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In this paper, the fully cooperative game with partially constrained inputs in the continuous-time Markov 

decision process environment is investigated using a novel data-driven adaptive dynamic programming 

method. First, the model-based policy iteration algorithm with one iteration loop is proposed, where 

the knowledge of system dynamics is required. Then, it is proved that the iteration sequences of value 

functions and control policies can converge to the optimal ones. In order to relax the exact knowledge 

of the system dynamics, a model-free iterative equation is derived based on the model-based algorithm 

and the integral reinforcement learning. Furthermore, a data-driven adaptive dynamic programming is 

developed to solve the model-free equation using generated system data. From the theoretical analysis, 

we prove that this model-free iterative equation is equivalent to the model-based iterative equations, 

which means that the data-driven algorithm can approach the optimal value function and control policies. 

For the implementation purpose, three neural networks are constructed to approximate the solution of 

the model-free iteration equation using the off-policy learning scheme after the available system data 

is collected in the online measurement phase. Finally, two examples are provided to demonstrate the 

effectiveness of the proposed scheme. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Recently, a newly developed technique, multi-agent reinforce-

ent learning (MARL) which integrates the developments of rein-

orcement learning (RL) and game theory, has been widely applied

o various fields including robotic control, traffic light control, bat-

ery management, distributed sensor network, etc [1–3] . In MARL,

n agent is usually a computational entity which can perceive

ts environment, make decisions, and act upon its environment

hrough actuators. Generally, the agent is not isolated but con-

ected to its neighbour agents for multi-agent systems (MAS), and

he mutual links between each agent can be expressed through a

ommunication diagram. Their behaviors are adopted to optimize

ome performance indexes based on their own information and

he shared one from their neighbors to affect the environment to-

ether. However, due to the complexity and variability of the en-

ironment, it is difficult to design the agents’ behaviors relying on
∗ Corresponding author at: The State Key Laboratory of Management and Control 

or Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 

00190, China. 
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he prior knowledge. That is, it is necessary to learn appropriate

ehaviors for each agent. 

For a single-agent environment, RL provides a method to learn

o behave in an unknown or known environment. Through in-

eractions with the environment, the agent adapts its behaviors

ontinually based on a received reward signal, to finally achieve

n optimal or near-optimal policy that maximizes the long-term

ccumulated reward. The accumulated reward is known as the

alue function [4] . In most cases, RL considers the Markov deci-

ion process (MDP). And some well-understood RL algorithms with

ood convergence such as Q-learning, Sarsa and adaptive dynamic

rogramming (ADP) are proposed and widely used to tackle the

ingle-agent RL task without full information of system dynamics

5–13] . 

For the multi-agent case, game theory provides a powerful tool

o address most of challenges for RL in MAS, such that how to

oordinate the agent’s behaviors when the others change their

trategies, how to guarantee the convergence properties of on-

ine algorithms in such a nonstationary environment, and so on.

he generalization of the MDP for the multi-player case is the

tochastic game [14,15] , where each player can be regarded as an

gent. It is well-known that many MARL algorithms such as team-

 [16] , Minimax-Q [17] , and Nash-Q [18] have been proposed for
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the stochastic game. Relying on the roles and tasks of players, the

stochastic game can be divided into several types. If the players

have the same value function and coordinate to fulfill a common

task, e.g., the wireless network agents in [19] , the vehicle sta-

bility control in [20] , and traffic signal light agents in [21] , this

kind of game is called a fully cooperative (FC) game. Otherwise,

if the agents only pursue their own interest and compete with

each other, this kind of game is known as zero-sum (ZS) game

[22] . From the perspective of minimax optimization problem, the

H ∞ 

control can be formulated as a two-player ZS game [23,24] .

In some tasks, the agents are neither fully cooperative nor fully

competitive, and these mixed games are called nonzero-sum (NZS)

games. Different from the above centralized games, the distributed

cooperative control of the multi-agent graphical games is investi-

gated in [25,26] , where the value iteration and Riccati design al-

gorithms are used respectively. However, most of above mentioned

methods are suitable for the discrete-time MDP environment. 

For the continuous-time MDP environment, many model-based

and model-free methods based on ADP have been applied to the ZS

and NZS games [27–33] , in which the knowledge of system dynam-

ics is known or should be identified. For the multi-agent graphical

games, the distributed synchronization controller based on model-

based RL algorithms can also be found in [34,35] for linear and

nonlinear continuous-time systems, respectively. For the partially

unknown multi-agent graphical games, the RL-based distributed

cooperative controller is designed for multi-input and multi-output

nonlinear systems without the knowledge of internal system dy-

namics in [36] . It should be mentioned that the training of iden-

tifers which is used in above model-free methods is usually time-

consuming and the introduced identification errors are usually ad-

verse to find the optimal control policies. Vrabie and Lewis pro-

pose the integral reinforcement learning (IRL) to solve the ZS game

without the knowledge of internal dynamics in [37] . Note that

multiple iterative loops are required in the proposed algorithms,

which is often time-consuming. Motivated by that, an online si-

multaneous policy update algorithm with only one iterative loop

and an off-policy reinforcement learning for the partially unknown

ZS game are developed in [38,39] , respectively. In [40] , the track-

ing HJI equation is solved by an actor-critic structure with only one

neural network for the wheeled mobile robot without the knowl-

edge of the system’s drift dynamics. For completely unknown sys-

tems, an exciting work is given to solve the optimal control prob-

lem of uncertain nonlinear systems in [41] . A robust ADP is per-

formed without any system dynamics and identification process.

In [42] , a model free approach is proposed based on IRL with safe

explorations for the nonlinear optimal control problem. Then, this

kind of data-based or data driven method is extended to the opti-

mal control for linear ZS game in [43] and the H ∞ 

control problem

in [44] . Unfortunately, the FC game with completely unknown dy-

namics in continuous-time MDP environment is rarely mentioned. 

On the other hand, the mentioned ADP methods do not take

into account the input constraints caused by actuator saturation.

However, failure to account for actuator saturation often severely

destroys the system performance, or may even lead to instability.

In [45] , embracing IRL and experience replay, an online ADP al-

gorithm is proposed to design the optimal controller of partially-

unknown constrained control systems. For ZS games with satu-

ration constraints, Abu-Khalaf et al. [46] design a suitable quasi-

norm controller of continuous-time nonlinear systems. In [47] ,

a policy iteration (PI) algorithm with the actor-critic-disturbance

structure is performed to solve the associated Hamilton–Jacobi–

Isaacs (HJI) equation of constrained ZS game with a non-quadratic

performance index. For NZS games, Yasini et al. [48] integrate con-

current learning with RL to solve the corresponding Hamilton-

Jacobi (HJ) equations, where the restrictive persistence of excita-

tion (PE) condition is relaxed. Unfortunately, the unknown nonlin-
ar FC games with constrained input are rarely studied using data-

riven ADP methods in the literatures. 

