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SUMMARY

In this study, we use generalized policy iteration approximate dynamic programming (ADP) algorithm to
design an optimal controller for a class of discrete-time systems with actuator saturation. A integral function
is proposed to manage the saturation nonlinearity in actuators and then the generalized policy iteration
ADP algorithm is developed to deal with the optimal control problem. Compared with other algorithm, the
developed ADP algorithm includes two iteration procedures. In the present control scheme, two neural
networks are introduced to approximate the control law and performance index function. Furthermore,
numerical simulations illustrate the convergence and feasibility of the developed method. Copyright c⃝ 2010
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In actuators, saturation nonlinearity is universal phenomenon. To deal with the control problem of
systems with saturating actuators, researchers have done many works. In [1], a semi-global approach
was used to slove the above problem. Other ways to solve saturation phenomena can be obtained
in [2, 3]. However, these traditional ways didn’t take optimal control laws into consideration. To
avoid this shortcoming, Lewis et al. [4] used the framework of the Hamilton-Jacobi-Bellman (HJB)
equation appearing in optimal control theory to solve the above problem. Actually, the solution of
HJB equation is difficult to obtain. Thus, an effective tool, called artificial neutral networks (ANNs
or NNs), is proposed. The ability of self-learning is the main advantage of NNs. So we can choose
NNs to realize the function approximation in approximate dynamic programming (ADP) algorithm.
The effective brain-like ADP algorithm [5, 6, 7] can solve the HJB equation forward-in-time and
overcome the cure of dimensionality. With many advantages, the ADP algorithm has been developed
as a powerful tool for solving optimal control problem. There are some synonyms of ADP including
approximate dynamic programming [8, 9], adaptive dynamic programming [10, 11, 12], adaptive
critic designs [13, 14], neural dynamic programming [15, 16], neurodynamic programming [17],
and reinforcement learning [18, 19].

In recent years, Lewis [20, 21, 22], Jagannathan [23, 24], Murray [25], Powell [26] and
Liu [27, 28, 29, 30] have made great contribution to the development of the ADP algorithms.
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According to [5], ADP approaches were classified into several schemes including heuristic dynamic
programming (HDP), action dependent HDP (ADHDP), dual heuristic programming (DHP), action
dependent DHP (ADDHP), globalized DHP (GDHP), and ADGDHP. Al-Tamimi et al. [20] solved
the discrete-time HJB equation of optimal control by a HDP iteration algorithm. Qiao et al. [31]
used DHP to solve the wide-area coordinating control of a power system with a large wind farm
and multiple FACTS devices. Mu et al. [32] studied GDHP to approximate optimal tracking control
for a class of discrete-time nonlinear systems. In [33], the ADHDP method was used to coordinated
multiple ramps metering. Value iteration and policy iteration are two classes of ADP algorithms
to obtain the solution of the HJB. Value iteration algorithm iterates between policy improvement
and cost function update. With an initial stabilizing control policy, the policy iteration algorithm
iterates between policy improvement and policy evaluation. In [34], Li and Liu used value iteration
to deal with optimal control for discrete-time nonlinear systems. Luo and Wu [35] proposed
computationally efficient simultaneous policy update algorithm for nonlinear H∞ state feedback
control with Galerkin’s method.

Considering the superiority of the ADP algorithm, more and more researchers used the ADP
algorithm to solve the optimal control probelm for the discrete-time nonlinear systems with
actuator saturation. In [36], Zhang et al. studied the iterative DHP algorithm to deal with the
constrained control problem. Song et al. [37] used HDP to overcome the saturation nonlinearity
for time-delay systems. In [38], Liu et al. designed an optimal controller for unknown discrete-
time nonlinear systems with control constraints by DHP. However, in [39], we got that almost all
ADP and reinforcement learning algorithms could be represented by the generalized policy iteration
algorithm. So in order to promote the development of ADP, it is significant to study the generalized
policy iteration algorithm. Furthermore, there were a great deal of efforts to use the generalized
policy iteration ADP algorithm to manage the optimal control problem. Wei and Liu [40, 41] used
the generalized policy iteration algorithm to deal with the discrete-time systems. In [42, 43], the
generalized policy iteration algorithm was developed to solve the continuous-time nonlinear optimal
control problems. Lin et al. [44] studied the generalized policy iteration algorithm to deal with the
optimal tracking control problem. Above all, we know that the generalized policy iteration algorithm
has been an efficient tool in the optimal control field. However, to the best of our knowledge, there’s
no research on how to use the developed algorithm to solve the constrained optimal control problem.

