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Abstract: In this paper, we propose a data-driven adaptive dynamic programming approach to solve the Hamilton-Jacobi
(HJ) equations for the two-player nonzero-sum (NZS) game with completely unknown dynamics. First, the model-based
policy iteration (PI) algorithm is given, where the knowledge of system dynamics is required. To relax this requirement,
a data-driven adaptive dynamic programming (ADP) is proposed in this paper to solve the unknown nonlinear NZS game
with only online data. Neural network approximators are constructed to approach the solution of the HJ equations. The
online data is collected under the two initial admissible control policies. Then, the NN weights are updated based on
the least-squares method using the collected online data repeatedly, which is a kind of the off-policy learning scheme.
Finally, a simulation example is provided to demonstrate the effectiveness of the proposed control scheme.
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1 INTRODUCTION

Game theory can be used to solve the optimal control prob-
lem of many practical systems with multiple controller-
s [1]. Relying on the roles and tasks of players, the stochas-
tic game can be divided into several types such as zero-sum
(ZS) game, nonzero-sum (NZS) game and fully coopera-
tive (FC) game. Recently, many model-based and model-
free methods based on ADP and game theory have been
applied to the ZS and NZS games [2–7], where the system
dynamics should be known or be identified. For the multi-
agent graphical games, the distributed controller based on
model-based reinforcement learning (RL) algorithms can
also be found in [9,10] for linear and nonlinear systems, re-
spectively. It should be mentioned that the training of iden-
tifers which is used in above model-free methods is usually
time-consuming and the introduced identification errors are
usually adverse to find the optimal control policies. Vrabie
et al. proposed the integral reinforcement learning (IRL) to
solve the ZS game and NZS game without the knowledge
of internal dynamics in [11, 12], where the time-cosuming
multiple iterative loops were required in the proposed algo-
rithms. Motivated by that, Wu and Luo [13] developed an
online simultaneous policy update algorithm with only one
iterative loop for the partially unknown ZS game. In [8],
the single-network ADP with experience replay algorithm
was proposed for the NZS game with unknown dynamics,
where the system identifer was established to reconstruct
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the unknown NZS game.
For completely unknown systems, an exciting work was
given to solve the optimal control problem of uncertain
nonlinear systems in [14]. A robust ADP was performed
without any system dynamics and identification process.
In [15], a model free approach was proposed based on
IRL with safe explorations for the nonlinear optimal con-
trol problem. Then, this kind of data-based or data driven
method was extended to the optimal control for linear ZS
game in [16] and the H∞ control problem in [17]. Unfortu-
nately, the NZS game with completely unknown dynamics
in continuous-time MDP environment based on the system
data is rarely mentioned.
Because the value function of each player contains all the
control inputs for the NZS game, it is difficult to deduce the
model-free iteration equations to replace the HJ equation-
s based on the online data due to the existence of coupled
relationship. That is to say that the system dynamics are
still to be required. To solve this problem, two addition-
al auxiliary NNs are introduced to relax the knowledge of
system dynamics in this paper. Correspondingly, a data-
driven ADP is proposed to solve the optimal control prob-
lem for the unknown NZS game based on off-policy learn-
ing scheme. This is the main contribution of this paper.
The rest of this paper is organized as follows: Section
II introduces the problem formulation of the two-player
continuous-time NZS game system, and the model-based
PI algorithm for the NZS game is proposed. In Section III,
a data-driven ADP is proposed with the NN approximators,
where only the online data is required. Simulation result-
s and the conclusion are presented in Sections IV and V,
respectively.



2 PRELIMINARY

2.1 Problem Statement
Consider the two-player nonzero-sum differential games
given by

ẋ = f (x(t)) + g1 (x(t))u1(t) + g2 (x(t))u2(t) (1)

where x ∈ ℜn is the state vector, ui ∈ ℜmi , i = 1, 2 are
the control inputs, f(·) ∈ ℜn, gi(·) ∈ ℜn×mi are smooth
nonlinear dynamics. Assume that f(·) and gi(·) are un-
known and Lipschitz continuous on a compact set Ω ⊆ ℜn

with f(0) = 0. In order to facilitate the expression, we
use x and ui to represent x(t) and ui(t) in the following
presentation, respectively.
Define the cost functions associated with each player as