In this paper, we focus on the continuous-time unknown FC

ame with partially constrained inputs using the data-driven iter-

tion ADP method. The contribution of this paper emphasizes in

wo parts: 

1. This paper extends the existing work in [39,44] for the H ∞ 

control problem to the continuous-time nonlinear FC games.

An two-phase data-driven iterative ADP is proposed with

the online measurement phase and off-policy learning phase,

where the system dynamics and the identification procedure

in [33,49] are neither required. It also differs from the work

in [15,16] , which focus on the FC games in discrete-time MAP

environment. 

2. In contrast to the existing data-driven method in [39,41–43] ,

the proposed data-driven iterative ADP takes into account the

situation of partially constrained input caused by part of the

actuator saturation, which is much more difficult and compli-

cated in some sense. 

The rest of this paper is organized as follows: Section 2 intro-

uces the problem formulation. In Section 3 , a two-phase data-

riven iteration ADP method that needs no system dynamics for

he FC game with partially constrained inputs is given, and the

onvergence analysis is given. Simulation results and the conclu-

ion are presented in Sections 4 and 5 , respectively. 

. Preliminary 

.1. Problem statement 

Consider the following two-player FC game system 

˙ 
 = f (x ) + g 1 (x ) u 1 + g 2 (x ) u 2 (1)

here x ∈ � 

n is the state vector, u i = u i (x ) ∈ � 

m i is the con-

rol input for each player i, f ( x ) ∈ � 

n and g i (x ) ∈ � 

n ×m i , i = 1 , 2 ,

re continuous unknown nonlinear functions with f (0) = 0 . Note

hat u 2 = [ u 1 
2 
, . . . , u 

m 2 
2 

] T is constrained by a positive constant, i.e.,

u l 
2 

∣∣ ≤ λ, l = 1 , . . . , m 2 , where λ is the actuator bound. Assumed

hat f (x ) + g 1 (x ) u 1 + g 2 (x ) u 2 is Lipschitz continuous on a compact

et � ∈ � 

n containing the origin, and the system is stabilizable on

. 

For general optimal control of the NZS games [29,33] , the cost

unctions associated with each player are given by 

 i (x 0 , u 1 , u 2 ) = 

∫ ∞ 

0 

r i ( x, u 1 , u 2 ) d t 

= 

∫ ∞ 

0 

{ x T Q i x + ϒi (u 1 ) + ϒi (u 2 ) } d t , i = 1 , 2 

(2)

here r i ( x, u 1 , u 2 ) is the utility function, and Q i > 0. In general,

e choose ϒi ( u 1 ) = u T 
1 
R i 1 u 1 and ϒi ( u 2 ) = u T 

2 
R i 2 u 2 , i = 1 , 2 for the

nconstrained control inputs. 

Clearly, there is an individual cost function associated with all

ontrol inputs for each player of the NZS games, where each player

ants to optimize his own performance index. However, for the

ptimal control of the FC games, all players take actions together

s a team. They have precisely the same cost function, which is

iven by 

(x 0 , u 1 , u 2 ) = 

∫ ∞ 

0 

r ( x, u 1 , u 2 ) d t 

= 

∫ ∞ 

0 

{ x T Qx + U 1 (u 1 ) + U 2 (u 2 ) } d t 

(3)

here r ( x, u 1 , u 2 ) is the utility function for the FC game (1) ,

 1 (u 1 ) = u T 1 R 1 u 1 and U 2 (u 2 ) = u T 2 R 2 u 2 for the unconstrained inputs

 and u . 
1 2 
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emark 1. If we choose Q 1 = Q 2 = Q, R 11 = R 21 = R 1 and R 21 =
 22 = R 2 for (2) and (3) , the cost function (3) of the FC game is

n line with (2) of the NZS game. In other words, the FC game can

e regarded as a special case of the NZS game. In order to extend

he data-driven ADP algorithm, the FC game is considered. 

emark 2. For the output feedback optimal control problem with

he system output y = h (x ) [39] or y = Cx [50] , where h ( x ) and C

re a continuous function and a system matrix with appropriate

imensions, the cost function (3) is designed based on the system

utput accordingly. That is, the term x T Qx in (3) is usually replaced

y y T Qy . Then, the output feedback optimal control problem can be

olved based on RL algorithms. 

Motivated by [46] , for the constrained control input u 2 , a gener-

lized non-quadratic functional U 2 ( u 2 ) = 2 
∫ u 2 

0 
λtanh 

−T (s/λ) R 2 d s is

mployed. Note that Q, R 1 are positive definite matrices with ap-

ropriate dimensions and R 2 = diag (γ1 , . . . , γm 2 
) > 0 for simplicity

f analysis. 

Assume that the system (1) is zero-state observable. The goal

f the two-player FC game is to find the feedback control policies

 u 1 ( x ), u 2 ( x )} that minimizes the following common value function

efined as 

 (x, u 1 , u 2 ) 
�= 

∫ ∞ 

t 

{
x T Qx + u 

T 
1 R 1 u 1 

+ 2 

∫ u 2 

0 

λtanh 

−T 
(s/λ) R 2 d s 

}
d τ

(4) 

efinition 1. [(Admissible control):] A feedback control policy pair

= { μ1 , μ2 } is defined as admissible to (4) on the compact set �,

enoted by μi ∈ �i (�) , i = 1 , 2 , if μi ( x ) is continuous on � with

i (0) = 0 , μ stabilizes the system (1) on �, and the value function

4) is finite ∀ x 0 ∈ �. 

Thus, for given system (1) with admissible control inputs u 1 and

 2 , we aim to find the so-called coordination equilibria { u ∗1 , u ∗2 }
hich gains the optimal value function 

 

∗(x ) 
�= V (u 

∗
1 , u 

∗
2 ) = min 

u 1 ,u 2 
V (u 1 , u 2 ) 

hich means 

 (u 

∗
1 , u 

∗
2 ) ≤ min { V (u 

∗
1 , u 2 ) , V (u 1 , u 

∗
2 ) } 

n other words, no player has any incentive to change his policy

rom the coordination equilibria, so the best policy for one player

s the best one for the other [16] . Let V 

∗( x ) ∈ C 1 ( �). C 1 ( �) denotes

 function space on � with first derivatives are continuous. 

