
This work was supported partly by National Natural Science Foundation of China (Nos.
60921061, 61034002), and visiting professorship of Chinese Academy of Sciences.

SVM-based Just-in-Time Adaptive Classifiers

Cesare Alippi12, Li Bu1, Dongbin Zhao1

1. State Key Laboratory of Management and Control for Complex Systems, Institute of

Automation Chinese Academy of Sciences, Beijing, 100190 China
bulipolly@gmail.com, dongbin.zhao@ia.ac.cn

2 Dipartimento di Elettronica e Informazione, Politecnico, di Milano, 20133 Milano, Italy

alippi@elet.polimi.it

Abstract: Aging of sensors, faults in the read-out electronics and environ-

mental changes are some immediate examples of time variant mechanisms vio-

lating that stationarity hypothesis mostly assumed in the design of classifica-

tion systems. Such changes, known in the related literature as concept drift,

modify the probability density function of measurements, hence impairing the

accuracy of the classifier. To cope with these mechanisms, active classifiers

such as the Just-in-time adaptive ones, are needed to detect a change in station-

arity and modify the classifier configuration accordingly to track the process

evolution. At the same time, when the process is stationary, new available su-

pervised information is integrated in the classifier to improve over time its

classification accuracy. This paper introduces a JIT adaptive classifier based on

support vector machines able to track changes in the process generating the da-

ta with computational complexity and memory requirements well below that of

current JIT classifiers integrating k-nearest neighbor solutions.

Keywords: Change Detection Tests, Concept Drifts, adaptive SVM

1 Introduction

Not rarely, data coming from real applications are characterized by a time-variant

nature whereas applications built on the top of them mostly assume the stationarity

hypothesis. As a consequence of nonstationarity, the accuracy of the application solu-

tion degrades over time. To mitigate this problem we need to intervene by checking

at first if the stationary hypothesis holds for a given datastream and, when it does not,

provide the application solution with adaptation mechanisms for tracking changes

and keep performance at an acceptable level. In the following, we focus the attention

on active classifiers [1]–[3], i.e., classifiers incorporating a change-detection test for

identifying concept drift and react accordingly. Readers interested in passive classifi-

ers, i.e., classifiers adapting online without the need to detect a change, e.g., those

based on incremental learning and ensemble of classifiers, can refer to [4], [5].

The active classification mechanism has become very effective with the design of

powerful sequential Change Detection Tests (CDT). For instance, the hypothesis test

which uses the computational intelligence-based CUSUM (CI-CUSUM) proposed by

Alippi [1] can be also used in a multidimensional analysis without requiring any

strong a prior knowledge about the process, provided that data are independent and

mailto:bulipolly@gmail.com
mailto:dongbin.zhao@ia.ac.cn

identically distributed (i.i.d.). Moreover, needed test parameters can be learned from

available data. In Just-In-Time (JIT) classifiers the CI-CUSUM test is naturally cou-

pled with a k-nearest neighbor (KNN) classifier which does not require a proper

training phase making it an ideal classification system candidate to deal with an

evolving environment. In fact, information can be easily inserted in (and at the same

time removed from) the knowledge base (KB) without the need to retrain the classifi-

er. A main result is that the classifier tends asymptotically to the optimal Bayes one

in stationary conditions. However, the computational complexity of the KNN scales

badly with the number of samples in the KB, which increases as more supervised

samples are made available and, unfortunately, condensing techniques are very com-

putational demanding.

This paper, starting from [1][2], proposes a novel JIT adaptive classifier based on a

SVM as a classification core substituting the native KNN. The use of SVM, also well

grounded from the theory point of view, allows us for mitigating the main problems

posed by the KNN, namely the computational complexity of the algorithm and the

amount of memory requested to store the samples in the KB.

Adaptive SVM classifier solutions can be found in the literature. In [6], an online

SVM is proposed, which uses fresh supervised samples only for online training; pre-

vious samples are discarded. Xiao et al. [7] provide the -ISVM method, which

combines support vectors and misclassification samples to build the new training set;

at the same time some less relevant data are selectively removed. Blanzieri et al. [8]

proposed an alternative method based on KNN and SVM.

The paper inherits the main advantages of the above methods and insert them in

the JIT classifier framework.

The structure of the paper is as follows. Section 2 introduces the computational in-

telligence-based CUSUM (CI-CUSUM) test for concept drift detection. The general

framework design for JIT adaptive classifiers based on SVM, including the update

mechanism of the Knowledge Base (KB) is presented in Section 3. Experimental

results are provided in Section 4 and conclusions given in Section 5.