Ji (x0, u1, u2) =

∫ ∞

0

(Qi(x) +
2∑

j=1

uT
j Rijuj)dt

=

∫ ∞

0

ri (x, u1, u2)dt, i = 1, 2

(2)

where ri (x, u1, u2) = Qi(x) +
2∑

j=1

uT
j Rijuj , Qi(x) =

xTQix is positive definite with Qi > 0. Rij > 0, Rii ≥ 0
are symmetric matrices, and x0 = x(0) denotes the initial
state.
To begin with, let us introduce the concept of the admissi-
ble control [8].
Definition 1: A feedback control policy pair u = {u1, u2}
is defined as admissible with respect to (2) on the set Ω,
denoted by ui ∈ Ψ(Ω), if ui(x) is continuous on Ω with
ui(0) = 0, u stabilizes (1) on Ω, and (2) is finite ∀x0 ∈ Ω.
Define the value functions for any admissible strategies
ui(x) ∈ Ψ(Ω) as

Vi (x, u1, u2) =

∫ ∞

t

(Qi (x(τ)) +
2∑

j=1

uT
j (τ)Rijuj(τ))dτ

=

∫ ∞

t

ri (x(τ), u1(τ), u2(τ))dτ, i = 1, 2

(3)

The objective of the two-player nonzero-sum games is to
find an optimal admissible control policy pair {u∗

1, u
∗
2} to

minimize the cost functions associated with each player.
This paper will focus on the so-called Nash equilibrium
solution {u∗

1, u
∗
2} that is given by the following definition.

Definition 2: A two-tuple of policies {u∗
1, u

∗
2} with u∗

i ∈
Ψ(Ω) is said to constitute a Nash equilibrium for a two-
player NZS game, if the following inequalities are satisfied
for all ui ∈ Ψ(Ω)

J∗
1 (u

∗
1, u

∗
2) ≤ J1(u1, u

∗
2)

J∗
2 (u

∗
1, u

∗
2) ≤ J2(u

∗
1, u2)

(4)

Assume that the value function (3) are continuously differ-
entiable, the differential equivalent of (3) can be given by

0 = ri(x, u1, u2) + (∇Vi)
T

f +
2∑

j=1

gjuj

 , i = 1, 2

(5)

where ∇ denotes the partial derivative operator, such that
∇Vi = ∂Vi(x)/∂x.
Define the Hamiltonian functions of system (1) and value
functions (3) are

Hi (x,∇Vi, u1, u2) = ri (x, u1, u2)

+ (∇Vi)
T

f(x) +
2∑

j=1

gj(x)uj

 , i = 1, 2
(6)

The optimal value function V ∗
i (x) are defined as

V ∗
i (x) = min

ui

∫ ∞

t

(Qi(x(τ)) +

2∑
j=1

uT
j (τ)Rijuj(τ))dτ

Applying the stationarity conditions ∂Hi/∂ui = 0, the op-
timal feedback control policy associated with the optimal
value function can be obtained by

u∗
i = −1

2
R−1

ii gTi (x)∇V ∗
i , i = 1, 2 (7)

Based on (6) and (7), the coupled Hamilton-Jacobi (HJ)
equation can be presented as

0 = Qi (x) + (∇V ∗
i )

T f(x)− 1
2 (∇V ∗

i )
T

2∑
j=1

gj(x)R
−1
jj g

T
j (x)

×(∇V ∗
j ) +

1
4

2∑
j=1

(∇V ∗
j )

T gj(x)R
−1
jj RijR

−1
jj g

T
j (x)∇V ∗

j

(8)
with V ∗

i (0) = 0 and i = 1, 2.

2.2 Policy Iteration for Solving Coupled HJ Equations
To solve the optimal control problem, we aim to obtain the
optimal control policy by solving the coupled HJ equations
(8). As we know, it is hard to obtain the analytical solu-
tion of the HJ equations for nonlinear systems. Among the
various proposed methods to approach the solution of the
HJ equations, policy iteration is one of the most common
methods, which can be described as follows [8].

Algorithm 1 (PI for NZS game)
1: Policy Evaluation. Given an initial admissible control policy

u0
i (x), find V k

i (x) successively approximated by solving the
following equation

0 = ri
(
x, uk

1 , u
k
2

)
+ (∇V k+1

i )T
(
f(x) +

2∑
j=1

gj(x)u
k
j

)
(9)

with V k
i (0) = 0, i = 1, 2, k = 0, 1, · · ·

2: Policy Improvement. Update the control policies simultane-
ously by

uk+1
i (x) = −1

2
R−1

ii gTi (x)∇V k+1
i (x) (10)

where k is the iterative index.

