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Abstract: The paper proposes an effective change detection test for online monitoring data
streams by inspecting the least squares density difference (LSDD) features extracted from two
non-overlapped windows. The first window contains samples associated with the pre-change
probability distribution function (pdf) and the second one with the post-change one (that
differs from the former if a change in stationarity occurs). This method can detect changes
by also controlling the false positive rate. However, since the window sizes is fixed after the
test has been configured (it has to be small to reduce the execution time), the method may
fail to detect changes with small magnitude which need more samples to reach the requested
level of confidence. In this paper, we extend our work to the Big Data framework by applying
the Kolmogorov-Smirnov test (KS test) to infer changes. Experiments show that the proposed
method is effective in detecting changes.
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1. INTRODUCTION

In the framework of Big Data, the data generating process
may undergo concept drift (changes in stationarity) since
it is unlikely that the pdf will not change in the long run,
e.g., due to aging effects affecting the sensor, etc. This non-
stationarity changes the underlying distribution of data,
and results in performance degradation of the application
processing sensor data. This follows from the fact that
models/applications trained with pre-change data (that
always assume the stationary hypothesis) are no more
working on the operational conditions when changes occur.
To deal with such issues, one effective solution is to detect
concept drifts, and then retrain models/applications with
data associated with the changed pdf. This is what we call
“active approach”(Alippi et al. (2013)).

For online change detection, window-based methods are
generally preferred to keep under control computational
time (Dasu et al. (2006); Sebastião et al. (2010); Alippi
et al. (2015); Chen et al. (2014)). In general, two non-
overlapped windows are used to represent the pre-change
and the possibly post-change conditions, respectively. The
first window Zp contains n0 stationary samples and con-
stitutes the reference set, generated according to pdf p(x).
The testing set Zq slides to collect newly arrived n1 sam-
ples generated by pdf q(x). Change in stationarity occurs
when q(x) ̸= p(x). From the operational point of view
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changes are detected when the statistics evaluated over the
two windows exceed a threshold function of a confidence
level.

In our previous work(Bu et al. (2015, 2016b)), we proposed
an effective change detection test (CDT) based on the
least squares density difference (LSDD). The test directly
measures the density-difference of the pdfs(Sugiyama et al.
(2013)) with a linear-in-parameters Gaussian kernel func-
tion, which reduces the estimation error associated with
estimating the two pdfs individually. Obtained LSDD fea-
tures get larger as p(x) drifts from q(x). We detect changes
by comparing the LSDD values with a threshold associated
with a predefined confidence level of detection, i.e., the
required false positive (FP) rate (Bu et al. (2016b)).

In general, LSDD-based methods operate under the con-
dition that only a limited data set is provided for training
the detection method. In the extreme case, a bootstrap
procedure is applied to assess the empirical distribution of
LSDD values (Bu et al. (2016b)). In order to make it more
sensitive to changes, the reservoir sampling strategy for
updating the reference set Zp and a three-level mechanism
are adopted to reduce the false negative (FN) rates (Bu
et al. (2016b)). Such effort also includes exploring differ-
ent detecting strategies with ensemble learning (Bu et al.
(2016a)). Nevertheless, they still show poor performance
with too high FN rates when handling changes with small
magnitude (Bu et al. (2016b)).

When considering the Big Data framework, the limitation
of data disappears and there are enough training data



to be used to configure change detection based on large
windows of data. As such, it is possible to detect smaller
changes. However, larger window sizes correspond to a
higher computational time which might make the method
unable to satisfy the online real-time constraints for mid-
size computational devices, e.g., those used in the Internet-
of-Things. Furthermore, the sizes can not adapt according
to the magnitude of changes, since thresholds are derived
under the constraint of fixed window sizes.

In this paper, we propose a prior-free change detection
test by combining the LSDD CDT with the Kolmogorov-
Smirnov test (KS test). The test windows corresponding to
the LSDD method are independent and non-overlapped,
which also grants independent and one-dimensional LS-
DD statistics. We then measure the dissimilarity of the
distributions of estimated LSDD values with a KS test,
instead of comparing them with a threshold as usual. Since
the execution of KS test is simple and their statistics are
distributed according to a known Kolmogorov distribution
(Wang et al. (2003)), it can be applied here to infer changes
with more samples and keep the LSDD-associated window
sizes small.