A differential equivalent to the value function in (4) is a

yapunov-like equation 

(x, u 1 , u 2 ) + ∇V 

T ( f + g 1 u 1 + g 2 u 2 ) = 0 , V (0) = 0 (5)

here ∇V = ∂ V/∂ x . Define the Hamiltonian function 

(x, ∇V, u 1 , u 2 ) 
�= r(x, u 1 , u 2 ) + ∇V 

T ( f + g 1 u 1 + g 2 u 2 ) 

urthermore, applying the stationary conditions ∂H(x, ∇V ∗,
 1 , u 2 ) /∂u i = 0 , we can obtain the optimal control policies 

 

∗
1 (x ) = −1 

2 

R 

−1 
1 g T 1 (x ) ∇V 

∗(x ) (6)

 

∗
2 (x ) = −λ tanh 

(
(1 / 2 λ) R 

−1 
2 g T 2 (x ) ∇V 

∗(x ) 
)

(7) 

ased on (6) and (7) , the Lyapunov-like Eq. (5) can be presented

s 

 = x T Qx − 1 

4 

(∇V 

∗(x )) T g 1 R 

−1 
1 g T 1 ∇V 

∗(x ) 

+ (∇V 

∗(x )) T f + λ2 R̄ 2 ln ( 1 − tanh 

2 
(D 

∗)) 
(8) 
here R̄ 2 = [ s 1 , . . . , s m 2 
] ∈ � 

1 ×m 2 , D 

∗ = (1 / 2 λ) R −1 
2 

g T 
2 
(x ) ∇V ∗(x ) ,

nd 1 is a column vector with all elements equal to one. 

.2. Model-based PI method 

To obtain the optimal control policies (6) and (7) , we have to

olve the Lyapunov-like Eq. (8) . However, it is difficult to give an

nalytic solution of (8) due to the inherent nonlinearity. Motivated

y the online PI algorithm with one iteration loop for the NZS

ames in [28] , a model-based iterative method is given to approach

he solution of (8) . 

1. (Policy evaluation) given an initial admissible control policy pair

{ u 0 
1 
(x ) , u 0 

2 
(x ) } , find V 

k ( x ) successively approximated by solving

the following equation with V k (0) = 0 

r(x, u 

k 
1 , u 

k 
2 ) + (∇V 

k +1 ) T ( f + g 1 u 

k 
1 + g 2 u 

k 
2 ) = 0 , k = 0 , 1 , . . . , 

(9) 

2. (Policy improvement) update the control policies simultaneously

by 

u 

k +1 
1 (x ) = −1 

2 

R 

−1 
1 g T 1 (x ) ∇V 

k +1 (x ) 

u 

k +1 
2 (x ) = −λ tanh 

(
D 

k +1 
) (10) 

where D 

k +1 = (1 / 2 λ) R −1 
2 

g T 
2 
(x ) ∇V k +1 (x ) , and k is the iterative

index. 

heorem 1. Let V 

k ( x ) ∈ C 1 ( �), V 

k ( x ) ≥ 0, V k (0) = 0 and u k 
i 
(x ) ∈

i (�) , i = 1 , 2 . If (V k +1 (x ) , u k 
i 
(x )) and (V k +2 (x ) , u k +1 

i 
(x )) both sat-

sfy the Lyapunov-like Eq. (5) with the boundary condition V k +1 (0) =
 , V k +2 (0) = 0 , then we have 

1. the obtained control policies u k +1 
i 

(x ) , i = 1 , 2 in (10) are admissi-

ble for system (1) on �; 

2. V ∗(x ) ≤ V k +2 (x ) ≤ V k +1 (x ) , ∀ x ∈ �; 

3. lim 

k →∞ 

V k (x ) = V ∗(x ) ; 

4. lim 

k →∞ 

u k 
i 
(x ) = u ∗

i 
(x ) , i = 1 , 2 . 

roof. For the first part of Theorem 1 , taking the derivative of

 

k +1 (x ) with respect to time along the system f + g 1 u 
k +1 
1 

+ g 2 u 
k +1 
2 

rajectory, we have 

˙ 
 

k +1 �= (∇V 

k +1 ) T f + (∇V 

k +1 ) T g 1 u 

k +1 
1 + (∇V 

k +1 ) T g 2 u 

k +1 
2 (11)

ased on (9) and (10) , we can get 

(∇V 

k +1 ) T f = −x T Qx − (u 

k 
1 ) 

T R 1 u 

k 
1 − (∇V 

k +1 ) T g 1 u 

k 
1 

− 2 

∫ u k 2 

0 

λtanh 

−T 
(s/λ) R 2 d s − (∇V 

k +1 ) T g 2 u 

k 
2 

(∇V 

k +1 ) T g 1 = −2(u 

k +1 
1 ) T R 1 

(∇V 

k +1 ) T g 2 = −2 λ tanh 

−T 
(u 

k +1 
2 /λ) R 2 

(12) 

ubstitute into (11) 

˙ 
 

k +1 = − x T Qx − (u 

k 
1 ) 

T R 1 u 

k 
1 + 2(u 

k +1 
1 ) T R 1 u 

k 
1 − 2(u 

k +1 
1 ) T R 1 

× u 

k +1 
1 + 2[ λ tanh 

−T 
(u 

k +1 
2 /λ) R 2 (u 

k 
2 − u 

k +1 
2 ) 

−
∫ u k 2 

0 

λtanh 

−T 
(s/λ) R 2 d s ] 

= − x T Qx − ‖ θ (u 

k +1 
1 − u 

k 
1 ) ‖ 

2 − (u 

k +1 
1 ) T R 1 u 

k +1 
1 

+ 2 

[
� 

T (u 

k +1 
2 ) R 2 (u 

k 
2 − u 

k +1 
2 ) −

∫ u k 2 

0 

� 

T (s ) R 2 d s 

]

here R 1 = θT θ and � 

T (u k ) = λ tanh 

−T (u k /λ) . 

2 2 
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Based on R 2 = diag (γ1 , . . . , γm 2 
) > 0 , we have 

˙ 
 

k +1 = − x T Qx − ‖ θ T (u 

k +1 
1 − u 

k 
1 ) ‖ 

2 − (u 

k +1 
1 ) T R 1 u 

k +1 
1 

+ 2 

m 2 ∑ 

ζ=1 

γζ

[
�(u 

k +1 
2 ,ζ

)(u 

k 
2 ,ζ − u 

k +1 
2 ,ζ

) −
∫ u k 

2 ,ζ

0 

�(s ζ ) d s ζ

]

where u k 
2 

= [ u k 
2 , 1 

, . . . , u k 
2 ,m 2 

] T . 