In this paper, we focus on how to use the generalized policy iteration algorithm to obtain the
optimal controller for the discrete-time nonlinear systems with actuator saturation. The present
generalized policy iteration algorithm has i-iteration and j-iteration. By changing the value of i and
j, the developed algorithm can be transformed into value iteration and policy iteration algorithms.
When j is equal to zero, the generalized policy iteration ADP algorithm will become a value
iteration algorithm [17]. On the other hand, when j approaches the infinity, the developed algorithm
can be considered as a policy iteration algorithm [45]. Furthermore, the developed algorithm can
accelerate the convergence rate without requiring to solve the HJB equation for i-iteration. First,
a nonquadratic function is used to derive the HJB equation for discrete-time nonlinear systems
with actuator saturation. Then the novel ADP algorithm is proposed to solve the HJB equation.
Meanwhile, convergence criteria of the generalized policy iteration algorithm can be proved with an
initial arbitrary admissible control law. By the proof process, we will get that the control law and the
iterative cost function both converge monotonically to the optimum. The action network and critic
network are used to compute the control law and approximate the performance index function.

The rest of the paper is organized as follows. In Section 2, the optimal control problem and
the discrete-time HJB equation are recalled for discrete-time nonlinear systems. In Section 3, the
generalized policy iteration algorithm is derived and the properties of the algorithm are analyzed.
In Section 4, we propose the NN implementation of the developed approach. In Section 5, two
numerical examples are given to show the effectiveness of the developed algorithm. In Section 6,
the conclusions are given.
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2. PRELIMINARIES

Let’s consider the following discrete-time nonlinear systems:

xk+1 = f(xk) + g(xk)uk (1)

where xk ∈ Rn, f(xk) ∈ Rn, g(xk) ∈ Rn×m and the input uk ∈ Rm. Here assume that f + gu is
Lipschitz continuous on a set Ω in Rn containing the origin, and that the system is controllable on
Ω ∈ Rn. We denote Ωu = {uk|uk = [u1k, u2k, ..., umk]

T

∈ Rm, |uik| ≤ ui, i = 1, 2, ...,m}, where ui is the saturating bound. Let U = diag[u1, u2, ..., um].
Now let uk = {uk, uk+1, uk+2, ...} be a control sequence from k to ∞ with each ui ∈ Ωu. So the

goal of this paper is to find the optimal control law for the systems (1) so that the control sequence
uk minimizes the following performance index function

J(xk, uk) =

∞∑
i=k

{
xT
i Qxi +W (ui)

}
, (2)

where the weight matrix Q and W (ui) ∈ R are positive definite.
In this paper, the constrained optimal control problem will be studied. Inspired by the study of

[4] and [36], we can define

W (ui) = 2

∫ ui

0

Λ−T(U
−1

s)URds, (3)

Λ−1(ui) =
[
Λ−1(u1i),Λ

−1(u2i), ...,Λ
−1(umi)

]T
, (4)

where R is positive definite, s ∈ Rm, Λ ∈ Rm, Λ−T denotes (Λ−1)
T, and Λ(·) is a monotonic odd

function and a bounded single mapping function that satisfies |Λ(·)| ≤ 1. The hyperbolic tangent
function Λ(·) = tanh(·) is a good example that meets the aforementioned requirements. From the
front, we can get that R is positive definite and Λ−1(·) is a monotonic odd function, so W (ui) is
positive definite.