According to [20], this algorithm can converge to the op-
timal cost and optimal control policy pair, i.e., V k(x) →
V ∗(x) and {uk

1(x), u
k
2(x)} → {u∗

1(x), u
∗
2(x)} as i → ∞.



From the policy iteration algorithm, we know that the sys-
tem dynamics f(x), g1(x) and g2(x) are both required. In
the following, we will propose the data-based ADP algo-
rithm for the NZS game to approach the optimal solution,
where the knowledge of system dynamics is relaxed.

3 DATA-DRIVEN ADP for NZS GAME

3.1 Data-driven Iterative ADP
Consider an arbitrary control policy u′

i applied to (1). The
derivative of V k+1

i (x) with respect to time along the sys-
tem trajectory f + g1u

′
1 + g2u

′
2 equals to dV k+1

i /dt =
(∇V k+1

i )T (f + g1u
′
1 + g2u

′
2). Based on the IRL and poli-

cy iteration algorithm, we have the novel Bellman equation
along the interval [t−∆t, t]

V k+1
1 (x(t))− V k+1

1 (x(t−∆t))

=−
∫ t

t−∆t

r1(x, u
k
1 , u

k
2)dτ +

∫ t

t−∆t

−2(uk+1
1 )T

×R11(u
′
1 − uk

1)dτ +

∫ t

t−∆t

(Dk+1
1 )T (u′

2 − uk
2)dτ

(11)

V k+1
2 (x(t))− V k+1

2 (x(t−∆t))

=−
∫ t

t−∆t

r2(x, u
k
1 , u

k
2)dτ +

∫ t

t−∆t

−2(uk+1
2 )T

×R22(u
′
1 − uk

1)dτ +

∫ t

t−∆t

(Dk+1
2 )T (u′

1 − uk
1)dτ

(12)

where ∇V k+1
i , uk+1

i , Dk+1
i , i = 1, 2 are the unknown

function vectors to be solved, ∆t > 0 is the integral inter-
val. Different from the ZS game, two unknown functions
Dk+1

1 = (∇V k+1
1 )T g2 and Dk+1

2 = (∇V k+1
2 )T g1 are in-

troduced for the two-player NZS game. Due to the knowl-
edge of gi in Dk+1

i is unknown, two additional approxi-
mators are constructed to approach the unknown function
Dk+1

i . Thus, the unknown function (V k+1
i , uk+1

i , Dk+1
i )

for each player is iterated following (11) and (12), respec-
tively. The data-driven iterative ADP can be described as
follows.

Algorithm 2 (Data-driven iterative ADP)
1: Select admissible control policies u′

1 and u′
2 to collect the

online system data along the integral interval.
2: Let k = 0, select initial iterative control policies u0

1 and u0
2.

3: Let k ≥ 0, solve the solution iteratively from (11) and (12).

Motivated by [17], as the iteration step k increas-
es, the convergence of the generated solution sequence
(V k+1

i , uk+1
i , Dk+1

i ) to the optimal one is proved as fol-
lows.

Theorem 1 Let V k+1
i (x) ∈ C1(Ω), C1(Ω) denotes a

function space on Ω with first derivatives are continuous,
V k+1
i (x) ≥ 0, V k+1

i (0) = 0 and uk+1
i (x) ∈ Ψ(Ω), i =

1, 2. Then (V k+1
i , uk+1

i ) is the solution of (10)-(11) for
∀u′

i ∈ Ψ(Ω), i = 1, 2 if and only if it is a solution of the
model-based iterative equations (9)-(10).

Proof: The mechanism is similar with [17], so we omit it
here.

3.2 NN-based Iterative Algorithm

Next, the NN approximation is introduced to solve the
model-free iterative equation approximately. According
to the Weirstrass high-order approximation theorem, a s-
mooth function can be uniformly approximated on a com-
pact set by NNs,

Vi
k+1(x) = wT

ci,k+1ϕci(x) + εci,k+1

uk+1
i (x) = wT

ui,k+1ϕui(x) + εui,k+1

Dk+1
i (x) = wT

di,k+1ϕdi(x) + εdi,k+1

(13)

where ϕci : ℜn → ℜKci , ϕui : ℜn → ℜKui and
ϕdi : ℜn → ℜKdi are linearly independent basis func-
tion vectors, wci,k+1 ∈ ℜKci , wui,k+1 ∈ ℜKui×m1 and
wdi,k+1 ∈ ℜKdi×m2 are the unknown coefficient vector
and matrices with Kci,Kui and Kdi the numbers of hidden
neurons, εci,k+1, εui,k+1 and εdi,k+1 are the reconstruction
errors with appropriate dimensions for i = 1, 2. It is shown
in [19] that as Kci → ∞,Kui → ∞ and Kdi → ∞, the
reconstruction errors εci,k+1, εui,k+1 and εdi,k+1 converge
to zero.

