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Abstract - This paper proposed an autonomous robot motion
planner for industrial robots with a focus on vision-based
stevedoring applications. The planning algorithm can be divided
into two stages. The first stage generates initial geometric paths
in the Cartesian space: with the 3D model of the environment
and the picking and placing pose of the robot’s wrist obtained by
visual system, the planner finds a collision-free path using
workspace cell decomposition. The second stage searches for a
time-jerk optimal joints trajectories: the planner transforms the
path nodes described in the Cartesian space into joints angels in
the joints configuration space, then formulates and solves the
optimization problem by means of cubic splines. The simulation
experiments show the obvious improvement of our method with a
contrast to several state-of-art algorithms in this field. And the
grasping experiment verifies the practicability and effectiveness
of the method on the basis of the embedded visual system and
ABB120 type industrial robot.

Keywords – Motion planner, Cell decomposition, Industrial
robot, Optimization

I. INTRODUCTION

Nowadays industrial robots are used in many different
fields, such as palletizing, welding, assembling, and spraying.
Due to their advantages of efficiency, stability, and precision,
robots are playing more and more important role in industrial
applications. However, the robots still cannot completely
finish their tasks automatically for various reasons. One of the
problems is their motion planning methods. Most of the robot
motions are designed by manual teaching offline, and they
cannot design their paths or trajectories independently. So
building a smart motion planner for the robot means
improving their “intelligence”, and can make it more flexible
to suit industrial tasks.

In a great many industrial applications, the path that the
robot should to execute have the features: the initial and target
poses of the robot are fixed or can be confirmed before
execution using robot sensory systems, for example the visual
system; the trajectory that the robot run is freely as long as no
collision. For example, in automatic stevedoring tasks, robot
should hand goods between vehicle and shelf. The picking and
placing poses of the object cannot be determined in advance
because the poses of the vehicle stopped are different every
time. There are also some structure may collide with robot and

their poses are changing as time going. In this case, we should
consider searching safety and optimal path in dynamic
environment, and the traditional teaching programming and
off-line programming cannot finish the corresponding task.

The main work of this paper is study the automatic path
planning method for industrial robots used in vision-based
stevedoring applications. In this technique, the automatic
programming technology is the foundation, and the
environmental information obtained by visual systems is the
premise. With the help of visual system, the robots can sense
the environment and find their possible paths, and then search
for a time-jerk optimal joint trajectories. It will make the robot
smarter and more flexible to be quite qualified for other
complex industrial tasks.

II. RELATEDWORK

Planning methods associated with the theme of this thesis
can be divided into two categories based on the different
planning space: the first type focuses on path planning -
searching collision-free geometric paths for the Tool center
Point (TCP) in the Cartesian space; while the second type
processes in robot joint space - searching optimal trajectory
with a minimum cost defined in advance.

The earlier classical methods are based on roadmaps,
potential-fields or cell decomposition [1]. Roadmaps and exact
cell decomposition methods are often used for mobile robots
in two-dimensional space because of the high complexity of
explicitly represent the space. Till 90s of the last century,
different sampling-based planners were developed and showed
better runtime performance [1]. Probabilistic methods have
gained extensive attention in recent years because they can
solve complex problems within short calculation times. Two
representative works are Probabilistic Roadmap Methods
(PRMs) [2] and Rapidly-Exploring Random Trees (RRTs) [3],
as well as approaches that based on them, for example, Lazy
Significant Edge Algorithm (LSEA) [4] and Constrained
Bidirectional RRT (CBiRRT) [5]. Space cell decomposition
method shows better real-time performance when dealing with
tasks with a simple background. An approach based on the cell
decomposition of the workspace is presented in [6]. In that
paper, robot was split into two parts which are treated
separately: the robot arms and the gripper with payload. The
method finds the path for the payload firstly, followed by



testing collisions between robot arms and obstacles. The cells
used in [7] are cylinder slices which lead to the favorable
property that it privileges movement of the first axis of the
robot leading to fast transfer movements in palletizing and
handling applications. A Sergey defined node point which
allows some freedom in orientation in task space and the
practical use of this method shows less limited compared to
previous [8].