2 CI-CUSUM Change Detection Test

The traditional CUSUM test [1], evaluates the difference between two known proba-

bility density functions (pdf) at time t

1

0

1

(())
t

p x
R t ln

p x

 (1)

where ()x t is an i.i.d random sample and
i

p , =0,1i are the two pdfs parameterized

in the parameter vector
1 2

{ , , , }

 , = referring to the working condition

before the concept drift and after the change, respectively.

Then, the method estimates the minimum ()= (())
1

m t min R
t

 on the train set.

When the discrepancy ()= ()- ()g t R t m t at time t is larger than a given threshold h a

change is detected. This method is rather effective in detecting changes but requires

the availability of the pdfs, parameters
0

 ,
1

 and h , information which is rarely

available.

The above problems can be solved by considering the CI-CUSUM

[1], which ex-

tends the traditional CUSUM test, in the following aspects

1) When sequence ={ ()}, =1,...,X x t t N , is composed of scalar, real, i.i.d. random

samples and n is sufficiently large, thanks to the central limit theorem the trans-

formation

1 1

1
, 1 /

tn

t n

y t t N n
n

 is ruled by a Gaussian pdf with

mean and variance parameters
2

{ , } . The parameters can be directly esti-

mated on the sequence , 1 /Y y i i N n ;

2) The threshold value h can be learned from the training set instead of been asked

to the designer;

3) Designers can consider their favorite features for constructing a new and applica-

tion tailored CDT; a principal component analysis (PCA) can be considered to re-

duce the complexity of the feature space;

4) Configurations for the alternative hypothesis
1

 can be automatically generated by

balancing change detection performance and computational complexity.

In the following we consider the CI-CUSUM test as a CDT for the JIT classifier.

3 JIT Adaptive SVM Classifier

We briefly introduce the SVM and show how the technique can be modified to be

integrated within the JIT framework.

Let ,x yi i , ()
N

x t Ri , 1,1 , 1, 2 ,?y i Ni be the training set and

 ()f x sgn x b (2)

the SVM classifier with parameters obtained by solving the optimization problem

2

1

1
()
2

i

N

i

min C

 (3)

subject to 1
i i i

y x b , 0
i
 , i=1,…,N. is the normal vector to the

hyperplane, b is the hyperplane offset, 0C is a cost parameter and
i

 the slack

variable. The (3) can be cast in the dual form [9]

1 1 1

1
,

2
i i j i j i j

N N N

i i j

max y y K x x

 (4)

subject to

1

0 0,
i i i

N

i

y C

where
2

2

,
,

i j

i j

x x
K x x exp

 is a kernel function, here chosen to be the

radial basis function (RBF) parameterized in . Finally, the classifier has form

1

() ,
i i i

N

i

f x sgn x b sgn y K x x b

 (5)

Parameters
i

 and b are determined by solving the dual problem: the support

vectors (SV) are those samples for which 0i .

Here, we consider the Grid-Search method [10] to select the best parameters C and

σ; performances were evaluated with a K-fold cross-validation to mitigate the fact

that a limited data set is available.

It should be noted that each newly made available supervised sample ,
i i

x y satis-

fies the Karush-Kuhn-Tucker (KKT) condition [11]

 =0 () 1
i i i

y f x ;

0
i

C 1
 i i

y f x ; (6)

 i

C () 1
i i

y f x

A sample satisfying the KKT conditions does not change the SVs and, as such, the

structure of the classifier. Within an incremental learning strategy only those samples

violating the KKT condition should be kept as relevant and stored in KB; the others

can be discarded since do not provide any additional information to the current space

partitioning.

SVs fully describe the classification problem given the available data KB. Since in

most cases the number of SVs is a small fraction of the number of samples in KB, we

recommend to use the SVs instead of the original training samples in the KB for

classification purposes. The final effect is that by using SVs, we save memory w.r.t to

a solution envisaging a KNN classifier.

When we are working in a stationary environment a new supervised sample violat-

ing the KKT must be added to the KB. However, inserting a sample in the SV set

must be seen as a perturbation to the method. As such, when the number of inserted

samples in the incremental knowledge base (IKB) exceeds a threshold, we need to

fuse KB with IKB and re-train the SVM.

