D applications.

We also propose LSDD-Inc2, an evolution of LSDD-Inc,
that takes advantage of the fact FP rates reduce with larger
m′ as claimed by Theorem 2 (here we consider m′ = 2 m).
Needed thresholds follow (20).
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In more details.
1) LogKStest: The test proposed in [20] detects changes by

monitoring the log-likelihood of the pdf p(x) of scalar x

L(x) = log(p(x)).

By estimating p(x) with a mixture of w Gaussians

L̂(x) = −w

2

(
log
(
(2π)d

)
det
(
	p,i∗

)

+ (
x − up,i∗

)′
	−1

p,i∗
(
x − up,i∗

))

where i∗ is the Gaussian of the mixture maximizing likelihood.
A Kolmogorov–Smirnov test [20] is then used to test whether
L̂(x) evaluated over the two windows follows the same pdf
or not.

2) HDDDM: This method approximates p(x) and q(x) with
histograms, and detects possible changes by inspecting their
Hellinger distance [19]. When no changes are detected, the
histogram of p(x) is updated by adding samples of Zq into Zp

incrementally, while the estimate of q(x) is updated with the
new acquired samples. The t-statistic is used to derive thresh-
olds as suggested in [19]. Since the method is proposed for
sequential batch learning, we take samples in one test win-
dow (nonoverlapped) as a batch, and use the same detection
procedure as recommended in [19].

3) H-ICI: The H-ICI test [34] is a two-layered hierarchi-
cal CDT whose first level detects possible changes based on
the intersection of confidence intervals (ICIs) rule [35], and
the second one confirms changes with the Hotellings T-square
statistic. The method can detect changes accurately with low
FP rates, particularly in 1-D applications.

C. Experimental Setup

Given that only a finite training set is available and that
the window sizes influence the distribution of D̂2

λ, n and m
should be fixed when generating the bootstrap-based distribu-
tion approximating the real one. In addition, a smaller window
size is always associated with a shorter execution time, which
can be relevant in some applications. In this paper, we con-
sider two configurations for training phase: n = m = 100 and
n = m = 200.

Other needed parameters are chosen as follows. The size of
training set Nt is 2000, changes in applications D1–D7 occur
at sample 6001 and last to the end, and the number of taken
bootstraps M is 2000. k = n + m, the kernel centers are ran-
domly sampled from the training set and then fixed before
training. The FP rate μ for most of the methods is set to 1%;
μs , μw , and μc as requested by LSDD-CDT and correspond-
ing to the three thresholds Ts, Tw, and Tc, respectively, are set
to 10%, 2%, and 1%. Each experiment on each application is
repeated 500 times.

The choice of the scaling parameter σ and the regularization
parameter λ influences the accuracy of the density differ-
ence estimation method and the change detection performance.
In this paper, σ is chosen as the median distance between
instances in the training set σ = median(||xi − xj||2, 0 <

i < j ≤ Nt) [36], which is commonly used with a radial
basis function kernel. With reference to Appendixes A–C,

λ should be small to reduce the bias and is selected by control-
ling the relative difference (RD) between D̂2

1 and D̂2
2; RD is

set to 0.2.
Since most of the applications follow Gaussians or uni-

form distributions, the maximum number W of Gaussians for
LogKStest is set to m/10 based on experimental evidence. In
this paper, W = 10 and 20 correspond to m = 100 and 200.
LogKStest, HDDDM, and H-ICI keep the settings suggested
in their relative manuscripts.

At last, we consider five indexes to evaluate the detection
performance of the proposed LSDD-Inc.

1) FP Rate [FP (%)]: It represents the percentage that a
test erroneously detected a change when no changes are
present.

2) FN Rate [FN (%)]: It represents the percentage that an
existing change is not detected.

3) Accuracy [Acc (%)]: It represents the percentage that
changes are accurately detected when they occur; Acc =
1-FP-FN.

4) Delay (Del in Samples): It measures the promptness in
change detection. A delay is recorded only when the
change is accurately detected; both the mean and the
standard deviation (in parentheses) are also provided.