2. THE DISTRIBUTION OF LSDD VALUES

2.1 The LSDD Method

The least squares density difference estimation between
two pdfs was firstly proposed in (Sugiyama et al. (2013)):

D2(p, q) =

∫
(p(x)− q(x))

2
dx, (1)

where x ∈ Rd is a real vector, and p(x), q(x) represent
two pdfs generating the reference set Zp and testing set
Zq respectively. Kernel function

g(x,Θ) =

nc∑
i=1

θi exp(−
||x− ci||22

2σ2
), Θ=(θ1,...θi,...θnc) (2)

is used to estimate p(x) − q(x), where {ci, i = 1, ..., nc}
are d-dimensional kernel centers, randomly chosen from
the training set. Θ is a parameter vector, and σ =
median(||xi −j ||2, 0 < i < j ≤ Nt) is the scale parameter
(Gretton et al. (2012)) where Nt is the cardinality of the
training set. The optimal parameter Θ∗ is achieved by
minimizing the loss J(Θ) with regularization:

J(Θ) =

∫
(g(x,Θ)− (p(x)− q(x)))

2
dx+ λΘTΘ, (3)

where λ > 0. After some derivations, please refer to (Bu
et al. (2015, 2016b)) for details, we have:

D̂2(p, q) = 2ĥT Θ̂− Θ̂THΘ̂, (4)

where D̂2 is the estimate of D2, Θ̂ = (H + λI)−1ĥ, H is

an nc × nc matrix, and ĥ is an nc × 1 vector:

Hi,j = (πσ2)
d/2

exp(−||ci − cj ||22
4σ2

), (5)

ĥi =
1

n0

n0∑
j=1

exp(−||xp,j − ci ||22
2σ2

)

− 1

n1

n1∑
j=1

exp(−||xq,j − ci ||22
2σ2

),

(6)

i = 1, ..., nc. xp, xq represent instances from sets Zp and
Zq so that Zp = {xp,j , j = 1, ..., n0}, Zq = {xq,j , j =
1, ..., n1}.
It’s worth mentioning that parameter λ controls the s-
moothness of approximating model g(x, Θ̂) and, as such,
influences the detection performance of LSDD CDT. Here
we choose λ as suggesting in (Bu et al. (2015, 2016b)).

2.2 The Distribution of LSDD Values

We have proved in (Bu et al. (2016c)) that when the kernel
centers in (2) are fixed, the distribution Π0 of estimated
LSDD values in stationarity conditions is a linear combi-
nation of nc(nc + 1) non-central chi-square distributions.
Since the distribution requires too many parameters to be
estimated, we suggest to derive thresholds directly as the
1−µ percentile of the estimates (Bu et al. (2016c)), where
µ represents the user-defined FP rate.

However, the distribution is controlled by window sizes n0

and n1. That is, once we enlarge or shrink a window, re-
training is needed to rebuild a new empirical distribution.

3. LSDD-KS

The detection strategy of LSDD transforms multidimen-
sional input data characterized by an unknown pdf into
one-dimensional feature: by verifying if the new LSDD val-
ue comes from distribution Π0, changes may be detected.
Somehow, it is like recognizing outliers. As we mentioned,
the effectiveness of the test depends on the size of the data
window. If the window size is small, we will end up with
high false positives (FPs) and false negatives (FNs).

In order to mitigate this problem, two solutions can be
considered: one is to use larger windows; the other suggests
to test whether the distribution of possible outliers is the
same as Π0 or not. For the former case, a fixed large
window means more cost in time, which may be inoperable
in the online monitoring of Big Data. For the latter one,
it’s actually a one-dimensional change detection problem,
where many mature and simple methods can be easily
applied, such as the change point models (CPMs) (Ross
et al. (2011); Ross and Adams (2012)) and the KS test
(Massey Jr (1951)).

The two-sample KS test could be one of the most general
nonparametric tests. It can detect the differences in both
location and shape of the empirical cumulative distribu-
tion functions of the two sample sets (two windows). Since
the tables of critical values associated with two-sample KS
test have been published, it can be applied easily without
retraining. That is, the sizes of KS test can be variable.

In this paper, we propose the LSDD-KS CDT by com-
bining the LSDD with two sample KS test working with
two-level windows. The new method can easily utilize
more samples when needed to be more sensitive to small
changes. Still, no assumptions about the distributions or
other priors are required. The only basis of change detec-
tion is that samples in the training set are in stationarity.