Differently, when a concept drift is detected, data contained in KB become obsolete,

hence negatively impacting on performance. As such they must be removed and only

the most recent ones kept to compose a short memory classifier.

The joint use of the CI-CUSUM CDT and the dynamic management of the

knowledge base of the classifier leads to the JIT adaptive SVM classifier of Algo-

rithm 1. The Algorithm operates both in stationary and nonstationary conditions. In

stationarity conditions (also following an abrupt concept drift) the performance im-

proves asymptotically; in non-stationary conditions the classifier adapts to track the

change and keep performance high.

JIT adaptive SVM classifier

1. Configure the test CDT and train classifier SVM on the training set
0

KB ;

2. 0 KB support vectors of KB ; n KB ; 0IKB ;

3. While (1) {

 Acquire sample x ;

4. if(new supervised knowledge is available)

5. { Insert samples (,)x y violating the KKT condition in IKB }

6. if(CDT (x) nonstationary) {

7. KB last N samplesof new supervised samples

8. Train SVM and CDT on KB ;

9. KB support vectors of KB ; n KB ;

10. }else{

11.
IKB

n IKB ;

12. if(/
IKB

n n Th){

13. KB KB IKB ;

14. Train SVM and CDT on KB ;

15. KB support vectors of KB

16. n KB ; 0IKB ;

 }

 }

17. Classification=SVM (x , KB , C ,);

 }

Algorithm 1: the Just-in-time adaptive classifier with a SVM core

The performance of the JIT adaptive SVM classifier largely depends on the ability

of the CDT to detect a concept drift. As such, when the process undergoes a concept

drift but the CDT does not recognize it (false positive), the classifier will continue to

follow the stationary mode, with and obvious loss in classification accuracy. Howev-

er, before or later the CDT will detect the change if the “magnitude” of the concept

drift evolves over time (for instance, a gradual concept drift will be seen by the CDT

as a sum of concept drift).

4 Experimental Validation

In order to verify the performance of the suggested adaptive classifier we considered

two applications. The first provides synthetically generated data taken from [2], the

second are real acquisitions from photodiodes [3].

Application D1 contains four classification datasets characterized by different con-

cept drift: abrupt, transient, stairs and drift. Each dataset is composed of 50 sequenc-

es of 10000 real-valued observations drawn from two Gaussian-distributed classes

initially distributed (stationary condition) as
0

| (0,3)P x N ,

1

| (4,3)P x N . In the abrupt case, the concept drift occurs in the middle of each

sequence by providing an additive perturbation (3) inducing an increment of the

mean of both classes. In the transient dataset, the mean of both classes increases after

one third of the dataset and returns to the original value after two thirds of the dataset

samples. The sum of concept drift dataset increases its mean at one fourth, two

fourths, and three fourths of the sequence. The drift dataset is configured so that the

drift starts at sample 5000 and reaches a perturbation 3 , on the expectations at

the end of it (the distributions of last samples are
0

| (3,3)P x N ,

1

| (7,3)P x N).

Application D2 refers to a dataset composed of 28 sequences of measurements

taken from couples of photodiodes. Each sequence is composed of 12000 16-bit

measurements (6000 per sensor). We test the algorithms by classifying the observa-

tions according to the sensor. From figure 1 we see that the photodiodes are subject

to a sequence of abrupt concept drift.

Fig.1. Some data from application D2

Table I. JIT adaptive SVM classifier and the KNN classifier: application D1

 Classifiers

Samples

JIT adaptive KNN classifier JIT adaptive SVM classifier

ACC(%) CT(s)/M(S) ACC(%) CT(s)/M(S)

Abrupt 3 73.90 18.67/1351 74.35 15.44/846

Transient 3 72.33 12.70/1323 73.58 10.06/931

Stairs
3 72.39 12.63/969 73.35 11.60/671

1 73.62 14.27/1284 73.95 10.46/734

Drift N(3,3) 73.61 14.42/1496 73.93 10.57/912

0 2000 4000 6000 8000 10000 12000
1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68
x 10

4

buli
高亮

Table II. JIT adaptive SVM classifier and the KNN classifier: application D2

 Classifiers

Samples

JIT adaptive KNN classifier JIT adaptive SVM classifier

ACC(%) CT(s) /M(S) ACC(%) CT(s) /M(S)

Application D2 (average) 71.87 20.29/1419 71.56 19.87/1220

Tables I and II show the performance of the JIT adaptive SVM classifier and the JIT