In the sense, let J∗(xk) = min
uk

J(xk, uk) denote the optimal performance index function and u∗
k

be the optimal control law. Moreover, according to discrete-time Bellman’s optimality principle, the
optimal performance index function can be written as

J∗(xk) = min
uk

∞∑
i=k

{
xT
i Qxi +W (ui)

}
= min

uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ J∗(xk+1)

}
. (5)

And the optimal control law can be expressed as

u∗
k = argmin

uk

∞∑
i=k

{
xT
i Qxi +W (ui)

}
= argmin

uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ J∗(xk+1)

}
. (6)

It’s not difficult to find that if we can obtain the optimal performance index function J∗(xk), the
optimal controller for discrete-time nonlinear systems with actuator saturation can be obtained. So
in the following, a novel ADP algorithm will be used to solved equation (5).
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3. THE OPTIMAL CONTROL BASED ON GENERALIZED POLICY ITERATION ADP
ALGORITHM

3.1. Derivation of the generalized policy iteration ADP algorithm

From [46], we can get that the traditional ADP algorithm, including value and policy iteration
algorithm, just have one iteration procedure. However, the developed algorithm contains i-iteration
and j-iteration. Additional, the convergence rate of the developed ADP algorithm can be sped up
with no need for solving the HJB equation for i-iteration. Moreover, a control law, which not only
stabilizes the system (1) but also make the performance index function finite, is said to be admissible
[45].

For simplicity, the systems (1) can be represented as

xk+1 = F (xk, uk). (7)

In the developed generalized policy iteration ADP algorithm, the control law and cost function are
updated by iterations. First, the initial cost function V0(xk) can be obtained with an initial admissible
control law v0(xk) as follows:

V0(xk) = xT
kQxk + 2

∫ v0(xk)

0

Λ−T(U
−1

s)URds+ V0(xk+1)

= xT
kQxk + 2

∫ v0(xk)

0

Λ−T(U
−1

s)URds+ V0(F (xk, v0(xk))). (8)

From [40], the control law v1(xk) can be computed by:

v1(xk) = argmin
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ V0(F (xk, uk))

}
. (9)

Then, the second iteration procedure will be introduced. We define an arbitrary non-negative integer
sequence, that is {M1,M2,M3, . . .}. M1 is the upper boundary of j1. When j1 increases from 0 to
M1, the iterative cost function is obtained by

V1,j1+1(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds+ V1,j1(F (xk, v1(xk))), (10)

where

V1,0(xk) = min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ V0(xk+1)

}
= xT

kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds+ V0(F (xk, v1(xk))). (11)

The iterative cost function can be defined as

V1(xk) = V1,M1(xk). (12)

Therefore, for i = 2, 3, 4, . . ., the control law and cost function of the generalized policy iteration
ADP algorithm can be updated as follows:

1) i-iteration

vi(xk) = argmin
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ Vi−1(F (xk, uk))

}
, (13)

2) j-iteration

Vi,ji+1(xk) = xT
kQxk + 2

∫ vi(xk)

0

Λ−T(U
−1

s)URds+ Vi,ji(F (xk, vi(xk))), (14)
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where ji = 0, 1, 2, . . . ,Mi,

Vi,0(xk) = min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ Vi−1(xk+1)

}
= xT

kQxk + 2

∫ vi(k)

0

Λ−T(U
−1

s)URds+ Vi−1(F (xk, vi(xk))) (15)

and the iterative cost function can be obtained by

Vi(xk) = Vi,Mi(xk). (16)

In each j-iteration, the control law remains unchanged. What the step does is to solve the generalized
HJB eqution:

Vi,ji(xk) = xT
kQxk + 2

∫ vi(xk)

0

Λ−T(U
−1

s)URds+ Vi,ji(F (xk, vi(xk))). (17)

Remark 1
In fact, when j is equal to zero, the generalized policy iteration ADP algorithm can be regarded as
a value iteration ADP algorithm [17]. And when j approaches the infinity, the developed algorithm
becomes a policy iteration [45]. Above all, we can conclude that the developed novel ADP algorithm
is a general idea that unifies almost all ADP and reinforcement learning methods.

From (8)–(16), the iterative cost function Vi,ji(xk) and the iterative control law vi(xk) are used
to approximate J∗(xk) and u∗

k, respectively. Therefore, it’s important to determine whether the
algorithm is convergent. In the following, the convergence analysis will be studied.