5) Computational Time [CT(s)]: It measures the execution
time needed to execute the test (reference platform: Intel
Xeon X5650 at 2.66 GHz, 48 GB RAM, MATLAB
R2011b). Results are averaged over 500 runs.

D. Abrupt Versus Drift Changes

The first experiment refers to an unidimensional gaussian
distribution. The pdf in stationary conditions is N(0, 0.5),
and changes start at sample 6001 with the pdf shifting to
N(0.5, 0.5). The window sizes are n = m = 100. During the
training phase, the first 2000 instances are used to derive the
threshold Tμ associated with the predefined FP rate μ = 1%.
During the test phase, the whole training set is used so that
n′ = Nt; the new threshold is Tμ′ as given in (19).

Fig. 3 shows how the detection method operates in the case
of an abrupt type of change [Fig. 3(a) and (c)] and a drift one
[Fig. 3(b) and (d)].

The blue solid lines and the red dotted ones in
Fig. 3(a) and (b) show the change location and the detected
location, respectively. Changes can be detected immediately
once the differences between Zp and Zq are significant, which
explains why significant abrupt changes are detected earlier,
whereas slow drifts introduce a larger detection latency.

E. FP and FN Rates

Here, we design two experiments applied to synthetic appli-
cations D1–D6 to verify how the real FP rates are aligned with
the predefined, expected, ones; we then investigate FN rates.

The experiments follow the same training procedure
described in Section IV. Then, the first experiment referring to
FP rates continues to work on a stationary dataset, i.e., p(x) =
q(x). 2Mt subsets are randomly generated to provide Mt esti-
mates, Mt of which populate Zp (size n) and Mt populate the
test set Zq (size m). The second experiment about the FN rates
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(a) (b)

(c) (d)

Fig. 3. Examples of detection performances with different change types:
(a) abrupt and (b) drift changes. (c) and (d) Detection results, the blue line
refers to the estimated LSDD values; and the red dotted line is the threshold.
A change is detected once an LSDD value is above the threshold.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Real FP rates versus the expected FP rates over different experiments.
Lines represent the results with different (n, m) sizes. In the abscissas we
have the expected FP value, on the ordinates the real computed FP rates.
(a)–(f) D1–D6.

works on a nonstationary dataset where p(x) �= q(x). Finally,
the real FP rate is computed on the first test, as the ratio of
FPs on Mt tests, while the FN rate is experimentally assessed
on the second experiment as the ratio of FNs.

In order to show the effectiveness of self-adaptive thresh-
olds and the influence on FN rates, various combinations of
sizes n′, m′ ≥ 100 are considered during the test phase. The
new threshold Tμ′′ is derived according to (20). In this exper-
iment, Mt is set to 2000, the predefined FP rates belong to set
{10%, 2%, 1%, 0.2%, 0.1%}, and sizes n′, m′ to {100, 200}.
Experiments are repeated 200 times to compute averaged FP
and FN rates.

Results are shown in Figs. 4 and 5, respectively. Each
subfigure in both figures shows the results on each applica-
tion: (a)–(f) D1–D6 in Fig. 4; (a) D2, (b) D3, (c) D5, and
(d) D6 in Fig. 5. In the two figures, the abscissas refer to
the predefined FP rates, while ordinates refer to averaged FP

(a) (b)

(c) (d)

Fig. 5. Real FN rates under different predefined FP rates. Lines represent
the results with different (n, m) sizes. In the abscissas we have the predefined
FP rates, on the ordinates the real computed FN rates. (a) D2. (b) D3. (c) D5.
(d) D6.

and FN rates, respectively. Lines represent results with differ-
ent (n, m) sizes. Since drift changes in applications D1 and
D4 are with different change rates, we do not record their
FN rates.