Let ŵci,k+1, ŵui,k+1 and ŵdi,k+1 be the estimations of
the unknown coefficients wci,k+1, wui,k+1 and wdi,k+1, re-
spectively. Then the actual output of the NNs can be pre-
sented as

V̂i
k+1

(x) = ŵT
ci,k+1ϕci(x)

ûk+1
i (x) = ŵT

ui,k+1ϕui(x)

D̂i
k+1

(x) = ŵT
di,k+1ϕdi(x)

(14)

Define a strictly increasing time sequence {tj}qj=0 for a
large interval with the number of collected data points
q > 0. Using (V̂i

k+1
(x), ûk+1

i (x), D̂k+1
i (x)) instead of

(V k+1
i (x), uk+1

i (x), Dk+1
i (x)) in the equations (11)-(12),

due to the existence of the truncation error of the estimated
solution, the residual errors for the two player are given by

ek+1
1,j =(ϕc1(x(tj+1))− ϕc1(x(tj)))

T ŵc1,k+1

+

∫ tj+1

tj

2ϕT
u1ŵu1,k+1R11(u

′
1 − ŵT

u1,kϕu1)dτ

−
∫ tj+1

tj

ϕT
d1ŵd1,k+1(u

′
2 − ŵT

u2,kϕu2)dτ

+

∫ tj+1

tj

r1(x, ŵ
T
u1,kϕu1, ŵ

T
u2,kϕu2)dτ

(15)



ek+1
2,j =(ϕc2(x(tj+1))− ϕc2(x(tj)))

T ŵc2,k+1

+

∫ tj+1

tj

2ϕT
u2ŵu2,k+1R22(u

′
2 − ŵT

u2,kϕu2)dτ

−
∫ tj+1

tj

ϕT
d2ŵd2,k+1(u

′
1 − ŵT

u1,kϕu1)dτ

+

∫ tj+1

tj

r2(x, ŵ
T
u1,kϕu1, ŵ

T
u2,kϕu2)dτ

(16)

By the Kronecker product ⊗, we have

ϕT
uiŵui,k+1Rii(u

′
i − ŵT

ui,kϕui)

=
(
(u′

i − ŵT
ui,kϕui)

TR⊗ ϕT
2

)
v(ŵui,k+1)

ϕT
d1ŵd1,k+1(u

′
2 − ŵT

u2,kϕu2)

=
(
(u′

2 − ŵT
u2,kϕu2)

T ⊗ ϕT
d1

)
v(ŵd1,k+1)

ϕT
d2ŵd2,k+1(u

′
1 − ŵT

u1,kϕu1)

=
(
(u′

1 − ŵT
u1,kϕu1)

T ⊗ ϕT
d2

)
v(ŵd2,k+1)

where v(·) is a vector operator, which transforms a matrix
into a vector by stacking its columns. Then, the residual
errors can be rewritten as

ek+1
1,j = ρT1,j(W̄1,k)W̄1,k+1 + π1,j(W̄1,k)

ek+1
2,j = ρT2,j(W̄2,k)W̄2,k+1 + π2,j(W̄2,k)

(17)

where W̄i,k+1 = [ŵT
ci,k+1, v(ŵui,k+1)

T , v(ŵdi,k+1)
T ]T ∈

ℜK̄i is named the estimated weighting function vec-
tor with K̄i = Kci + m1Kui + m2Kdi, W̄k =
[ŵT

c1,k, ŵ
T
c2,k, v(ŵu1,k)

T , v(ŵu2,k)
T , v(ŵd1,k)

T , v(ŵd2,k)
T ]T ,

the player i = 1, 2, the iterative index k ∈ {0, 1, ...},
the time sequence index j ∈ {0, ..., q}, and ρi,j(W̄i,k),
πj(W̄i,k) are defined as