3.2. Convergence analysis of the generalized policy iteration ADP algorithm

Theorem 1
Let the sequence {Vi,ji(xk)} be defined as in (14). Let the control law sequence {vi(xk)} be defined
as in (13) with v0(xk) satisfying (8). Let {M1,M2,M3, . . .} be an arbitrary non-negative integer
sequence. Then, we can conclude that {Vi,ji(xk)} is a non-increasing sequence satisfying:

Vi,ji+1(xk) ≤ Vi,ji(xk) (18)

and
Vi+1,ji+1(xk) ≤ Vi,ji(xk) (19)

where 0 ≤ ji ≤ Mi and 0 ≤ ji+1 ≤ Mi+1.

Proof
In the following, we will use mathematical induction to prove Vi,ji+1(xk) ≤ Vi,ji(xk).

First, we prove that (18) holds for i = 1. From (8) and (11), we have

V1,0(xk) = min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ V0(F (xk, uk)

}
≤ xT

kQxk + 2

∫ v0(xk)

0

Λ−T(U
−1

s)URds+ V0(F (xk, v0(xk)))

= V0(xk). (20)

Then, for j1 = 0, using (10) and (20), we have

V1,1(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds+ V1,0(F (xk, v1(xk)))

≤ xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds+ V0(F (xk, v1(xk)))

= V1,0(xk). (21)
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Assume (18) holds for j1 = l − 1, where 1 < l ≤ M1 and l is positive integer. Then for j1 = l, we
have

V1,l+1(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds+ V1,l(F (xk, v1(xk)))

≤ x(k)
T
Qxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds+ V1,l−1(F (xk, v1(xk)))

= V1,l(xk). (22)

Therefore (18) holds for i = 1.
Second, we assume that (18) holds for i = r, where 1 < r ≤ ∞ and r is positive integer, that is

Vr,jr+1(xk) ≤ Vr,jr (xk). (23)

Then, for i = r + 1, using (15) and (16), we have

Vr+1,0(xk) = x(k)
T
Qxk + 2

∫ vr+1(xk)

0

Λ−T(U
−1

s)URds+ Vr(F (xk, vr+1(xk)))

= min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ Vr(F (xk, uk)

}
≤ xT

kQxk + 2

∫ vr(xk)

0

Λ−T(U
−1

s)URds+ Vr(F (xk, vr(xk)))

= Vr,Mr+1(xk)

≤ Vr,Mr (xk)

= Vr(xk). (24)

Next, for jr+1 = 0, using (14) and (24), we get

Vr+1,1(xk) = x(k)
T
Qxk + 2

∫ vr+1(xk)

0

Λ−T(U
−1

s)URds+ Vr+1,0(F (xk, vr+1(xk)))

≤ x(k)
T
Qxk + 2

∫ vr+1(xk)

0

Λ−T(U
−1

s)URds+ Vr(F (xk, vr+1(xk)))

= Vr+1,0(xk). (25)

Assume (18) holds for jr+1 = p− 1, where 1 < p ≤ Mr+1 and p is positive integer. Then for
jr+1 = p, we get

Vr+1,p+1(xk) = U(xk, vr+1(xk)) + Vr+1,p(F (xk, vr+1(xk)))

≤ U(xk, vr+1(xk)) + Vr+1,p−1(F (xk, vr+1(xk)))

= Vr+1,p(xk). (26)

Therefore, (18) holds for i = r + 1. And (18) is proved by mathematical induction.
Next, when 0 ≤ ji+1 ≤ Mi+1, using (16)–(18), we can obtain

Vi+1(xk) = Vi+1,Mi+1(xk) ≤ Vi+1,ji+1(xk) ≤ Vi+1,0(xk) ≤ Vi(xk) ≤ Vi,ji(xk). (27)

It’s not difficult to find that by means of (27), the inequality (19) is proved.