As shown in Fig. 4, the real FP rates with n, m = 100
are close to the predefined ones, situation which indicates
that the proposed method is effective in controlling the FP
rates. Moreover, the FP rates with sizes n(m) > 100 are
much smaller than the predefined values with n = 100, which
yields to the expected conclusion that a larger window size
helps to achieve lower FP rates. Results with cases (100, 200)

and (200, 100) are similar and the corresponding lines
overlap.

In Fig. 5(a) and (b), lower FP rates correspond to higher
FN rates when the two distributions �Ho and �H1 overlap,
which can be verified in Fig. 1. When changes are significant,
the FN rates stay at zero as shown in Fig. 5(c) and (d).

F. Change Detection Performance

In this section, we compare the LSDD-Inc detection method
with existing methods. Two different window sizes with n =
m = 100 and n = m = 200 are applied to all methods, and dur-
ing the test phases with LSDD-Inc and LogKStest, we update
the reference Zp with the whole training set, i.e., n′ = Nt.
For LSDD-Inc2, n = m = 100 during the training phase and
n = Nt, m′ = 200 in the test phase. The detection performance
is shown in Table II; ND represents not detected.

In order to show performances of different methods, we
apply statistical tests on the detection accuracy [Acc(%)].

For instance, the Friedman test verifies the significance of
differences [37]. The test ranks the jth method for application
Di r j

i performance (1 is the best method). Ranking results are
given in Table III, where average ranks are assigned in case of
ties. The ranks for each method are averaged Rj = (1/7)

∑
r j

i
to compute the statistics

FF = 11.51

where FF satisfies an F-distribution with 9 and 54 degrees
of freedom. However, the critical value of such a distribu-
tion F(9, 54) with confidence level α = 0.05 is 2.0585,
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TABLE II
CHANGE DETECTION PERFORMANCE ON DIFFERENT APPLICATIONS

which is much smaller than FF . Therefore, the null hypoth-
esis is rejected, which means these detection accuracies are
significantly different.

Then, we considered the Nemenyi test. The test investi-
gates the differences between averaged ranks and the critical
difference (CD)

CD = 5.1205.

However, most of the differences between Rj(j = 1, . . . , 10)

are smaller than CD, which rejects the hypothesis about
significant difference. Here, we can claim that LSDD-Inc2 sig-
nificantly outperforms LogKStest, whereas no such conclusion
can be confirmed for tests LSDD-Inc2 and LSDD-CDT.

We further conducted a pairwise comparison with
the Wilcoxon Signed-Ranks Test. The method ranks the

differences in accuracy of two methods for each dataset, and
computes a statistic z, where the null hypothesis is rejected if
z is smaller than −1.96 at confidence 0.95 [37]. It should be
noted that for fair comparison, only different methods with the
same window sizes or the same methods with different sizes
are tested in pairs. Those above average rank 5.5, are removed
because of their poor performance.

Results are shown in Table IV, where 1 indicates the rejec-
tion of the null hypothesis so that the compared methods are
significantly different, 0 means nonrejection and * says that no
comparison can be carried out. We can conclude the following.

1) H-ICI shows no significant detection performance dif-
ferences when compared with other methods.

2) LSDD-Inc2 is significantly better than other methods
except H-ICI.
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TABLE III
COMPARISON ON DETECTION ACCURACY: FRIEDMAN TEST

TABLE IV
PAIRWISE COMPARISON: WILCOXON SIGNED-RANKS TEST

3) Methods with larger window sizes, i.e., n = m = 200,
outperform those with smaller ones, as expected.

4) Given the same window sizes, LSDD-Inc works signif-
icantly better than LSDD-CDT and LogKStest, but only
slightly better than HDDDM.

It can be concluded that LSDD-Inc can detect changes
more accurately than H-ICI and other methods when apply-
ing the same window sizes, and enlarging the test set Zq will
improve the detection performance with smaller FP rates, like
LSDD-Inc2.

LogKStest shows the worst performance with the highest
FP rates, although it reports a contained latency. Moreover, it
can not deal with applications with categorical features, i.e.,
discrete values, because the estimation of pdfs with GMM fails
to converge. In other cases with continuous pdfs, increasing
sizes n, m will reduce the FP rates but cause larger detection
delays.