Most papers that focus on the trajectory planning problem
are based on the optimization of some parameters or objective
functions, which include minimum execution time, minimum
energy, minimum jerk, and hybrid optimal criteria [9]. [10]
Firstly formalize the problem of finding the optimal cure by
interpolating a sequence of nodes described in joint space
which are obtained by inverse kinematics. In [11] a method is
presented for the time optimal path-constrained motion
subjected to velocity, acceleration and jerk constraints. Paper
[12] deals with minimum-jerk optimal trajectories, i.e. the cost
function have a term linked to the variations of the torque. The
time-jerk optimal planning can be found in [13]. With the
development of artificial intelligence, some papers find the
optimal solution through intelligent optimization algorithm,
such as Particle Swarm Optimization (PSO) described in [14].

The rest part is organized as follows: Chapter III makes a
detailed description of the path planning and optimizing
method. Chapter IV gives the simulation and grasping
experiments results, and followed by the conclusions in
chapter V.

III. MOTION PLANNINGMETHOD

Considering the advantages and disadvantages of various
methods, our proposed method is based on the following
strategies: firstly, define the initial and target pose of the robot
wrist when the robot picking and placing; secondly, analysis
and process the environment information acquired by the
visual system, and then obtain the collision free geometric
path; after that, transfer the path nodes expressed in Cartesian
apace into the joint space through inverse kinematics; finally,
the optimization joint trajectories are obtained by means of
interpolating function and an optimization algorithm. As the
environment is simple, we process the path planning problem
on the basis of cell decomposition of the workspace. In order
to improve the real-time performance, our method changes the
traditional optimization strategy which will improve the
adaptability of industrial robots.

Flow chart of the planning algorithm presented in this
paper is shown in Fig. 1.

A. Models of the Environment and Robot
The located poses of the object and the possible obstacles

in the environment should be obtained by the vision system in
real-time. The poses of the objects whose shape and size are
known in advanced can be obtained using 2D image through
solving the PnP problem. But if the information is unknown,
we should use a 3D camera to obtain the depth data firstly.
The location of the obstacles and their orientations can be
obtained by the 3D models, which are sensed by the visual
system.

Fig. 1 Flow chart of algorithm

It can accelerate the speed of collision detection by using
Oriented Bounding Boxes (OBBs) to describe the geometric
model of the robot and tool instead of triangle patches. In this
paper, the robot arms and grasping tool are represented by
OBBS, and their poses can be calculated through robot
kinematics.

B. Robot Inverse Kinematics
Usually, the geometric path is described in the Cartesian

space, as the task processes and the obstacles avoiding for the
end effector can be realized more naturally in this space.
However, the collision detection of the robot arms and the
trajectory planning are normally proceeding in the joint space
of the robot. Nodes described in the Cartesian apace would be
transformed into the joint space using inverse kinematics.

According to the Denavit-Hartenberg (DH) model, which
is a classical method to solve robot kinematic problem, the end
effector’s pose can be expressed as

1 2 6* * *T A A A  （1）
Where
Rot(Z, )Trans(0,0,d )Trans(a ,0,0)Rot(X, )(i 1 6)i i i i iA     ,

which refers to the D-H matrix of robot link. If T, the posture
of the end effector, is known, the joint angle can be calculated
through analytic method. Inverse kinematics always obtain
more than one result, so a suitable one should be chosen
according to reaching ability limiting and adjacency
relationships.

C. Collision Detection
The aim of collision detection is to avoid the collision

between robot arms and obstacles in the workspace. Besides,
the tool fixed on the manipulator end may collide with robot
arms in some postures. Collision detection will be used in path



planning stage for generating collision free path and
guaranteeing the safety in execution stage.

To accelerate collision tests in path planning stage, we
use OBBs, the bounding volume of the robots arms, to
represent robot arms. The measure of the OBBs can be
obtained by the specification of the robot, and the pose of the
OBBs can be calculated using forward kinematics. The

transfer matrix of the joint is 1 1 i* * *iT A A A  , and the
OBBs’ posture corresponding to this joint is the rotation
transform part of Ti. The obstacles’ OBBs model in the
workspace can be obtained using the vision information. At
last, intersection test between two groups of OBB models will
give the result of whether collision is free. The intersection
test algorithm between two OBBs can be found in [15].

There is collision detection function in advanced robot
system that uses basic space models, such as cuboids and
cylinders, to represent obstacles in the workspace, then the
robots motions can be constrained in a free space. During
execution process we can use this function to prevent robot to
collide with fixed obstacles. But for the dynamic obstacles,
whose poses are not fixed values, we should compute possible
collision real-time. To do this, we can estimate the pose of the
obstacles and determine whether collision would occur at next
time node.

