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Abstract. In this study, a nonquadratic performance function is intro-
duced to overcome the saturation nonlinearity in actuators. Then, a novel
generalized policy iteration Adaptive dynamic programming algorithm
is developed to deal with the optimal control problem. Two neural net-
works are introduced to approximate the control law and performance
index function and one simulation example is given to illustrate the con-
vergence and feasibility of the developed algorithm.
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1 Introduction

In the control field, saturation nonlinearity of the actuators is universal phe-
nomenon. So researchers have made a big effort to solve the control problem of
systems with saturating actuators [1, 2]. However, these traditional methods were
proposed without considering the optimal control problem. In order to overcome
this shortcoming, Lewis et al. [3] used the adaptive dynamic programming (ADP)
algorithm to deal with the above problem. The ADP algorithm [4–6], which is an
effective brain-like method and can solve the Hamilton-Jacobi-Bellman (HJB)
equation forward-in-time, is an important method to get the optimal control
policy. Value iteration [7] and policy iteration [8] algorithms are primary tools
in ADP algorithms. Considering the superiority of the ADP algorithm, more
and more researchers chose the ADP algorithm to deal with the optimal control
problem. Zhang et al. [9] used greedy ADP algorithm to design the infinite-time
optimal tracking controller. Qiao et al. [10] studied the ADP algorithm to manage
the Coordinated reactive power control of a large wind farm and a STATCOM.
Liu et al. [11] designed an optimal controller for unknown discrete-time nonlinear
systems with control constraints by DHP. In [12] the ADP algorithm was used to
solve the optimal control problem for a class of time-delay systems with actuator
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saturation. However, there’s no research on how to solve the constrained optimal
control problem via the generalized policy iteration ADP algorithm [13, 14] .

In this paper, we use the generalized policy iteration ADP algorithm to ob-
tain the optimal controller for the discrete-time nonlinear systems with actuator
saturation. The present algorithm has i-iteration and j-iteration. When j is equal
to zero, the developed algorithm can be thought as a value iteration algorithm.
When j approaches the infinity, the developed algorithm can be regarded as a
policy iteration algorithm. First, in order to overcome the saturation nonlineari-
ty in actuators, the nonquadratic performance function is introduced. Then, the
process of the generalized policy iteration algorithm is given. Finally, we use a
simulation example to verify the effectiveness of the developed method.

2 Problem statement

We will study the following discrete-time nonlinear systems:

xk+1 = F (xk, uk)

= f(xk) + g(xk)uk (1)

where xk ∈ Rn is the state vector, uk ∈ Rm is control vector, f(xk) ∈ Rn and

g(xk) ∈ Rn×m are system functions. We denoteΩu = {uk|uk = [u1k, u2k, ..., umk]
T

∈ Rm, |uik| ≤ ui, i = 1, 2, ...,m}, where ui can be regarded as the saturating
bound. Let U = diag[u1, u2, ..., um].

The generalized nonquadratic performance index function is J(xk, uk) =
∞∑
i=k

{
xT
i Qxi +W (ui)

}
, where uk = {uk, uk+1, uk+2, ...}, the weight matrix Q

and W (ui) ∈ R are positive definite.

Inspired by the paper [3], we can introducedW (ui) = 2
∫ ui

0
Λ−T(U

−1
s)URds,

where R is positive definite, s ∈ Rm, Λ ∈ Rm, Λ−T denotes (Λ−1)
T
, and Λ(·)

can choose tanh(·).
Then we can use J∗(xk) = min

uk

J(xk, uk) to stand for the optimal perfor-

mance index function and use u∗
k to be the optimal control law. So from discrete-

time Bellman’s optimality principle, we can obtain the optimal performance in-
dex function as

J∗(xk) = min
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ J∗(xk+1)

}
. (2)

And we can use the following equation to stand for the optimal control law:

u∗
k = argmin

uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ J∗(xk+1)

}
. (3)

The goal of this paper is to obtain the optimal performance index function
J∗(xk) and the optimal control law u∗

k.
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3 Derivation of the generalized policy iteration ADP
algorithm

From [16], we can konw that the traditional ADP algorithm just have one iter-
ation procedure. However, the generalized policy iteration ADP algorithm has
i-iteration and j-iteration. Moreover, for i-iteration, the generalized policy iter-
ation ADP algorithm don’t need to obtain the solution of the HJB equation,
which lead to the convergence rate of the developed ADP algorithm can be sped
up.