HDDDM demonstrates similar performance as LogKStest
especially with small window sizes, whereas it does not limit
the attribute types. With the increase of n and m, the FP rates
decrease, while the FN rates and detection delays unexpectedly
increase. This mainly results from the inappropriate updating
of the reference set. The data set has to be large enough to
perceive the difference. In this case, if changes are not detected
timely, nonstationary instances in Zq will be removed into Zp

which may change the underlying pdf of the reference set.
H-ICI has the highest accuracy in some applications, but it

fails to detect changes in multidimensional applications (D2-3)
and application with categorical features (D6).

The LSDD-CDT presents acceptable results. However, since
the reference set Zp is almost fixed with only n samples, the
FP rate appears to be high. Furthermore, the execution time

is high because of the exhaustive computation of deriving �̂

and ĥ with (n + m) samples each time.
LSDD-Inc shows excellent performance with accurate detec-

tion in most applications. The detection delay is smaller than
other methods when dealing with abrupt changes, and com-
parable when detecting drift ones. It also shows that with the
increase of window sizes, the delay decreases in the drift cases,
whereas it increases in the abrupt ones. This happens since in
the drift case, more nonstationary samples in Zq help to reveal
the differences between Zp and Zq earlier. However, in the
abrupt case, a larger window includes more stationary samples
which lowers the differences. LSDD-Inc fails in application D7
where a small fluctuation occurs before the artificial change.
The problem can be solved by considering a larger window
size. In addition, thanks to the incremental computation, the
execution time reduces compared to LSDD-CDT.

LSDD-Inc2 provides the highest accuracy. Thresholds Tμ′′
with n′ = Nt, m′ = 2m contribute to reduce the FP rates as ana-
lyzed in Section III. FN rates are 0 in all the applications, since
distributions �H0 and �H1 of estimates D̂2

λ weakly overlap.
Even if H-ICI works perfectly in 1-D applications with con-

tinuous data, LSDD-Inc and LSDD-Inc2 tests outperform other
methods.

VI. CONCLUSION

In this paper, we propose an incremental change detection
algorithm based on the LSDD method (LSDD-Inc). We prove
that in stationary conditions, the estimate D̂2

λ with fixed ker-
nel centers is distributed as a linear combination of k(k + 1)

nonindependent noncentral Chi-square distributions. We pro-
vide a theoretical bound between the window size and FP rate,
which permits the test to adapt the window size to improve
detection performance without the need to retrain. During the
training phase, a bootstrap-based distribution is considered to
approximate the real one, and thresholds are derived accord-
ing to the desired FP rates. When the window sizes increase,
new thresholds can be determined directly from already avail-
able estimates. For online detection, we also estimate D̂2

λ

incrementally.
Comprehensive experiments show that the proposed method

LSDD-Inc provides good performances in terms of promptness
and accuracy.

APPENDIX A

CHOICE OF THE REGULARIZATION PARAMETER λ

Properties of Matrix H

As shown in (5), H is a real symmetric matrix. As such:
1) H can be decomposed as H = V	VT , where V is an

orthogonal matrix and 	 is a diagonal one;
2) all the elements on the diagonal Hj,j(j = 1, . . . , k) are

equal to (πσ 2)
d/2

. Furthermore, Hj,j = max(H) >

min(H) > 0, where max(H) and min(H) describe
the maximum and minimum values of elements in H,
respectively.
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Given any nonzero vector Z = {zj, j = 1, . . . , k}

ZTHZ =
k∑

i=1

k∑
j=1

zizjHi,j

> min(H)

k∑
i=1

k∑
j=1

zizj

= min(H)

(
k∑

i=1

zi

)2

> 0

and matrix H is positive definite.
Write the diagonal matrix 	 as

	 =

⎛
⎜⎜⎝

r1
r2

· · ·
rk

⎞
⎟⎟⎠

where without loss of generality r1 > r2 > · · · > rk > 0. We
have that r1r2 · · · rk = |H| < (πσ 2)

kd/2
, and

∑k
i=1 ri = k.