D. Cell Decomposition and Connection
Although the accessibility space of robot is incomplete

spherical, we use a cube to represent the workspace, which is
more convenient for cell decomposition. There are also some
papers using cylindrical cell decomposition and the result path
nodes distributed on the cylindrical surface, which leads to the
favorable property that its privileges movement of the first
axis of the robot leading to fast executing speed. However, the
drawback is that obstacles should be transformed into
cylindrical system. In our method, we use cubes to segment
the work space and gain a circular arc shape path by using
suitable shortest path algorithm.

Cells in each decomposition step may have one of three
possible statuses, ‘empty’, ‘full’, or ‘mixed’, which indicates
the cell is free of, completely or partly covered with obstacles.
The cells marked as ‘mixed’ should be decomposed iteratively
until there are only cells marked as ‘empty’ or ‘full’ or a
predefined minimum dimension is reached. After this step, all
the cells marked as ‘empty’ constitute the collision free space
for the end effector of robot.

The free space obtained last stage can only guarantee the
end effector and the tool not colliding with obstacles, however,
the robot arms may be not safety when robot is in this space.
In order to test weather it is safe for the robot arms, we should
know the posture of the arms first. Considering the orientation
of the TCP is often upright when grabbing, putting, or handing
the object, we define the Z axis of the TCP is plummet. Then
the collision testing on every node can be executed easily. But
the drawback of this method is that the freedom of the robot is
limited seriously. Similar to [8], we use the orientation
window to allow some freedom in orientation and the node is
taken out of the free space if the robot arms collide after

rotation. We adapt method from [16] that taking into account
distance information to test whether it is safe when robot
moves between two adjacent nodes. By testing all the adjacent
nodes, we can set up connected nodes net for the motion of
robot.

E. Search for a Cell Path
The accessibility, including the ability of the robot

grasping and no collision, of the pose picking and placing
object should be tested firstly before searching for shortest
path for the robot. If the accessibility condition can be
satisfied, the nodes corresponding to this two pose are chosen
as initial and target node.

A* algorithm is a common method in searching for
shortest path, and the prediction and cost function should be
chosen appropriately to insure finding objective trajectory in
shortest possible time. In our application two problem should
be considered: the result path should not be too close to the
base coordinate origin of robot, otherwise the movement of
the joints will be much complex and easily collided; secondly,
if the intersection angle between the projection vector in X-Y
plane of picking and placing point is too wide, such as more
than 180 degree, searching for path will cost much time. For
the first problem, we use the prediction function (2) to
generate an arc-shaped trajectory.

dgoalnowrgoalnow kkrrH *)(*)( 22
  （2）

The value of kr and kd should be chosen according to the
commonly used working range of the robot. For the second
problem, we reduce the execution time by inserting middle
point that is between picking and placing points in the
spherical coordinate frame. Then the planner search for path
between initial and middle nodes and between middle and
target nodes.

If the collision free path between initial and target point
can be found, the path should be smoothed primarily. Then
calculate the corresponding path presented in joint coordinate
system of robot using inverse kinematics. Because the result
of inverse kinematics has multiple sets of solutions, the proper
one should be chosen according to the continuity of the joints.

F. Optimization Problem Formulation
As the motion of the robot is continuous, controlling the

robot using joint positions directly will increase running time
and instability. So, the purpose of the trajectories planning is
to make the motion faster and more stable. As mentioned
above, taking the minimum-time and minimum-jerk as the
optimization target, and taking the kinematics constraint of the
robot as the constraint condition, we can formulate the
optimization problem as (3), and the meaning of the symbols
in (3) are explained in Table I.
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TABLE I
MEANING OF SYMBOLS

Symbols Means
N Number of robot joints
M Number of nodes
kT Weight of the running time
hi Time interval between two nodes
kJ Weight of the jerk
Qj(t) Position of the jth joint
VCj Velocity constraint of the jth joint
WCj Acceleration constraint of the jth joint
JCj Jerk constraint of the jth joint

G. Interpolation of Cubic Polynomial Splines
As the cubic polynomial splines interpolation can

generate trajectories with continuous values of the
accelerations, the use of cubic splines is very common in
trajectory planning. Our method use cubic splines
interpolation to obtain initial trajectory, and then do the
optimize process.