Since tanh ( ·) is a monotonic odd function, � 

T (u k 
2 
) =

tanh 

−T (u k 
2 
/λ) is monotone and odd. So does �(u k 

2 ,ζ
) . Then,

we have the term �(u k +1 
2 ,ζ

)(u k 
2 ,ζ

− u k +1 
2 ,ζ

) − ∫ u k 
2 ,ζ

0 
�(s ζ ) d s ζ is always

negative according to the geometrical meaning. This implies that
˙ 
 

k (x + 1) < 0 and V k +1 (x ) is a Lyapunov function for u k +1 
i 

, i = 1 , 2

on �. Since the nonlinear functions g 1 , g 2 are continuous and

 

k +1 (0) = 0 , then we have u k +1 
i 

in (10) is continuous with

u k +1 
i 

(0) = 0 . According to the Definition 1 , the control policies

u k +1 
i 

(x ) are admissible for (1) on �. 

For the second part of Theorem 1 , considering V ( x ) defined in

(4) along the system f + g 1 u 
k +1 
1 

+ g 2 u 
k +1 
2 

trajectory, we have 

 

k +2 (x ) − V 

k +1 (x ) 

= −
∫ ∞ 

t 

{
∂(V 

k +2 − V 

k +1 ) T 

∂x 
( f + g 1 u 

k +1 
1 + g 2 u 

k +1 
2 ) 

}
d τ

(13)

Since (V k +2 (x ) , u k +1 
i 

(x )) satisfies (9) , we can obtain 

(∇V 

k +2 ) T f = −x T Qx − (u 

k +1 
1 ) T R 1 u 

k +1 
1 − (∇V 

k +2 ) T g 1 u 

k +1 
1 

− 2 

∫ u k +1 
2 

0 

λtanh 

−T 
(s/λ) R 2 d s − (∇V 

k +2 ) T g 2 u 

k +1 
2 

(14)

Substituting (12) and (14) into (13) , we can get 

 

k +2 (x ) − V 

k +1 (x ) 

= −
∫ ∞ 

t 

{
(u 

k +1 
1 ) T R 1 u 

k +1 
1 − 2(u 

k +1 
1 ) T R 1 u 

k 
1 + (u 

k 
1 ) 

T R 1 u 

k 
1 

− 2 

[
� 

T (u 

k +1 
2 ) R 2 (u 

k +1 
2 − u 

k 
2 ) −

∫ u k +1 
2 

u k 
2 

� 

T (s ) R 2 d s 

]}
d τ

= −
∫ ∞ 

t 

{‖ θ (u 

k +1 
1 − u 

k 
1 ) ‖ 

2 

− 2 

[
� 

T (u 

k +1 
2 ) R 2 (u 

k +1 
2 − u 

k 
2 ) −

∫ u k +1 
2 

u k 
2 

� 

T (s ) R 2 d s 

]}
d τ

(15)

Since � 

T (u k 
2 
) is monotone and odd, we can deduce that V k +2 (x ) −

 

k +1 (x ) ≤ 0 . Furthermore, we have V ∗(x ) ≤ V k +2 (x ) by contradic-

tion. 

Because { V k } ∞ 

k =0 
is a monotonically decreasing sequence with

the lower bounded V 

∗( x ), then V 

k converges pointwise to V 

∞ . Be-

cause of the uniqueness of V ( x ) with x ∈ � [51] , we can get that

 

∞ = V ∗, which means that lim 

k →∞ 

V k (x ) = V ∗(x ) . According to (10) ,

it can be deduced that lim 

k →∞ 

u k +1 
i 

(x ) = u ∗
i 
(x ) , i = 1 , 2 . The proof is

completed. �

Remark 3. This method can be seen as an extension of the iter-

ative method to solve the constrained HJB equation in [52] . Note

that this iterative method with only one iteration loop is a model-

based PI which involves two steps: policy evaluation by (9) and

policy improvement by (10) . It can be seen that the complete

knowledge of system dynamics is required. 

3. Data-driven constrained optimal control 

Since the system dynamics are unknown for the partially con-

strained optimal control problem of FC games under consideration,

a two-phase data-driven iterative ADP method is given using gen-
rated system data rather than accurate system dynamics. In this

aper, the off-policy learning scheme used in [39,53] is adopted. 

.1. Data-driven iterative ADP 

In this section, the data-driven iterative ADP approach is de-

ived based on the model-based PI method and IRL. Given two

rbitrary admissible control policies u ′ 
i 
∈ �i (�) , i = 1 , 2 which can

tabilize the system (1) on the compact set �, the derivative of

 

k +1 (x ) with respect to time for the { k + 1 } th iteration equals

 V k +1 / d t = (∇V k +1 ) T ( f + g 1 u 
′ 
1 

+ g 2 u 
′ 
2 
) . Based on (9) and (10) , we

ave 

d V 

k +1 

d t 
= (∇V 

k +1 ) T 
(
g 1 (u 

′ 
1 − u 

k 
1 ) + g 2 (u 

′ 
2 − u 

k 
2 ) 

)
− r(x, u 

k 
1 , u 

k 
2 ) 

= − 2(u 

k +1 
1 ) T R 1 (u 

′ 
1 − u 

k 
1 ) + 2 λ(D 

k +1 ) T R 2 (u 

′ 
2 − u 

k 
2 ) 

− r(x, u 

k 
1 , u 

k 
2 ) 

(16)

According to IRL, integrating both sides of (16) on the interval

 t , t + �t ] , the following equation is formulated as 

 

k +1 (x (t)) − V 

k +1 (x (t + �t)) −
∫ t+�t 

t 

2(u 

k +1 
1 ) T R 1 (u 

′ 
1 − u 

k 
1 ) d τ

+ 

∫ t+�t 

t 

2 λ(D 

k +1 ) T R 2 (u 

′ 
2 − u 

k 
2 ) d τ = 

∫ t+�t 

t 

r(x, u 

k 
1 , u 

k 
2 ) d τ

(17)

here V k +1 is an unknown function and u k +1 
1 

, D 

k +1 are unknown

unction vectors to be solved. 

emark 4. The main idea of the data-driven iterative ADP is to

olve the model-free Eq. (17) instead of the model-based itera-

ive Eqs. (9) and (10) . Note that the system dynamics, i.e., f ( x ) and

 i (x ) , i = 1 , 2 , are not required in the iterative Eq. (17) . Instead, the

vailable system data, i.e., u k 
1 

and u k 
2 
, are utilized during the it-

ration process. In fact, the knowledge of system dynamics is em-

edded in the available system data. Therefore, an online measure-

ent phase to collect the available system data is required before

he off-policy learning scheme which is used to approach the so-

ution of Eq. (17) . 