Two Equivalent Expressions

From (9) and (10), the two equivalent expressions can be
expressed as

D̂2
1(p, q) = ĥT�̂ = ĥT(H + λI)−1ĥ

D̂2
2(p, q) = �̂TH�̂ = ĥT(H + λI)−TH(H + λI)−1ĥ.

Since (H +λI) could be decomposed as V	λVT with 	λ =
	 + λI, we transform the two expressions as

D̂2
1(p, q) = ĥTV	−1

λ VTĥ

D̂2
2(p, q) = ĥTV	−1

λ 		−1
λ VTĥ

where

	−1
λ =

⎛
⎜⎜⎜⎝

1
r1+λ

1
r2+λ

· · ·
1

rk+λ

⎞
⎟⎟⎟⎠

	−1
λ 		−1

λ =

⎛
⎜⎜⎜⎝

r1
(r1+λ)2

r2
(r2+λ)2

· · ·
rk

(rk+λ)2

⎞
⎟⎟⎟⎠.

When λ > 0, (1/ri) > [1/(ri + λ)] > [ri/((ri + λ)2)] >

0, i = 1, . . . , k, where (1/ri) is the ith eigenvalue of H−1. We
can therefore conclude that D̂2

1(p, q) > D̂2
2(p, q) > 0.

Choice of Parameter λ

D̂2
1(p, q) and D̂2

2(p, q) can be weighted with parameter a to
reduce the bias introduced by λ as

D̂2
λ(p, q) = aĥT�̂ + (1 − a)�̂TH�̂.

We have that

D̂2
λ(p, q) = ĥTV

⎛
⎜⎜⎜⎝

1
r̂1

1
r̂2 · · ·

1
r̂k

⎞
⎟⎟⎟⎠VTĥ (23)

where (1/r̂i) = [(ri + aλ)/((ri + λ)2)] and its derivative with
respect to λ is

d
(

1
r̂i

)

dλ
= (a − 2)ri − aλ

(ri + λ)3
. (24)

In addition, the ratio between the original eigenvalue (1/ri)

and the new one is
1
ri

1
r̂i

= 1

ri
× (ri + λ)2

ri + aλ
= 1 + (2 − a)riλ + λ2

ri(ri + aλ)
. (25)

From (24), when 0 ≤ a ≤ 2, the derivative is smaller
than 0, which indicates the decreasing property of the new
eigenvalues. The right-hand side of (25) is greater than 1 so
that (1/ri) > (1/r̂i). Thus, with the decrease of λ, the value
of (1/r̂i) increases and approaches (1/ri), i.e., the smaller λ

the smaller the bias.
By expanding (1/r̂i) with Taylor

1

r̂i
= 1

ri
+ (a − 2)λ

ri
2

− (2a − 3)λ2

ri
3

+ · · · + (−1)n+1 (na − (n + 1))λn

ri
n+1

+ Rn(λ) (26)

when 0 < λ < 1, the setting of a = 2 could eliminate the
influence brought by the low-order terms of λ. Finally, we have

D̂2
λ(p, q) = 2ĥT�̂ − �̂TH�̂

and (1/r̂i) = [(ri + 2λ)/((ri + λ)2)] where (1/r̂1) < (1/r̂2) <

· · · < (1/r̂k) < (2/λ).
On the other hand, λ is required to control overfitting which

is essential to avoid the singularity of H. A method to control
the RD between D̂2

1 and D̂2
2 has been proposed in [23]

RD = ĥT�̂ − �̂TH�̂

ĥT�̂
= 1 − �̂TH�̂

ĥT�̂

that the largest λ (λ < 1) with corresponding RD smaller than
a given constant is selected.