The monotonicity of the developed ADP algorithm has been discussed in Theorem 1. Starting
with an arbitrary initial admissible control law v0(xk), {Vi,ji(xk)} is proved to be a monotonically
non-increasing sequence. In the following part, the convergence properties of the developed
algorithm will be presented.
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Lemma 1
If a sequence {an}, n = 0, 1, . . . , is convergent, then its subsequence is convergent. And sequence
{an} and its subsequence will have the same limit. [47]

Theorem 2
From (8)–(16), we can get the iterative control law vi(xk) and the iterative cost function Vi,ji(xk).
Then when i approaches the infinity, the iterative cost function Vi,ji(xk) converges to the optimal
performance index function J∗(xk), i.e.,

lim
i→∞

Vi,ji(xk) = J∗(xk). (28)

Proof
First, let the iterative cost function sequence {Vi,ji(xk)} be {V0(xk), V1,0(xk), V1,1(xk), . . . , V1,M1

(xk), V1(xk), V2,0(xk), V2,1(xk), . . . , V2,M2(xk), . . .}. Then, we choose a subsequence {Vi(xk)},
that is {V0(xk), V1(xk), V2(xk), . . .}. According to Lemma 1,

lim
i→∞

Vi,ji(xk) = lim
i→∞

Vi(xk). (29)

Thus, in order to prove the (28), we can choose to prove the following equation

lim
i→∞

Vi(xk) = J∗(xk). (30)

Define V∞(xk) = lim
i→∞

Vi(xk). Then using Theorem 1 and (15), we have

Vi(xk) ≤ Vi,0(xk)

= xT
kQxk + 2

∫ vi(xk)

0

Λ−T(U
−1

s)URds+ Vi−1(F (xk, vi(xk)))

= min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ Vi−1(F (xk, uk))

}
. (31)

According to (31), we get

V∞(xk) = lim
i→∞

Vi(xk)

≤ Vi(xk)

≤ min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ Vi−1(F (xk, uk))

}
. (32)

Let i → ∞, we have

V∞(xk) ≤ min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ V∞(F (xk, uk))

}
. (33)

On the other hand, according to Theorem 1, {Vi(xk)} is a monotonically non-increasing sequence,
so we can find a positive integer ϕ that satisfies:

Vϕ(xk)− s ≤ V∞(xk) ≤ Vϕ(xk), (34)

where s is an arbitrary positive constant. Therefore, using (17) and (34), we have

V∞(xk) ≥ xT
kQxk + 2

∫ vϕ(xk)

0

Λ−T(U
−1

s)URds+ Vϕ(F (xk, vϕ(xk)))− s

≥ xT
kQxk + 2

∫ vϕ(xk)

0

Λ−T(U
−1

s)URds+ V∞(F (xk, vϕ(xk)))− s

= min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ V∞(F (xk, uk))

}
− s, (35)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2010)
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And considering the arbitrariness of s, we can obtain that

V∞(xk) ≥ min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ V∞(F (xk, uk))

}
. (36)

According to (33) and (36), V∞(xk) can be obtained, that is

V∞(xk) = min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ V∞(F (xk, uk))

}
. (37)

Then, let η be an arbitrary positive constant. According to (5), we can find a sequence of admissible
control laws πk such that the optimal performance index function satisfies

J(xk, πk) ≤ J∗(xk) + η, (38)

where πk = {πk, πk+1, πk+2, . . .}. From the above mentioned, πk is an control sequence, and the
length of the sequence is ϱ, where ϱ is a positive constant. Combining (2) and Theorem 1, we have

V∞(xk) ≤ Vϱ(xk)

≤ min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ Vϱ−1(F (xk, uk))

}
≤ J(xk, πk). (39)

According to (37) with (38), we can obtain

V∞(xk) ≤ J∗(xk) + η. (40)

Noting that η is chosen arbitrarily, we have

V∞(xk) ≤ J∗(xk). (41)

On the other hand, from the definition of J∗(xk) in (5), it’s easy to find that Vi(xk) is not less than
J∗(xk). So when i approaches to infinite, V∞(xk) ≥ J∗(xk) will be obtained. Above all, we have
J∗(xk) ≤ V∞(xk) ≤ J∗(xk), and the equation (30) is proved.

Combining Theorem 1 with Theorem 2, the iterative cost function Vi,ji(xk), which is initialized
by an arbitrary admissible control law, is a monotonically nonincreasing function and converges to
the J∗. According to the definition of uk

∗ in (6), when Vi,ji → J∗, the vi converges to the optimal
control law u∗.