Fig. 1. The combined detection method of LSDD and KS
test

3.1 Discussions about the Reference Set

As we have pointed out in (Bu et al. (2016c)), the reference
set Zp is a realization of a random variable and specific
values influence the detection performance. In order to
deal with randomness, reservoir sampling was suggested to
update Zp as done in (Bu et al. (2016b)), multi-sets were
considered with ensemble learning in (Bu et al. (2016a)),
and an enlarged window was applied during the testing
phase only in (Bu et al. (2016c)).

Fortunately, when Big Data framework is available, a large
reference set Zp can be used. In particular, we randomly
select n0 samples (n0 should be a large value) from the
training set, and fix them during the whole training and
testing phases until a change is detected.

3.2 The Algorithm of LSDD-KS

The detailed combining implementation of LSDD and the
KS test is shown in Fig.1, where data window sizes ni

and mi{i = 0, 1} are associated with LSDD and KS test
respectively. Here, the LSDD is employed to measure the
density differences to derive the one-dimensional statistics
D2 ( to ease understanding, we rename it as yi); the
change detection is then carried out by the KS test. In
Fig.1, the yellow independent windows, each of which
contains n1 samples, are used to derive independent LSDD
values, so that independent values {yp,i, i = 1, ...,m0} and
{yq,j , j = 1, ...,m1} for the KS test are derived. The blue
windows work at the KS-test level; the left window is fixed
after training while the second one slides to collect new
data.

The description of the whole detection process is given
in Algorithm 1. During the training phase (steps 1-3), we
prepare windows for LSDD (steps 1-2) and generate the
reference set Yp for KS test (step 3). During the testing
phase (steps 6-16), once n1 new samples are arrived,
the LSDD operator (step 6) is applied on sets Zp and
Zq,j to derive a statistic yq,j . Then, changes are detected
according to the KS test, with theKStest operator working
on sets Yp and Yq under the constraint of a fixed expected
FP rate µ (steps 9-13). The output of KStest η (step 9)
says that whether the null hypothesis that p(x) = q(x) is
rejected, i.e., changes are detected (step 10) or not.

Algorithm 1 LSDD-KS

Input: Training set Ω with size Nt , window sizes
n0, n1,m0,m1, FP rate µ, kernel centers ci{i =
1, ..., nc};

Output: Change location or no changes.
1: Randomly select n0 samples from Ω as the reference

set Zp;
2: Build m0 sets Zp,i{i = 1, ...,m0}, each of which

contains n1 samples from Ω, to be compared with Zp.
3: Construct set Yp that yp,i = LSDD(Zp, Zp,i), {i =

1, ...,m0}, and parameters σ and λ are chosen as
suggested in Section II;

4: j = 1;
5: while (1) do
6: Collect n1 newly arrived samples into set Zq, j with

no overlap, yq,j = LSDD(Zp, Zq,j);
7: if j ≥ m1 then
8: Construct set Yq = {yq,i, i = j + 1−m1, ..., j};
9: Execute the KS test η = KStest(Yp, Yq, µ);

10: if η = 1 then
11: A change is detected at the j×n1-th sample;
12: Break ;
13: end if
14: else
15: j = j + 1;
16: end if
17: end while

It’s worth noting that since the kernel centers are fixed
before training, matrix H, as well as (H + λI)−1, can
be computed in advance (and only once). The operations
about the reference set Zp can also be executed beforehand
that

fp =
1

n0

n0∑
j=1

exp(−||xp,j − ci ||22
2σ2

). (7)

In this case, the remaining task of LSDD operator is only
to deal with the information about Zq,j and then estimate
the LSDD value according to (4).

4. EXPERIMENTS

In order to verify the effectiveness of proposed LSDD-
KS test, we designed several experiments to reveal the
influence of the window size as well as show how the
method is sensitive to small changes.

The basic LSDD-CDTmethod without the higher-level KS
test is considered as a reference CDT for comparison. For
such a test, we use the same fixed Zp set as in LSDD-KS,
and slide the testing set Zq to collect newly arrived samples
at each time step. During the training phase, a bootstrap
procedure is used as recommended in (Bu et al. (2016b))
to build the empirical distribution of LSDD values so as
to derive a threshold Tµ satisfying

Pr(D̂
2 > Tµ) = µ. (8)

During the testing phase, the LSDD value is computed on
sets Zq and Zp at each time step to obtain y which is then
compared to Tµ to detect possible changes.