ρ1,j(W̄k) =

 ϕc1(x(tj+1))− ϕc1(x(tj))∫ tj+1

tj
2R11(u

′
1 − ŵT

u1,kϕu1)⊗ ϕu1dτ

−
∫ tj+1

tj
(u′

2 − ŵT
u2,kϕu2)⊗ ϕd1dτ



ρ2,j(W̄k) =

 ϕc2(x(tj+1))− ϕc2(x(tj))∫ tj+1

tj
2R22(u

′
2 − ŵT

u2,kϕu2)⊗ ϕu2dτ

−
∫ tj+1

tj
(u′

1 − ŵT
u1,kϕu1)⊗ ϕd2dτ


π1,j(W̄k) =

∫ tj+1

tj

{
xTQ1x+ ϕT

u1(x)ŵu1,kR11ŵ
T
u1,kϕu1(x)

+ϕT
u2(x)ŵu2,kR12ŵ

T
u2,kϕu2(x)

}
dτ

π2,j(W̄k) =

∫ tj+1

tj

{
xTQ2x+ ϕT

u1(x)ŵu1,kR21ŵ
T
u1,kϕu1(x)

+ϕT
u2(x)ŵu2,kR22ŵ

T
u2,kϕu2(x)

}
dτ

To guarantee the convergence of W̄i,k+1, the persistency
of excitation (PE) assumption which is usually needed in
adaptive control algorithms is given.
Assumption 1 [14]: Let the signal ρi,j(W̄k) be persistently
existed, that is there exist q0 > 0 and δ > 0 such that for
all q ≤ q0, we have

1

q

q−1∑
k=0

ρi,j(W̄i,k)ρ
T
i,j(W̄k) ≥ δIK̄i

where IK̄i
is the identity matrix of appropriate dimensions.

Based on the least-squares (LS) principle, it is desired to
determine the estimated weighting function vector W̄i,k+1

by minimizing min
W̄i,k+1

q∑
j=0

(ek+1
i,j )2. According to (17), the

solution to this LS problem yields

W̄i,k+1 = [PT
i (W̄k)Pi(W̄k)]

−1PT
i (W̄k)Πi(W̄k) (18)

where

Pi(W̄k) = [ρi,0(W̄k), ..., ρi,q(W̄k)]
T (19)

Πi(W̄k) = [πi,0(W̄k), ..., πi,q(W̄k)]
T (20)

Similar with [17], this iterative ADP is actually off-policy
learning method. Note that ρi,j(W̄k) and πi,j(W̄k) can
be computed with a suitable initial policies weights wui,0

and wdi,0 and collected system data. Then the algorith-
m is iterated using the expression (18). Accordingly, the
unknown function V̂ k+1

i (x) and function vectors ûk+1
i (x)

and D̂k+1
i (x) can be approximately computed by (14) with

the convergent W̄i,k+1. That is, the equations (11) and (12)
are solved iteratively.

3.3 Algorithm Implementation
This subsection is how to implement the data-based ADP
algorithm to solve the unknown nonlinear NZS with online
data. Motivated by [21], we need to transform the main
equation (18) into the following Kronecker product repre-
sentation

P1(W̄k) =[δ1,1, 2δ1,2(R11 ⊗ IKu1)− 2δ1,3(ŵu1,kR11 ⊗ IKu1)

− δ1,4 + δ1,5(ŵu2,k ⊗ IKd1
)]

P2(W̄k) =[δ2,1, 2δ2,2(R22 ⊗ IKu2)− 2δ2,3(ŵu2,kR22 ⊗ IKu2)

− δ2,4 + δ2,5(ŵu1,k ⊗ IKd2
)]

Π1(W̄k) =
[
δ1,6 + δ1,3v(ŵu1,kR11ŵ

T
u1,k)

+δ2,3v(ŵu2,kR12ŵ
T
u2,k)

]
Π2(W̄k) =

[
δ2,6 + δ1,3v(ŵu1,kR21ŵ

T
u1,k)

+δ2,3v(ŵu2,kR22ŵ
T
u2,k)