Thus, the unknown function (V k +1 , u k +1 
1 

, D 

k +1 ) is iterated fol-

owing (17) . Motivated by [39] , as the iteration step k increases, the

onvergence of the generated solution sequence { (V k , u k +1 
1 

, D 

k +1 ) }
o the optimal one is proved as follows. 

heorem 2. Let V k +1 (x ) ∈ C 1 (�) , V k +1 (x ) ≥ 0 , V k +1 (0) = 0 and

 

k +1 
i 

(x ) ∈ �i (�) , i = 1 , 2 . Then (V k +1 , u k +1 
1 

, D 

k +1 ) is the solution of

17) for ∀ u ′ 
i 
∈ �i (�) , i = 1 , 2 if and only if it is a solution of the

odel-based iterative Eqs. (9) and (10) . 

roof. If we can prove (V k +1 , u k +1 
1 

, D 

k +1 ) is a unique solution of

17) for ∀ u ′ 
i 
∈ �i (�) , i = 1 , 2 , the model-free Eq. (17) is equivalent

o the model-based iterative Eqs. (9) and (10) . The proof is by con-

radiction. 

From the derivation of (17) , we can conclude that the solution

(V k +1 , u k +1 
1 

, D 

k +1 ) of (17) also satisfies the Eqs. (9) –(16) . Suppose

hat there is another solution ( h̄ V (x ) , h̄ u 1 (x ) , h̄ D (x )) of (17) with

h̄ V (0) = 0 , h̄ u 1 ∈ �1 (�) and h̄ u 2 = −λ tanh ( h̄ D (x )) ∈ �2 (�) . Thus,

( h̄ V (x ) , h̄ u 1 (x ) , h̄ D (x )) also satisfies (16) , i.e., 

d h̄ V 

d t 
= − 2( h̄ u 1 ) 

T R 1 (u 

′ 
1 − u 

k 
1 ) + 2 λ( h̄ D ) 

T R 2 (u 

′ 
2 − u 

k 
2 ) 

− r(x, u 

k 
1 , u 

k 
2 ) 

(18)

ubstituting (18) from (16) , we have 

d 

d t 
(V 

k +1 − h̄ V ) = − 2(u 

k +1 
1 − h̄ u 1 ) 

T R 1 (u 

′ 
1 − u 

k 
1 ) 

+ 2 λ(D 

k +1 − h̄ D ) 
T R 2 (u 

′ 
2 − u 

k 
2 ) 

(19)
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or ∀ u ′ 
i 
∈ �i (�) . If we choose the admissible control policies u ′ 

1 
=

 

k 
1 

and u ′ 
2 

= u k 
2 

= −λ tanh (D 

k ) , then we can obtain 

d 

d t 
(V 

k +1 − h̄ V ) = 0 (20) 

hich means that the value of V k +1 − h̄ V is a real constant for ∀ x

 �. According to the boundary conditions V k +1 (0) = 0 , h̄ V (0) = 0

nd (20) , we can deduce that V k +1 − h̄ V = 0 , i.e., V k +1 = h̄ V for ∀ x

 �. 

Combined (19) and (20) , we can deduce 

(u 

k +1 
1 − h̄ u 1 ) 

T R 1 (u 

′ 
1 − u 

k 
1 ) = λ(D 

k +1 − h̄ D ) 
T R 2 (u 

′ 
2 − u 

k 
2 ) (21)

olds for ∀ u ′ 
i 
∈ �i (�) . 

Now, we want to prove that Eq. (21) is set up for ∀ u ′ 
i 
∈ �i (�) if

nd only if u k +1 
1 

= h̄ u 1 and D 

k +1 = h̄ D are satisfied simultaneously. 

First, we should prove that if u k +1 
1 

= h̄ u 1 and D 

k +1 = h̄ D are sat-

sfied simultaneously, Eq. (21) is established for ∀ u ′ 
i 
∈ �i (�) . Note

hat the admissible control policies u ′ 
1 

and u ′ 
2 

in (21) can be cho-

en arbitrarily in �1 ( �) and �2 ( �). If we choose u ′ 1 = u k 
1 

∈ �1 (�) ,

hen 

 = λ(D 

k +1 − h̄ D ) 
T R 2 (u 

′ 
2 − u 

k 
2 ) 

olds for ∀ u ′ 
2 

∈ �2 (�) . That is, D 

k +1 = h̄ D holds for ∀ x ∈ �. In a

imilar way, it can be acquired that u k +1 
1 

= h̄ u 1 holds for ∀ x ∈ �.

n fact, if u k +1 
1 

= h̄ u 1 and D 

k +1 = h̄ D hold, Eq. (21) is always equal

o zero for ∀ u ′ 
i 
∈ �i (�) . 

Then, we should prove that Eq. (21) is not established for

 u ′ 
i 
∈ �i (�) for the other cases in addition to u k +1 

1 
= h̄ u 1 and

 

k +1 = h̄ D , i.e., u k +1 
1 

= h̄ u 1 and D 

k +1  = h̄ D , u k +1 
1 

 = h̄ u 1 and D 

k +1 =
h̄ D , u 

k +1 
1 

 = h̄ u 1 and D 

k +1  = h̄ D . Note that Eq. (21) is established for

 u ′ 
i 
∈ �i (�) means that it should be satisfied for any u ′ 

i 
∈ �i (�) . 

If u k +1 
1 

= h̄ u 1 and D 

k +1  = h̄ D hold, Eq. (21) is not established ob-

iously for u ′ 
2 

 = u k 
2 
, u ′ 

2 
∈ �2 (�) . 

If D 

k +1  = h̄ D , u k +1 
1 

 = h̄ u 1 hold, Eq. (21) is not established obvi-

usly for u ′ 
1 

 = u k 
1 
, u ′ 

1 
∈ �1 (�) . 

If u k +1 
1 

 = h̄ u 1 and D 

k +1  = h̄ D hold, Eq. (21) is no longer valid for

 

′ 
1 

= u k 
1 

and u ′ 
2 

 = u k 
2 

or for u ′ 
1 

 = u k 
1 

and u ′ 
2 

= u k 
2 
. 