APPENDIX B

PROOF OF THEOREM 1

D̂2
λ(p, q) can be represented as D̂2

λ(p, q) = ĥTH−1
λ ĥ =∑k

i=1
∑k

j=1 H−1
λ(i,j)ĥiĥj with H−1

λ = V(2	−1
λ −	−1

λ 		−1
λ )VT .

ĥiĥj = (1/4)(ĥi + ĥj)
2 − (1/4)(ĥi − ĥj)

2 with

ĥi + ĥj = 1

n

n∑
l=1

(
ϕ
(
xp,l, ci

)+ ϕ
(
xp,l, cj

))

− 1

m

m∑
l=1

(
ϕ
(
xq,l, ci

)+ ϕ
(
xq,l, cj

))

ĥi − ĥj = 1

n

n∑
l=1

(
ϕ
(
xp,l, ci

)− ϕ
(
xq,l, cj

))

− 1

m

m∑
l=1

(
ϕ
(
xp,l, ci

)− ϕ
(
xq,l, cj

))

where ϕ(xl, ci) = exp(−[(||xl − ci||22)/2σ 2]). Assume
ϕ(xp,l, ci) + ϕ(xp,l, cj), ϕ(xq,l, ci) + ϕ(xq,l, cj), ϕ(xp,l, ci) −
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ϕ(xq,l, cj), and ϕ(xp,l, ci) − ϕ(xq,l, cj) follow distributions
with the means and variances as (upij+, δ2

pij+), (uqij+, δ2
qij+),

(upij−, δ2
pij−), and (uqij−, δ2

qij−), respectively. The central limit
theorem guarantees that, when n and m are sufficiently large,
the following terms converge to Gaussian distributions:

1

n

n∑
l=1

(
ϕ
(
xp,l, ci

)+ ϕ
(
xp,l, cj

)) d−→ N

(
μpij+,

δ2
pij+
n

)

1

m

m∑
l=1

(
ϕ
(
xq,l, ci

)+ ϕ
(
xq,l, cj

)) d−→ N

(
μqij+,

δ2
qij+
m

)

1

n

n∑
l=1

(
ϕ
(
xp,l, ci

)− ϕ
(
xq,l, cj

)) d−→ N

(
μpij−,

δ2
pij−
n

)

1

m

m∑
l=1

(
ϕ
(
yp,l, ci

)− ϕ
(
yq,l, cj

)) d−→ N

(
μqij−,

δ2
qij−
m

)
.

Considering the case with fixed kernel centers {ci, i =
1, . . . , k}, matrix H as well as H−1

λ are fixed. In this case,
since variables xp and xq are independent and the exponen-
tial functions are measurable, ĥi + ĥj and ĥi − ĥj also follow
gaussian distributions:

ĥi + ĥj
d−→ N

(
μpij+ − μqij+,

δ2
pij+
n

+ δ2
qij+
m

)

ĥi − ĥj
d−→ N

(
μpij− − μqij−,

δ2
pij−
n

+ δ2
qij−
m

)
.

Therefore, (ĥi + ĥj)
2/([(δ2

pij+)/n] + [(δ2
qij+)/m]) and (ĥi −

ĥj)
2/([(δ2

pij+)/n] + [(δ2
qij+)/m]) are noncentral Chi-square dis-

tributed with 1 degree of freedom. Since we have established
the preliminary results, the proof of Theorem 1 is as follows.

Proof (Theorem 1): ĥiĥj = (1/4)(ĥi+ĥj)
2−(1/4)(ĥi−ĥj)

2 is
distributed as a combination of two nonindependent noncentral
Chi-square distributions.

Following the symmetry of matrix H, we have (H−1
λ )T =

2(H + λI)−T − (H + λI)−1HT(H + λI)−T = H−1
λ so that H−1

λ

is symmetric.
As a consequence, D̂2

λ(p, q) = ∑k
i=1

∑k
j=1 H−1

λ(i,j)ĥiĥj is dis-
tributed as a linear combination of k(k + 1) nonindependent
noncentral Chi-square distributions.