]
where

δi,1 = [ϕci(x(t1))−ϕci(x(t0)), ..., ϕci(x(tq))−ϕci(x(tq−1))]
T

δi,2 =

[∫ t1

t0

u′
i ⊗ ϕuidτ, ...,

∫ tq−1

tq

u′
i ⊗ ϕuidτ

]T

δi,3 =

[∫ t1

t0

ϕui ⊗ ϕuidτ, ...,
∫ tq−1

tq

ϕui ⊗ ϕuidτ

]T

δ1,4 =

[∫ t1

t0

u′
2 ⊗ ϕd1dτ, ...,

∫ tq−1

tq

u′
2 ⊗ ϕd1dτ

]T

δ2,4 =

[∫ t1

t0

u′
1 ⊗ ϕd2dτ, ...,

∫ tq−1

tq

u′
1 ⊗ ϕd2dτ

]T



δ1,5 =

[∫ t1

t0

ϕu2 ⊗ ϕd1dτ, ...,
∫ tq−1

tq

ϕu2 ⊗ ϕd1dτ

]T

δ2,5 =

[∫ t1

t0

ϕu1 ⊗ ϕd2dτ, ...,
∫ tq−1

tq

ϕu1 ⊗ ϕd2dτ

]T

δi,6 =

[∫ t1

t0

xTQixdτ, ...,
∫ tq−1

tq

xTQixdτ

]T

with i = 1, 2. The above matrices depend on system input
data u′

i, which can be used repeatedly to update Pi and
Πi at each iteration with new NN weights, which help to
reduce the online interaction with the system.

4 SIMULATION

Consider the following two-player affine nonlinear
nonzero-sum game system as follows [7], [8]:

ẋ = f(x) + g1(x)u1 + g2(x)u2 (21)

where

f (x) =

 x2

−x2 − 0.5x1 + 0.25x2(cos (2x1) + 2)
2

+0.25x2(sin (2x1) + 2)
2


g1 (x) =

[
0

cos (2x1) + 2

]
, g2 (x) =

[
0

sin
(
4x2

1

)
+ 2

] .

x = [x1, x2]
T ∈ ℜ2 and u1, u2 ∈ ℜ are state and control

variables, respectively.
Select Q1(x) = xTx, Q2(x) =

1
2x

Tx, R11 = R12 = 2I ,
and R21 = R22 = I , where I is an identity matrix. From
[8], the optimal value functions are V ∗

1 (x) = 0.25x2
1 + x2

2

and V ∗
2 (x) = 0.25x2

1 + 0.5x2
2. The activation functions of

the critic NNs of two players are selected as

ϕc1(x) = ϕc2(x) = [x2
1 x1x2 x

2
2]

T

and the activation functions of the ûi and D̂i are chosen as

ϕui(x) = ϕdi(x) = [x1 x2 x
2
1 x1x2 x

2
2 x

4
1 x

3
1x2 x

2
1x

2
2 x1x

3
2 x

4
2]

T

The initial state vector is chosen as x0 = [1,−1]T .
Set the initial probing control inputs u′

1 =
0.7e−0.006t sin(t)2 cos(t) + sin(2t)2 cos(0.1t) +
sin(−1.2t)2 cos(0.5t) + sin(t)5 + 0.5(x1 +
x2)(cos(2x1) + 2) and u′

2 = 0.7e−0.006t sin(t)2 cos(t) +
sin(2t)2 cos(0.1t) + sin(1.12i)2 + cos(2.4t) sin(2.4t)3 +
(x1 + x2)(sin(4x1) + 2), and the convergence threshold
ε = 10−6. The integral time interval is chosen as 0.1s.
We choose the length index q = 200, which means
the online data collection phase is terminated after 20s.
The initial weights of the critic NNs are initialized by
wc1 = [2.2 0.2 0.8]T and wc2 = [0.15 0.25 2.4]T , and
the initial weights of the actor and auxiliary NNs are both
initialized to be zero. The convergence curves of wci are
shown in Figs. 1-2.
After 10 iterations, the critic NNs weights wci,k+1 con-
verge to ŵc1 = [0.2546 − 0.098 0.9893]T and ŵc2 =
[0.2736 − 0.063 0.4923]T , which are nearly the ideal val-
ues above. The similar approached results are shown based
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Figure 1: The convergence curves of wc1
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Figure 2: The convergence curves of wc2

on the online learning scheme in [7,8]. Compared with [7],
the knowledge of system dynamics is relaxed in the pro-
posed off-policy learning algorithm. Different with [8], the
system identifier is also not required. The trajectories of
system state, the control inputs u1 and u2 are shown in Fig.
3 and Fig. 4, respectively. We can see the system state is
stable under the obtained optimal controllers. These simu-
lation results verify the effectiveness of the developed con-
trol scheme for the NZS game with unknown dynamics.
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Figure 3: Trajectories of system state
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5 CONCLUSION

The two-player unknown NZS game is solved by a data-
driven ADP algorithm based on the collected online data.
The neural networks are constructed using the off-policy
learning scheme to approach the optimal solution of the
model-free iterative equation based on real system data.
The application on a nonlinear numerical systems demon-
strates the effectiveness of the developed data-driven ADP
algorithm. Our future work is to extend the data-driven
ADP algorithm to the NZS game based on the on-policy
scheme.
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