Hence, we can conclude that Eq. (21) is set up for ∀ u ′ 
i 
∈ �i (�)

f and only if u k +1 
1 

= h̄ u 1 and D 

k +1 = h̄ D hold. That is to say,

(V k , u k +1 
1 

, D 

k +1 ) is a unique solution of (17) for ∀ u ′ 
i 
∈ �i (�) , i =

 , 2 . The proof is completed. �

emark 5. According to Theorem 2 , we know that (17) is equiv-

lent to the iterative Eqs. (9) and (10) . Since the solution V 

k of

9) –(10) can converge to the optimal one V 

∗, we can say the data-

riven iterative ADP can also approach the solution V 

∗ of Eq. (8) .

t differs from the off-policy RL in [39,44] , which concentrates on

he two-player ZS game. In addition, a complicated situation that

artial control inputs are constrained is considered in this paper. 

emark 6. For simplicity of analysis, a two-player FC game is con-

idered in this paper. In fact, for multi-player FC game with par-

ially constrained inputs, all the constrained inputs can be inte-

rated into a constrained input vector while the others can be inte-

rated in a unconstrained input vector. Then the system dynamics

f multi-player FC game can be expressed as the formula (1) in

his paper. Hence, this data-driven iterative ADP can be extended

o multi-player FC game in theory. 

.2. Implementation based on neural network 

For implementation purpose, neural networks are constructed

o approach the solution of (17) . According to the Weier-

trass high-order approximation theorem [54] , the solution
V k +1 (x ) , u k +1 
1 

(x ) , D 

k +1 (x ) 
)

of (17) based on NNs can be written as 

 

k +1 (x ) = w 

T 
c,k +1 φc (x ) + ε c,k +1 

 

k +1 
1 (x ) = w 

T 
u,k +1 φu (x ) + ε u,k +1 

 

k +1 (x ) = w 

T 
d,k +1 φd (x ) + ε d,k +1 

here φc : � 

n → � 

K c , φu : � 

n → � 

K u and φd : � 

n → � 

K d are lin-

arly independent basis function vectors, w c,k +1 ∈ � 

K c , w u,k +1 ∈
 

K u ×m 1 and w d,k +1 ∈ � 

K d ×m 2 are the unknown coefficient vector

nd matrices with K c , K u and K d the numbers of hidden neurons,

 c,k +1 , ε u,k +1 and ε d,k +1 are the reconstruction errors with appro-

riate dimensions for ∀ k . It is shown in [52] that as K c → ∞ , K u →
 and K d → ∞ , the reconstruction errors ε c,k +1 , ε u,k +1 and ε d,k +1 

onverge to zero. 

Let ˆ w c,k +1 , ˆ w u,k +1 and ˆ w d,k +1 be the estimations of the un-

nown coefficients w c,k +1 , w u,k +1 and w d,k +1 , respectively. Then the

ctual output of the three NNs can be presented as 

ˆ 
 

k +1 (x ) = 

ˆ w 

T 
c,k +1 φc (x ) 

ˆ 
 

k +1 
1 (x ) = 

ˆ w 

T 
u,k +1 φu (x ) 

ˆ 
 

k +1 (x ) = 

ˆ w 

T 
d,k +1 φd (x ) 

(22) 

Define a strictly increasing time sequence { t j } q j=0 
for a large

nterval with the number of collected data points q > 0. Using

( ̂  V k +1 (x ) , ̂  u k +1 
1 

(x ) , ˆ D 

k +1 (x )) instead of (V k +1 (x ) , u k +1 
1 

(x ) , D 

k +1 (x ))

n Eq. (17) , due to the existence of the truncation error of the esti-

ated solution, the residual error is given by 

 

k +1 
j 

= ̂

 V 

k +1 (x (t j )) − ˆ V 

k +1 (x (t j+1 )) −
∫ t j+1 

t j 

r(x, u 

k 
1 , u 

k 
2 ) d τ

−
∫ t j+1 

t j 

2( ̂  u 

k +1 
1 ) T R 1 (u 

′ 
1 − u 

k 
1 ) d τ

+ 

∫ t j+1 

t j 

2 λ( ̂  D 

k +1 ) T R 2 (u 

′ 
2 − u 

k 
2 ) d τ

= [ φc (x (t j )) − φc (x (t j+1 ))] T ˆ w c,k +1 

− 2 

∫ t j+1 

t j 

φT 
u (x ) ̂  w u,k +1 R 1 (u 

′ 
1 − ˆ w 

T 
u,k φu (x )) d τ + 2 λ

×
∫ t j+1 

t j 

(
φT 

d (x ) ̂  w d,k +1 R 2 (u 

′ 
2 + λ tanh ( ̂  w 

T 
d,k φd (x ))) 

)
d τ

−
∫ t j+1 

t j 

{
x T Qx + φT 

u (x ) ̂  w u,k R 1 ˆ w 

T 
u,k φu (x ) 

+ 

∫ −λ tanh ( ̂ w 

T 
d,k 

φd (x )) 

0 

(
λtanh 

−1 
(s/λ) 

)T 
R 2 d s 

}
d τ

(23) 

y Kronecker product �, a compact form of (23) is given by 

 

k +1 
j 

= ρT 
j ( W̄ k ) W̄ k +1 − π j ( W̄ k ) (24)

here W̄ k +1 = [ ̂  w 

T 
c,k +1 

, vec ( ̂  w u,k +1 ) 
T , vec ( ̂  w d,k +1 ) 

T ] T ∈ � 

K̄ is named

he estimated weighting function vector with K̄ = K c + m 1 K u +
 2 K d , W̄ k can also be expressed in the same way, vec( · ) de-

otes the vectorization of a matrix formed by stacking the columns

f the matrix into a single column vector, the iterative index

 ∈ { 0 , 1 , . . . } , the time sequence index j ∈ { 0 , . . . , q } , and ρ j ( W̄ k ) ,

j ( W̄ k ) are defined as 

j ( W̄ k ) = 

⎡ 

⎣ 

φc (x (t j )) − φc (x (t j+1 )) ∫ t j+1 

t j 
−2 R 1 (u 

′ 
1 − ˆ w 

T 
u,k 

φu (x )) � φu d τ∫ t j+1 

t j 
2 λR 2 (u 

′ 
2 + λ tanh ( ̂  w 

T 
d,k 

φd )) � φd d τ

⎤ 

⎦ 
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Fig. 1. The flowchart of the data-driven iterative ADP. 
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π j ( W̄ k ) = 

∫ t j+1 

t j 

{
x T Qx + φT 

u (x ) ̂  w u,k R 1 ˆ w 

T 
u,k φu (x ) 

+ 

∫ −λ tanh ( ̂ w 

T 
d,k 

φd (x )) 

0 

(
λtanh 

−1 
(s/λ) 

)T 
R 2 d s 

}
d τ

To guarantee the convergence of W̄ k +1 , the PE assumption

which is usually needed in adaptive control algorithms is given. 