According to [17], if a control law can not only stabilize the system (1) but
also make the performance index function finite, we can say that the control law
is said to be admissible.

Next, we will get that the control law and cost function of the developed
generalized policy iteration ADP algorithm are updated by iterations. First, we
can obtain the initial cost function V0(xk) as follows:

V0(xk) = xT
kQxk + 2

∫ v0(xk)

0

Λ−T(U
−1

s)URds+ V0(F (xk, v0(xk))), (4)

where the v0(xk) is an initial admissible control law. Then, for i = 1, we can
compute the control law v1(xk) by:

v1(xk) = argmin
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ V0(F (xk, uk))

}
. (5)

Then, we will introduced the second iteration procedure. Define an arbitrary non-
negative integer sequence, that is {L1, L2, L3, . . .}. L1 is the upper boundary of
j1. When j1 increases from 0 to L1, we can have the iterative cost function by

V1,j1+1(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds+ V1,j1(F (xk, v1(xk))), (6)

where

V1,0(xk) = xT
kQxk + 2

∫ v1(xk)

0

Λ−T(U
−1

s)URds+ V0(F (xk, v1(xk))). (7)

Define the iterative cost function as V1(xk) = V1,L1
(xk). For i = 2, 3, 4, . . ., the

control law and cost function of the generalized policy iteration ADP algorithm
can be updated by:

1) i-iteration

vi(xk) = argmin
uk

{
xT
kQxk + 2

∫ uk

0

Λ−T(U
−1

s)URds+ Vi−1(F (xk, uk))

}
, (8)

2) j-iteration

Vi,ji+1(xk) = xT
kQxk + 2

∫ vi(xk)

0

Λ−T(U
−1

s)URds+ Vi,ji(F (xk, vi(xk))), (9)
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where ji = 0, 1, 2, . . . , Li,

Vi,0(xk) = xT
kQxk + 2

∫ vi(k)

0

Λ−T(U
−1

s)URds+ Vi−1(F (xk, vi(xk))) (10)

and we can get the iterative cost function by

Vi(xk) = Vi,Li(xk). (11)

From (4)–(11), the iterative cost function Vi,ji(xk) and the iterative control
law vi(xk) are used to approximate J∗(xk) and u∗

k, respectively. In the following,
we use one simulation example to illustrate the convergence and feasibility of
the developed ADP algorithm.

4 Simulation example

The following nonlinear system is mass-spring system:

x(k + 1) = f(x(k)) + g(x(k))u(k), (12)

where

x(k) =

[
x1(k)
x2(k)

]
,

f(x(k)) =

[
x1(k) + 0.05x2(k)

−0.0005x1(k)− 0.0335x3
1(k) + x2(k)

]
,

g(x(k)) =

[
0

0.05

]
,

and the control constraint is set to |u| ≤ 0.6. The cost function is defined as

J(xk) =
∞∑
i=k

{
xT
i Qxi + 2

∫ ui

0

tanh−T(U
−1

s)URds

}
,

where Q =

[
1 0
0 1

]
, R = 0.5, U = 0.6.

We use NNs to implement the developed ADP algorithm. The structures of
critic network and action network are 2–10–1, 2–10–1. The networks are trained
for 17 iterations. For each iteration step, we train the networks for 4000 training
steps so that the training error become minimum. The learning rate of the above
two networks both are 0.01.

From Fig. 1(a) and 1(b), we can get the convergent process of the cost func-
tion Vi,ji(x(k)) and the subsequence Vi(x(k)). Next, we apply the optimal control

laws to system (12) with the initial state x(0) = [1,−1]
T
for 200 time steps. The

changing curves of the state x and the control u for the system (12) with ac-
tuator saturation are shown in Fig. 1(c) and 1(d). From the simulation results,
we can get that the developed algorithm is effective in solving optimal control
problem for discrete-time nonlinear systems with actuator saturation.
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(a) Vi,ji for k = 0 (b) Vi for the entire state space
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(c) The state trajectory x
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(d) The control input u

Fig. 1. The simulation trajectories
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5 Conclusion

In this paper, we use a novel ADP algorithm to deal with the optimal con-
trol problem for discrete-time nonlinear systems with actuator saturation. One
example demonstrates the convergence and feasibility of the generalized policy
iteration ADP algorithm. Since the time-delay problem is another hot topic in
the control field, it’s significant to use the developed algorithm to handle the
optimal control problem for time-delay systems in the future.
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