We consider four simulated applications. For comprehen-
sive evaluation, both one-dimensional and multi-dimensional
cases and different change types are involved.

• Application D1 refers to two cases with differen-
t changes affecting the stationary pdf N(0, 0.5).
Changes occur abruptly (1#) or drifting slowly (2#)
with pdf shifting to N(0.1, 0.5). Both of the cases rep-
resent scenarios of “small” changes because of their
small magnitude of changes.

• Application D2 is a ten dimensional problem in (Raza
et al. (2015)), with instances satisfying a multivariate
normal distribution. The means are fixed at u1,i =
u2,i = 0, and the covariance shifts from σ1,ij(i=j) =
0.5, σ1,ij(i ̸=j) = 0 to σ2,ij(i=j) = 0.5, σ2,ij(i ̸=j) = 0.4
abruptly where i, j = 1, ..., 10.

• Application D3 is a two-class rotating mixture of
Gaussions (Ditzler and Polikar (2011)) with class

centers shifting from µ1 = [1/
√
2, 1/

√
2], µ2 =

[−1/
√
2,−1/

√
2] to µ1 = [1/

√
2,−1/

√
2], µ2 =

[−1/
√
2, 1/

√
2]. The covariances are fixed during the

whole detection Σ1 = Σ2 = [0.5, 0; 0, 0.5].
• Application D4 is a moving hyperplane problem

(Minku et al. (2010)) that xk+1 ≤ −a0 +
k∑

i=1

aixi.

Changes are added as in (Bu et al. (2016b)) by
changing the value of a0 from −1 to −3.2. The other
parameters are k = 2 and a1 = a2 = 0.1. x1, x2 are
random variables uniformly distributed from interval
[0, 1] and x3 from [0, 5].

The user-defined parameters are fixed as follows. The size
of the training set Nt is 20000, the relatively large n0 for
LSDD is 2000, m0 for KS test is 500, m1 is 100, and nc

is 100. λ is configured as in (Bu et al. (2016c)), including
the predefined relative difference RD0 = 0.25 and their
optional values generated by a Matlab function logspace(-
2, 1, 20). The size of testing set is 40000 and changes occur
from the 20001-th sample on. The impact of window size
n1 will be discussed in the next subsection.

Other parameters for the basic LSDD should be under
the constraint of LSDD-KS that a 20000 data set can
not allow a large size of Zq, e.g., a window with size
50 × 100 compared to LSDD-KS. In this case, we make
a compromise that the size n1 here is set to 500 which is
neither small nor too large. The number of bootstraps for
building the empirical distribution is 1000.

Three indexes are used to evaluate the performance of the
proposed LSDD-KS CDT:

• False positive rate (FP(%)): it counts the rate of false
detections.

• False negative rate (FN(%)): it counts the rate of
undetected changes.

• Delay (in samples): it measures the detection delay.
A delay is recorded only when the change is detected.
Both the mean and the standard deviation (in paren-
thesis) of the delay values are computed.

4.1 The Influence of Window Sizes

In this section, we discuss the influence of window sizes
through experiments on applications D1-4. Six cases are

Table 1. Testing the real FP rates

µ n1 D1 D2 D3 D4

1%

50 0.6% 0.2% 0.8% 0.4%

100 0.6% 0.8% 1% 0.4%

200 1.8% 2.4% 0.8% 0.8%

5%

50 4% 4.8% 5.2% 5.8%

100 5% 5% 3.8% 5%

200 5% 6.8% 8% 7.4%

considered exploring different values of n1 and µ as shown
in Table 1. Both the small windows (n1 = 50) and slightly
large ones (n1 = 200) are included.

Firstly, 500 independent tests are carried out to measure
the real FP and FN rates. For measuring the FP rates,
the testing samples are with the same pdfs as the training
samples, whereas for the FN ones, they are with the
changed pdfs as introduced above.

As shown in Table 1, for all the applications D1-4, with
the increase of n1 (n1 = 50 and 100), the FP rates
show no obvious trend. Their real computed FP rates are
mainly consistent with the predefined values. However, for
n1 = 200, since a larger window needs more samples to
derive independent statistics to train a test, the real FP
rates here are a bit higher.