Assumption 1. [41] : Let the signal ρ j ( W̄ k ) be persistently existed,

that is there exist q 0 > 0 and δ > 0 such that for all q ≤ q 0 , we

have 

1 

q 

q −1 ∑ 

k =0 

ρ j ( W̄ k ) ρ
T 
j ( W̄ k ) ≥ δI K̄ 

where I K̄ is the identity matrix of appropriate dimensions. 

Based on the least-squares (LS) principle, it is desired to deter-

mine the estimated weighting function vector W̄ k +1 by minimizing

min 

¯
 k +1 

q ∑ 

j=0 

(e k +1 
j 

) 2 . According to (24) , the solution to this LS problem

yields 

¯
 k +1 = [ P T ( W̄ k ) P ( W̄ k ) ] 

−1 P T ( W̄ k )�( W̄ k ) (25)

where 

P ( W̄ k ) = [ ρ0 ( W̄ k ) , . . . , ρq ( W̄ k )] T (26)

�( W̄ k ) = [ π0 ( W̄ k ) , . . . , πq ( W̄ k )] T (27)

Similar with [39] , this iterative ADP is actually off-policy learn-

ing method. Note that ρ( W̄ k ) and π( W̄ k ) can be computed with

a suitable initial policies weights w u , 0 and w d , 0 and collected

system data. Then the algorithm is iterated using the expression

(25) . Accordingly, the unknown function 

ˆ V k (x ) and function vectors

ˆ u k +1 
1 

(x ) and 

ˆ D 

k +1 (x ) can be approximately computed by (22) with

the convergent W̄ k +1 . That is Eq. (17) is solved iteratively. 

Remark 7. In general, the exploration noise is added to the given

control inputs to guarantee the PE condition, i.e., u ′ 
i 
= u i + e i , i =

1 , 2 , where u i are arbitrary admissible control policies, and e i are

the exploration noise. Furthermore, the addition of exploration

noise can make the sampling data set P ( W̄ k ) richer. In order to

compute the inverse of matrix P T ( W̄ k ) P ( W̄ k ) in (25) , the matrix

P ( W̄ k ) should be full column rank. To attain this goal in real im-

plementation, the number of collected data points q is generally

satisfied q ≥ rank (P ( W̄ k )) , i.e., q ≥ K̄ = K c + m 1 K u + m 2 K d . 

Then the flowchart of this data-driven iterative ADP algorithm

is given in Fig. 1 . Note that the proposed algorithm includes two

phase. The first step is the online measurement phase, where the

system data is collected under the given control inputs u ′ 1 and u ′ 2 .
The second step is the off-policy learning phase. With the col-

lected data and the iterative expression (25) , the estimated weight-

ing vector W̄ k +1 can converge to the optimal one. Then the optimal

controllers can be obtained. 

3.3. Convergence analysis 

In this section, the convergence of the developed data-driven it-

erative ADP algorithm is proved under the NN approximators (22) .

Theorem 3. Suppose that Assumption 1 holds, for ∀ ε > 0, there exist

integer k ∗ > 0, K 

∗
c > 0 , K 

∗
u > 0 and K 

∗
d 

> 0 , such that if k > k ∗, K c >

K 

∗
c , K u > K 

∗
u and K d > K 

∗
d 
, then 

1) | ̂  V 

k (x ) − V 

k (x ) | ≤ ε, ‖ ̂

 u 

k +1 − u 

k +1 ‖ ≤ ε, ‖ ̂

 D 

k +1 − D 

k +1 ‖ ≤ ε
1 1 
) | ̂  V 

k (x ) − V 

∗(x ) | ≤ ε, ‖ ̂

 u 

k +1 
1 − u 

∗
1 ‖ ≤ ε, ‖ ̂

 D 

k +1 − D 

∗‖ ≤ ε

old for all x ∈ �, 

roof 1. The similar proof procedures is presented in [39,53] . So

e omit it here. 

emark 8. Different from the convergence of algorithms for the

eneral constrained-input systems in [53] and the zero-sum game

ystems in [39] , Theorem 3 is focused on the convergence analysis

or two-player FC game systems with partially constrained inputs

n this paper. Compared with [39] that requires the partial system

ynamics, the knowledge of system dynamics is not required in

he proposed algorithm. 

emark 9. Due to the existence of the constrained input, a gen-

ralized non-quadratic function is introduced in the value func-

ion (4) . Because the value function is a non-quadratic function,

he Lyapunov-like Eq. (5) can not result in the algebraic Riccati
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c . 

Fig. 3. The convergence curves of w 

k +1 
u . 

Fig. 4. The convergence curves of w 

k +1 
d 

. 
quation (ARE). Until now there has been no known analytical so-

utions to optimal control problems for linear systems with con-

trained inputs [55] . Note that the proposed data-driven iterative

DP method in this paper can also be used to approach the opti-

al solution to the optimal problem for the linear FC game sys-

ems with partially constrained inputs. 

. Simulation 

To demonstrate the effectiveness of the developed algorithm,

e choose two examples for numerical experiment. 

.1. Example 1 

Consider the continuous-time linear systems given by 

˙ 
 = Ax + B 1 (x ) u 1 + B 2 (x ) u 2 

here 

 = 

⎡ 

⎢ ⎣ 

−0 . 0 6 65 8 0 0 

0 −3 . 663 3 . 663 0 

−6 . 86 0 −13 . 736 −73 . 736 

0 . 6 0 0 0 

⎤ 

⎥ ⎦ 

 1 = 

⎡ 

⎢ ⎣ 

0 

0 

13 . 763 

0 

⎤ 

⎥ ⎦ 

, B 2 = 

⎡ 

⎢ ⎣ 

−8 

0 

0 

0 

⎤ 

⎥ ⎦ 

nd x = [ x 1 , x 2 , x 3 , x 4 ] 
T ∈ � 

4 is the state available for measurement,

nd u 1 , u 2 ∈ � are the control inputs with ‖ u 2 ‖ ≤ 10. According to

55] , one way to test the validity of the ADP algorithm for the lin-

ar constrained-input system is to select a large actuator bound,

hich can guarantee the constrained input does not exceed the

arge bound. Then, the optimal value function will be same as the

alue function of the ARE for the linear system with unconstrained

nputs, if the proposed algorithm is effective. Hence, we choose a

arge enough actuator bound for the control input u 2 (i.e., ‖ u 2 ‖ ≤
0). 