APPENDIX C

PROOF OF THEOREM 2

Expectation With Finite Samples

Based on the analysis in Appendix B, we compute the
expectations

E

((
ĥi + ĥj

)2
)

= D
(

ĥi + ĥj

)
+ E2

(
ĥi + ĥj

)

= δ2
pij+
n

+ δ2
qij+
m

+ (
μpij+ − μqij+

)2

E

((
ĥi − ĥj

)2
)

= D
(

ĥi + ĥj

)
+ E2

(
ĥi + ĥj

)

= δ2
pij−
n

+ δ2
qij−
m

+ (
μpij− − μqij−

)2

E
(

ĥiĥj

)
= 1

4
E

((
ĥi + ĥj

)2
)

− 1

4
E

((
ĥi − ĥj

)2
)

= 1

4

((
δ2

pij+
n

+ δ2
qij+
m

)
+ (

μpij+ − μqij+
)2

−
(

δ2
pij−
n

+ δ2
qij−
m

)
− (

μpij− − μqij−
)2
)

.

Proof [Theorem 2 1)]: When xp and xq are generated from
the same distribution, i.e., under H0 with p(x) = q(x), we have
δ2

pij+ = δ2
qij+, δ2

pij− = δ2
qij−, μpij+ = μqij+, and μpij− = μqij−.

Therefore

EH0

(
D̂2

λ(p, q)
)

=
k∑

i=1

k∑
j=1

H−1
λ(i,j)E

(
ĥiĥj

)

= 1

4

(
1

n
+ 1

m

) k∑
i=1

k∑
j=1

H−1
λ(i,j)

(
δ2

pij+ − δ2
pij−

)

which shows that by increasing sizes n and m, the expectation
values of estimated LSDD values under H0 decrease. When
H1 holds, i.e., p(x) �= q(x)

EH1

(
D̂2

λ(p, q)
)

= 1

4

k∑
i=1

k∑
j=1

H−1
λ(i,j)

((
δ2

pij+
n

+ δ2
qij+
m

)
+ (

μpij+ − μqij+
)2

−
(

δ2
pij−
n

+ δ2
qij−
m

)
− (

μpij− − μqij−
)2
)

which indicates in the nonstationary conditions, the expecta-
tion values of D̂2

λ also decrease with the increase of n and m.
Proof [Theorem 2 2)]: The difference

EH1

(
D̂2

λ(p, q)
)

− EH0

(
D̂2

λ(p, q)
)

= 1

4

k∑
i=1

k∑
j=1

H−1
λ(i,j)

(
1

m

(
δ2

qij+ − δ2
pij+ − δ2

qij− + δ2
pxj−

)

+ (
μpij+ − μqij+

)2 − (
μpij− − μqij−

)2)
(27)

which is independent of n, but on m only. In other words,
EH1(D̂

2
λ(p, q)) decreases with the increase of n, whereas the

difference between the expectations under H0 and H1 is fixed
no matter how n varies.

Deviation Bounds for Tests With Finite Samples

In order to obtain the upper bound of the difference between
D̂2

λ(p, q) and its expectation E(D̂2
λ(p, q)) under both hypothe-

ses H0 and H1, we apply the McDiarmid bound [38], [39] on
the estimate D̂2

λ(p, q).
Proof [Theorem 2 3)]: Let n + m independent vari-

ables xp,1, . . . , xp,n, xq,1, . . . , xq,m sampled from some set A,
and assume that D̂2

λ(p, q) = f (xp,1, . . . , xp,n, xq,1, . . . , xq,m):
Am+n → R. Changing either xp,l or xq,l in f results in changes
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of ĥ of at most (1/n) or (1/m). We first consider the case with
ĥ′

i = ĥi + (1/n), and −1 ≤ ĥi, ĥ′
i ≤ 1

sup
xp,1,...,xq,m,x̂p,l

∣∣∣D̂2
λ(p, q) − D̂′2

λ (p, q)