4. IMPLEMENTATION OF THE GENERALIZED POLICY ITERATION ADP ALGORITHM

In this section, we choose two NNs to implement the generalized policy iteration ADP algorithm.
Figure 1 shows the whole structural diagram of the developed algorithm.

4.1. The critic network

The role of the critic network is to approximate the cost function Vi,ji(xk). The critic network has
three layers and the output is given as

V̂i,ji(xk) = ξTc(i,ji)σ(χ
T
c(i,ji)

xk), (42)

where δ (·) is a sigmoid function, ξc(i,ji) and χc(i,ji) are the weight matrices of the critic function.
The target cost function can be obtained by

Vi,ji(xk) = xT
kQxk + 2

∫ vi(xk)

0

Λ−T(U
−1

s)URds+ Vi,ji−1(F (xk, vi(xk))). (43)
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ˆ( , ( ))k i kU x v x

Action

Network

Nonlinear

System

Critic

Network

Critic

Network
-

+

kx ˆ ( )i kv x 1kx + , 1
ˆ ( )

ii j kV x
+

, 1
ˆ ( )

ii j kV x
+

Figure 1. Structure diagram of the algorithm

The error function of the critic network can be written as

ec(i,ji)k = V̂i,ji(xk)− Vi,ji(xk). (44)

Then we need to minimize the following objective function

Ec(i,ji)k =
1

2
eTc(i,ji)kec(i,ji)k. (45)

The gradient-based weight update rule for the critic network can be given by

ξc(i,ji)(ϖ + 1) = ξc(i,ji)(ϖ)− αc

[
∂Ec(i,ji)k

∂ξc(i,ji)(ϖ)

]
, (46)

where ϖ is the iterative step and αc > 0 is the learning rate of the critic network. Then, in order to
compute the other weight χc(i,ji), we just need to replace ξ with χ.

4.2. The action network

The action network has the input layer, the hidden layer and the output layer. Moreover, the input is
the state xk and the output is

v̂i(k) = ξTaiσ(χ
T
ai(xk)). (47)

The error function of the action network is defined as

eaik = v̂i(xk)− vi(xk), (48)

where the vi(xk) is the target function of the action network, which is obtained by

vi(xk) = argmin
uk

{xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ Vi−1(F (xk, uk))}. (49)

Then, in order to obtain the weights, we need to minimize the following performance error measure:

Eaik =
1

2
eTaikeaik, (50)

The weight is updated by gradient descent method:

ξai(γ + 1) = ξai(γ)− βa

[
∂Eaik

∂ξai(γ)

]
, (51)

where γ is the iterative step and βa > 0 is the learning rate of the action network. The other weight
χai updating algorithm is similar to the one for ξai.
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5. NUMERICAL EXAMPLES

In this section, the power of the generalized policy iteration ADP algorithm in discrete-time
nonlinear systems with actuator saturation will be shown.

5.1. Example 1

Consider the following discrete-time nonlinear system [48]:[
x1(k + 1)
x2(k + 1)

]
=

[
x1(k) + 0.1x2(k)

−0.1x1(k) + 1.1x2(k)− 0.1x2(k)x
2
1(k)

]
+

[
1 0
0 1

] [
u1(k)
u2(k)

]
, (52)

and assume that the control constraint is set to |u1| ≤ 0.3 and |u2| ≤ 0.3. The cost function is defined
as

J(xk) =

∞∑
i=k

{
xT
i Qxi + 2

∫ ui

0

tanh−T(U
−1

s)URds

}
.

where Q = R =

[
1 0
0 1

]
, Ū =

[
0.3 0
0 0.3

]
.

First, we perform the simulation of the generalized policy iteration ADP
algorithm. The initial state is given as x(0) = [1,−1]

T, and the state space is Ωx =
{xk| − 1 ≤ x1(k) ≤ 1,−1 ≤ x2(k) ≤ 1}. Three-layer feedforward NNs are chosen as the critic
network and action network with the structures of 2–8–1, 2–8–2, respectively. The error bound of
the iteration ADP is set as ε = 10−5. The training sets are selected from Ωx and the weights are
initialized by [−1, 1]. The learning rates of the critic network and action network are both 0.05
and the networks are trained for 10 iterations. For each iterations, there are 1500 training steps to
guarantee the NN training error less than ε.