Let Q, R 1 and R 2 be the identity matrices with appropriate di-

ensions. For the unconstrained case, the optimal value function

an be described as V ∗ = x T P x . By solving the corresponding ARE

ith the MATLAB command LQR, we can obtain the optimal ma-

rix P 

 = 

⎡ 

⎢ ⎣ 

0 . 1346 0 . 0709 0 0 . 1479 

0 . 0709 0 . 2192 0 . 0331 0 . 0436 

0 0 . 0331 0 . 0362 −0 . 0164 

0 . 1479 0 . 0436 −0 . 0164 1 . 9528 

⎤ 

⎥ ⎦ 

ccordingly, we choose the complete basis function vector for the

ritic NN and two actor NNs as 

c (x ) = [ x 2 1 , x 
2 
2 , x 

2 
3 , x 

2 
4 , x 1 x 2 , x 1 x 4 , x 2 x 3 , x 2 x 4 , x 3 x 4 ] 

T 

u (x ) = φd (x ) = [ x 1 , x 2 , x 3 , x 4 ] 
T 

herefore, the ideal weight vector of the critic NN is 

w c = 

[
0 . 1346 , 0 . 2192 , 0 . 0362 , 1 . 9528 , 0 . 1418 , 

0 . 2958 , 0 . 0 6 62 , 0 . 0872 , −0 . 328 

]T 

Set the initial state x 0 = [0 . 1 , 0 . 2 , 0 . 2 , 0 . 1] T , the probing

ontrol inputs u ′ 1 = sin (10 t) + sin (9 . 3 t) + sin (5 . 2 t) + 1 . 02 and

 

′ 
2 

= −10 tanh (0 . 2 sin (11 t) 2 + sin (7 . 8 t) 3 + sin (9 . 5 t) 4 ) , and the

onvergence threshold ε = 10 −6 . The integral time interval is

hosen as 0.01s. We choose the length index q = 200 , which

eans the online measurement phase is terminated after 2 s.

he initial weights of the three NNs are both initialized to zero.

he convergence curves of w c,k +1 , w u,k +1 and w d,k +1 are shown

n Figs. 2 –4 . After 8 iterations, the critic weights w c,k +1 converge to
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Fig. 5. Trajectories of system state. 

Fig. 6. The curves of u 1 and u 2 for partially constrained case. 

 

 

 

 

 

 

 

 

Fig. 7. The convergence curves of w 

k +1 
c . 

Fig. 8. The convergence curves of w 

k +1 
u . 
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t  

c  

t  

F  

t  

b  

u  

l  
ˆ w c = [0 . 1345 , 0 . 2191 , 0 . 0362 , 1 . 9530 , 0 . 1419 , 0 . 2959 , 0 . 0 6 63 , 0 . 0865 ,

−0 . 0332] T , which are nearly the ideal values above. The trajec-

tories of system state, the control input u 1 and the constrained

input u 2 are shown in Fig. 5 and Fig. 6 , respectively. We can see

the system state is stable under the obtained optimal controllers,

and the constrained input u 2 does not exceed the actuator bound. 

4.2. Example 2 

The continuous-time nonlinear FC game is give by 

˙ x = f (x ) + g 1 (x ) u 1 + g 2 (x ) u 2 

where 

f ( x ) = 

[
−0 . 25 x 1 

0 . 5 x 2 
3 − 0 . 25 x 1 

2 x 2 − 0 . 5 x 2 

]

g 1 ( x ) = 

[
0 

x 1 

]
, g 2 ( x ) = 

[
0 

x 2 

]

x = [ x 1 , x 2 ] 
T ∈ � 

2 and u 1 , u 2 ∈ � are state and control variables,

respectively. 

Select Q = I, R 1 = 2 I and R 2 = I. In this example, we assume the

control input u 2 is constrained by ‖ u 2 ‖ ≤ 0.5. Then U 2 ( u 2 ) defined

in the value functional is 
(u 2 ) = 2 

∫ u 2 

0 

(
0 . 5 tanh 

−1 
(s/ 0 . 5 ) 

)T 
R 2 d s 

ased on the approximation Eq. (22) , we can experimentally

hoose three three-layer feedforward NNs to approach the solution

ith the same basis function vector given by 

c (x ) = φu (x ) = φd (x ) = [ x 2 1 , x 1 x 2 , x 
2 
2 , x 

4 
1 , x 

4 
2 ] 

T 

Set the initial state x 0 = [0 . 5 , −0 . 5] T , the probing control inputs

 

′ 
1 
= 1 . 1( sin (πt) + sin (1 . 5 πt) + sin (1 . 8 πt) + sin (2 πt) + 1 . 02) , u ′ 

2 
=

0 . 5 tanh (2( sin (1 . 1 πt) + sin (1 . 4 πt) + sin (1 . 2 πt) + sin (2 . 9 πt) + 

in (3 . 2 πt) − 1 . 78)) , and the convergence threshold ε = 10 −6 . The

ntegration is conducted at every 0.1s. We choose the length index

 = 50 . Then, the off-policy iterative learning begins at the time

f 5s to obtain the optimal control policies using the collected

vailable data. The initial iterative weights of NNs are chosen

s w 

0 
c = w 

0 
u = w 

0 
d 

= [0 , 0 , 0 , 0 , 0] T . The convergence curves of

 c,k +1 , w u,k +1 and w d,k +1 are shown in Figs. 7 –9 . After 4 iterations,

he curves of w c,k +1 of the value function and w u,k +1 , w d,k +1 of the

ontrol inputs can be converged. The trajectories of system state,

he control input u 1 and the constrained input u 2 are shown in

ig. 10 and Fig. 11 , respectively. Compared with the curve of con-

rol input u 1 without saturation, the control input u 2 in Fig. 11 is

ounded with ‖ u 2 ‖ ≤ 0.5. Meanwhile, the control inputs for the

nconstrained case is shown in Fig. 12 , where the upper and

ower bounds of the unconstrained control input u exceed the
2 
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Fig. 9. The convergence curves of w 

k +1 
d 

. 

Fig. 10. Trajectories of system state. 

Fig. 11. The curves of u 1 and u 2 for partially constrained case. 

Fig. 12. The curves of u 1 and u 2 for unconstrained case. 
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onstraint value. These simulation results verify the effectiveness

f the developed control scheme for the FC game with partially

onstrained inputs. 

. Conclusion 

The continuous-time unknown FC game with partially con-

trained inputs is solved by a model-free ADP algorithm based

n generated system data. This algorithm is composed of two

hase: online measurement and off-policy learning. Three neural

etworks are constructed in the off-policy learning phase to ap-

roach the optimal solution of the model-free iterative equation

ased on real system data. The application on two simple numeri-

al systems demonstrates the effectiveness of the developed data-

riven ADP algorithm. Our future work is to extend the data-driven

DP algorithm to the NZS game. 
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