KNN classifier of

[2] on applications D1 and D2, respectively. Results represents the

average over 50 sets of experiments. We immediately observe how the accuracies of

the JIT-SVM are perfectly aligned with those of the JIT-KNN, which, de facto, rep-

resents the optimal classifier (in [2] the KNN has been optimized). We appreciate the

fact that, on average, the JIT-SVM is 16% faster than the KNN-SVM and its memory

consumption (in samples S) is 32% less than its counterpart. Fig.2 shows the classifi-

cation accuracy over incoming samples for application D1 (accuracy is averaged

every 100 samples). We comment that, when there are no changes (i.e., we are in

stationarity conditions), new samples added to the KB improve the accuracy of the

JIT adaptive SVM classifier. Of course, when a concept drift occurs accuracy drops

but the classifier reacts as new supervised samples come in.

Fig.2. Classification accuracy: the JIT adaptive SVM classifier, application D1

(a) (b)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
72

73

74

75

76

77

78
Drift N(3,3)

a
cc

（
%
）

samples

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
67

68

69

70

71

72

73

74

75

76

77
Abrupt δ=3

a
cc

（
%
）

samples

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
64

66

68

70

72

74

76

78
Stairs δ=3

a
cc

（
%
）

samples

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
66

68

70

72

74

76

78
Transient δ=3

a
cc

（
%
）

samples

(c) (d)

5 Conclusions

The paper presents an adaptive SVM mechanism within a Just-in-Time classification

framework. It comes out that the computational complexity of the traditional JIT,

which relies on the use of a KNN core for classification, can be reduced by consider-

ing an incremental SVM classifier instead of about 15%. The same results with the

saving memory which shows an improvement of about 32% over the KNN.

Surely, space for improvement is here. In particular, a more effective computation-

al-aware mechanism can be considered to train the SVM starting from an already

configured situation with available support vectors (changes in the Bayes classifica-

tion border should be contained in the stationary and the gradual concept drift case).

Another improvement issue resides in assessing the proportion of old and new sam-

ples to be kept to deal with the concept drift.

6 References

1. C. Alippi and M. Roveri: Just-in-time adaptive classifiers—part I: detecting nonstationari-

ty changes. IEEE Transactions on Neural Networks, vol. 19, pp. 1145–1143, Mila-

no(2008)

2. C. Alippi and M. Roveri: Just-in-time adaptive classifiers—part II: designing the classifi-

er. IEEE Transactions on Neural Networks, vol. 19, pp. 2053–2064, Milano(2008)

3. C. Alippi, G. Boracchi and M. Roveri: A just-in-time adaptive classification system based

on the intersection of confidence intervals rule. Neural Networks, Elsevier, vol. 24 , pp.

791-800, Milano (2011)

4. I. Zliobaite: Learning under concept drift: an overview. Technical report, Faculty of

Mathematics and Informatics (2009)

5. R. Elwell and R. Polikar: Incremental learning of concept drift in nonstationary environ-

ments. Neural Networks, IEEE Transactions on, vol.22, pp.1517–1531, New Jersey

(2011)

6. Mohammadreza Asghari Oskoei, John Q. Gan, and Huosheng Hu: Adaptive schemes ap-

plied to online SVM for BCI data classification. 31st Annual International Conference of

the IEEE EMBS Minneapolis, pp. 2600–2603, Minnesota (2009)

7. Xiao Rong, Wang Jicheng, Sun Zhengxing and Zhang Fuyan.: An Incremental SVM

Learning Algorithm -ISVM. Journal of Software, vol.12, pp.1818–1824, Nanjing

(2001)

8. Enrico Blanzieri and Farid Melgani: An adaptive SVM nearest neighbor classifier for re-

motely sensed imagery. Geoscience and Remote Sensing Symposium, pp.3931–3934,

Trento (2006)

9. Zhaoqi Bian and Xuegong Zhang, Pattern Recognition, Tsinghua University Press,

pp.285–300, Beijing (1999)

10. Huijun Shen, Hui Xi and Gang Xie: The improved Grid-search algorithm used in the fault

diagnosis by SVM. Mechanical Engingeering & Automation, pp.108–110, Shanxi (2012)

11. Wenhua Zeng and Jian Ma: A new algorithm to incremental learning with support vector

machine. Journal of Xiamen University (Natural Science), vol.41, pp.687-691, Fujian,

(2002)