The iteration sequence {Mi} is set to 10. Figure 2(a) shows the changing process of Vi,ji for
k = 0 and Figure 2(b) shows the changing curve of the iterative cost function Vi for all xk, where
”Lm” indicates limiting iteration and ”In” means initial iteration. The monotonicity and convergence
characteristics of the cost function sequence {Vi,ji(xk)} and the subsequence {Vi(xk)} can be
clearly obtained from Figure 2.
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Figure 2. Iterative cost function

In order to contrast to the controller without considering the actuator saturation, we design two
controllers for system (52) with 30 time steps. Figures 3(a) and 3(b) show the state trajectories and
the control input curves for the system (52) with actuator saturation. The other case without actuator
saturation is shown in Figures 3(c) and 3(d). By comparing Figures 3(b) and 3(d), we can find that
the restriction of actuator saturation has been solved successfully. Moreover, we can find that if
considering the actuator saturation, the time to achieve system stability increases. The simulation
results verify the effectiveness of the generalized policy iteration algorithm for the discrete-time
nonlinear systems with actuator saturation.
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(b) The control input u
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(c) The state trajectory x without saturating actuator
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(d) The control input u without saturating actuator

Figure 3. The simulation trajectories in Example 1

5.2. Example 2

The following nonlinear system is mass-spring system [36]:

x(k + 1) = f(x(k)) + g(x(k))u(k), (53)

where

x(k) =

[
x1(k)
x2(k)

]
,

f(x(k)) =

[
x1(k) + 0.05x2(k)

−0.0005x1(k)− 0.0335x3
1(k) + x2(k)

]
,

g(x(k)) =

[
0

0.05

]
,

and the control constraint is set to |u| ≤ 0.6. The cost function is defined as

J(xk) =

∞∑
i=k

{
xT
i Qxi + 2

∫ ui

0

tanh−T(U
−1

s)URds

}
,

where Q =

[
1 0
0 1

]
, R = 0.5, U = 0.6.

NNs are used to implement the developed generalized policy iteration ADP algorithm. The critic
network and action network have three layers and the structures are 2–10–1, 2–10–1. We take 1000
groups of sampling data to train the network. The networks are trained for 17 iterations. In order
to make the training error reach the given bound ε, the networks are trained for 4000 training steps
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with the learning rate of αc = βa = 0.01. When k = 0, the convergent process of the cost function
Vi,ji(xk) is depicted in Figure 4(a). And the subsequence Vi(xk) for the entire state space is shown
in Figure 4(b).

0
2

4
6

8
10

0

5

10

15

20

50

100

150

200

250

j
i

i

Ite
ra

tiv
e 

va
lu

e 
fu

nc
tio

n

(a) Vi,ji (b) Vi for the entire state space

Figure 4. Iterative cost function

Next, we apply the optimal control laws designed by the developed ADP algorithm to system (53)
with the initial state x(0) = [1,−1]

T for 200 time steps. Similarly, we discuss the optimal control
problem in two different conditions. Figures 5(a) and 5(b) show the state trajectories and the control
input curves for the system (53) with actuator saturation. Figures 5(c) and 5(d) show the other case
without considering actuator saturation. So we can conclude that the generalized policy iteration
ADP algorithm is effective in dealing with the optimal control problem for discrete-time nonlinear
systems with actuator saturation.
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(c) The state trajectory x without saturating actuator
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Figure 5. The simulation trajectories in Example 2
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6. CONCLUSION

In this paper, a generalized policy iteration ADP algorithm is proposed to deal with the optimal
control problem for discrete-time nonlinear systems with actuator saturation. The monotonicity and
convergence characteristics of the developed algorithm are be analyzed. The critic network is given
to approximate the cost function and the action network is used to compute the control law. The
numerical examples demonstrate the effectiveness of the developed algorithm. Considering that
the time-delay problem is another important topic of control field, so it’s important to expand the
developed algorithm to manage the optimal control problem for time-delay systems in the future.
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