∣∣∣
=
∣∣∣ĥTH−1

λ ĥ − ĥ′TH−1
λ ĥ′

∣∣∣

=
∣∣∣∣∣∣

k∑
i=1

k∑
j=1

H−1
λ(i,j)ĥiĥj

−
k∑

i=1

k∑
j=1

H−1
λ(i,j)

(
ĥi + 1

n

)(
ĥj + 1

n

)∣∣∣∣∣∣

=
∣∣∣∣∣∣

k∑
i=1

k∑
j=1

(
2

n
ĥiH

−1
λ(i,j) + 1

n2
H−1

λ(i,j)

)∣∣∣∣∣∣

≤ 2

n

k∑
i=1

k∑
j=1

∣∣∣ĥi

∣∣∣
∣∣∣H−1

λ(i,j)

∣∣∣+ 1

n2

∣∣∣∣∣∣
k∑

i=1

k∑
j=1

H−1
λ(i,j)

∣∣∣∣∣∣.

H−1
λ can be expressed as

H−1
λ = V

⎛
⎜⎜⎜⎝

1
r̂1

1
r̂2 · · ·

1
r̂k

⎞
⎟⎟⎟⎠VT (28)

and H−1
λ(i,j) = ∑k

l=1 (1/r̂l)Vi,lVj,l. Since V is an orthogo-

nal matrix, it is obvious that (1/r̂1) < H−1
λ(i,i) < (1/r̂k),

i = 1, . . . , k. We then estimate the bound of H−1
λ(i,j) as

H−1
λ(i,i) + H−1

λ(j,j) + 2H−1
λ(i,j) =

k∑
l=1

1

r̂l

(
Vi,l + Vj,l

)2

<
1

r̂k

k∑
l=1

(
Vi,l + Vj,l

)2 = 2

r̂k

H−1
λ(i,i) + H−1

λ(j,j) + 2H−1
λ(i,j) >

1

r̂1

k∑
l=1

(
Vi,l + Vj,l

)2 = 2

r̂1
.

Therefore, (2/r̂1) < H−1
λ(i,i)+H−1

λ(j,j)+2H−1
λ(i,j) < (2/r̂k), and we

can derive that |H−1
λ(i,j)| < (1/r̂k) − (1/r̂1) < (1/r̂k) < (2/λ).

In addition

∣∣∣∣∣∣
k∑

i=1

k∑
j=1

H−1
λ(i,j)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
k∑

i=1

1

r̂i

⎛
⎝ k∑

j=1

Vji

⎞
⎠

2
∣∣∣∣∣∣∣

<

∣∣∣∣∣∣∣
1

r̂k

k∑
i=1

⎛
⎝ k∑

j=1

Vji

⎞
⎠

2
∣∣∣∣∣∣∣

= k

r̂k
<

2k

λ
.

The upper extreme satisfies

sup
xp,1,...,xq,m,x̂p,l

∣∣∣D̂2
λ(p, q) − D̂′2

λ (p, q)

∣∣∣

<
2k2

n

2

λ
+ 1

n2

2k

λ
= 2k(2nk + 1)

n2λ
.

The same procedure can be applied when considering ĥ′
i =

ĥi + (1/m), and we obtain

sup
xp,1,...,xq,m,x̂q,l

|D̂2
λ(p, q) − D̂

′2
λ (p, q)| <

2k(2mk + 1)

m2λ
.

Consequently, according to McDiarmid’s
Inequality [38], [39], for any ε > 0, we have

Pr
(∣∣∣D̂2

λ(p, q) − E
(

D̂2
λ(p, q)

)∣∣∣ ≥ ε
)

≤ exp

⎛
⎝− ε2λ2

4k2(2nk+1)2

n3 + 4k2(2mk+1)2

m3

⎞
⎠

where Pr denotes the probability over n samples with pdf p(x)
and m with q(x).

The inequality reveals some properties:
1) with the increase of sizes n and m, the deviation bounds

decrease;
2) a larger λ or a smaller k (less centers) will bring a larger

deviation bound;
3) without adding other restrictions, the above inequality

applies to both cases under H0 and H1.
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