In the experiments, the FN rates for all the applications
with different parameters are 0, which means that the
method will not miss any changes. We do not record them
in a table any more.

In the next experiment, we conduct 100 independent tests
over data streams with overlapped windows of LSDD-KS
to reveal the relationship between the detection delay and
n1. Here, the delay (both the mean and the standard
deviation are measured) shown in the top rows in Table
2, counts the samples starting from sample 20001 where
the change is applied. Furthermore, we also record the
relative delay (= delay/n1) shown in the second rows
which represent the testing times of the KS test.

It emerges that for small changes (D1), most of delays
increase with the increase of window size n1 as expected,
whereas the relative delay decreases. It’s because that
more samples in Zq will reveal the changes on LSDD values
in time, so that the KS test, operated on these values, can
detect changes quickly with fewer relative delay. However,
the real delay is higher. For the drift case (2#), more sam-
ples are needed than in D1(1#) before concept drift be-
comes significant (and, hence, perceivable by the method).
For other applications (D2-4) with stronger changes, the
required instances, for showing their significant changes
with the same FP rates, are almost the same. Furthermore,
for all the applications, higher FP rates correspond to
smaller delays as expected.

We conclude that the proposed LSDD-KS method can
work well with controllable FP rates even with small size
n1, e.g., n1 = 50. In addition, it is always preferred that
the small n1 is associated with small delay.



Table 2. The Detection Delay with Different Window Sizes

µ n1 D1(1#) D1(2#) D2 D3 D4

1%
50

2863.5(1330.4) 13403.2(5068.4) 745(213.7) 754(179.5) 747(146.7)

57.3 268.1 14.9 15.1 15

100
3406(1514) 14533(4143.9) 1519(298.4) 1499(342.4) 1455(340.3)

34.1 145.3 15.2 15 14.6

200
5470.7(2992.7) 14501.3(3894.9) 2986(667.4) 2942(701.7) 2984(756.2)

27.4 72.5 14.9 14.7 14.9

5%
50

2240(1909.1) 8726.3(5456.1) 559(195.8) 554.5(216.5) 529.5(213.7)

44.8 174.5 11.8 11.1 10.6

100
3160(1955.6) 10347.4(5516) 1147(379.6) 1119(373) 1171(353.4)

31.6 103.5 11.5 11.2 11.7

200
3528(2209) 12289.6(5883.7) 2046(920.2) 2172(717.5) 2144(900.3)

17.6 61.4 10.2 10.9 10.7
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Fig. 2. The change detection performance of LSDD-KS and the basic LSDD on D1

4.2 The Change Detection Performance

In the last experiment, we make a comparison between
LSDD-KS and the basic LSDD CDT on the two cases of
application D1. The window size n1 is set to 100 and the
predefined FP rate µ is 1%. In order to observe how the
derived LSDD statistics shift when changes occur, we run
the detection test until the end of the data stream but not
stop it as in Algorithm 1 (step 12).

Fig.2 (a) and (b) show the dataset of application D1; 1#
is with an abrupt change and 2# with a slow drift. LSDD-
KS detects both changes accurately (as shown in Fig.2
(c) and (d))with neither false positives nor false negatives
at the cost of large delay. Even though the basic LSDD
can detect changes more promptly, the false negatives in
Fig.2 (e) and (f) are high (see the LSDD values under

the threshold line after change location), which means it
may always miss changes. Furthermore, there are also some
false positives especially in Fig.2 (e) (see the LSDD values
above the threshold line before change), which makes the
method less credible.

5. CONCLUSIONS

In this paper, we propose a novel change detection test
by combing the least squares density difference estimation
with the KS test. In the framework of Big Data, inde-
pendent windows are used to derive independent and one-
dimensional LSDD values. Then the KS test is applied to
detect possible changes which are reflected by the statis-
tics. The method can work with small windows for LSDD
which reduces the execution time.



The experiments validate that our method is effective in
detecting changes with controllable FP rates. It has to
be noted that, in this paper, we consider two cases with
“small” changes which are hardly detected in our previous
work even with severer changes in the magnitude. The
results show that by having enough training data (Big
Data framework), a small change can even be detected
accurately.
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