The second time derivative of Qj(t), expressed as )('' tQ j
,

must be a linear function, for Qj(t) is cubic. Hence, we can get
the following expression
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Where ti refers to the time jth joint pass interpolated point
i. Integrating (4) twice and considering the interpolated point
condition, we can get interpolating function as follows:
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The only unknown parameter in the above formula is
''
,Q (t )j i i , Letting

''' '' '' ''
,2 2 ,3 3 ,n 1 1(t ), (t ), , (t )j j j j nQ Q Q Q      ,

we can get equation ''
j jAQ B . Matrix A and vector B can be

calculated through known parameters, which can be found in
[10]. Because A is nonsingular, ''

jQ can be obtained by

multiplying by the inverse matrix of A in both sides
'' 1
j jQ A B （6）

Then, the jth joint’s position at anytime can be obtained by (5).

H. Optimal Trajectory
According to the above description, we take hi as the

independent variable and object function and constraint
conditions as a result function. The optimal process is:

(1) Getting a sequence of nodes in the joint space by
applying kinematic inversion to the path nodes which were
obtained in path planning stage and described in Cartesian
space.

(2) Calculate suitable initial time sequence H.
(3) Solve the optimization problem described in (3)

using constrained nonlinear programming algorithm.

Firstly, let the initial time sequence be
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But the result time sequence of (7) may not satisfy the
kinematics constraint of the robot. Notice that the kinematics
parameters only can surpass the boundary, let  1   be

the adjust parameter, then, we can get initial time sequence by
=i ih h . Let  1/2 1/3

1 2 3=max 1    , the values in

the expression are:
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As the acceleration function is linear, the maximum
absolute value can be found at the interpolation point. The
maximum absolute value of jerk can be calculated easily for
its constant. Considering that velocity is the quadratic function
of the time, the maximum absolute value exists at where
acceleration is zero or at the interpolation point. So it can be
calculated by expressions below.
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Once the initial time sequence is got, the optimization
problem (3) can be solved using constrained nonlinear
programming algorithm. Formula (3) can be replaced by (9),
which is more intuitionistic.
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IV. EXPERIMENTAND RESULT

The motion planning method described in this paper is
tested for the vision-based stevedoring tasks using the
ABB120 type robot. The camera used for obtaining
environment information is fixed beside the wrist. The robot
grasps objects at the initial position, and then put them at the
target position. During the moving, the robot can avoid the
obstacles in the environment and run a time-jerk optimal
trajectory.

There always are not obvious obstacles in the robot
workspace in actual factory environment, but in order to test
the effectiveness of our algorithm, we put some artificial
obstacles and the poses of the obstacles are changed in every
experiment. Simulation results in MATLAB are shown below.

Fig. 2 Simulation of path panning

The cylinders and cuboids represent the obstacles and
their poses and size are random chosen. The red round
represents target position, the green round represents initial
position and the red lines link the red round to the green round
indicate the resultant paths. We can see from Fig. 2 that
smooth and collision-free paths tending to arc were obtained.

We chose a path to optimize and the planned trajectories for a
6-joint robot are shown in Fig. 3.

Fig. 3 Planned trajectories for a 6-joint robot

In Fig. 3, the black lines represent angle, the green lines
represent velocity, the red lines represent acceleration, and the
blue lines represent jerk. The value of joint4 keeps zero
because the Z axis of the TCP is upright. The initial execution
time satisfies kinematic constraints is 21.06s and after
optimization the time becomes 9.3s. Table II reports the mean
kinematic values of velocity, acceleration and jerk for all
joints compared with those optimized using different methods
in [14]. The reported results show the effectiveness of the
proposed method in optimization of the trajectories.

TABLE II
MEAN KINEMATIC VALUES

Join1 Joint2 Joint3 Joint4 Joint5 Joint6

Minimum maximum Jerk mentioned in [14]

Vm 12.38 9.59 11.50 0 6.01 12.38

Am 6.46 8.79 10.67 0 5.12 6.46

Jm 11.44 18.49 21.75 0 10.33 11.44

Our method

Vm 12.12 9.39 11.28 0 5.89 12.12

Am 5.80 8.96 11.11 0 4.90 5.80

Jm 9.81 14.74 19.07 0 10.65 9.81



The grasping experiment was carried out on the basis of
the embedded visual system and ABB120 type industrial
robot. Because the robot cannot avoid obstacle if the Z axis of
the TCP keeps upright, the posture of the gripper was changed
at some nodes as mentioned above. The process of the
experiment is shown in Fig. 4.

Fig. 4 The experimental process

V. CONCLUSION

We presented an automatic robot motion planning
approach for the vision-based stevedoring tasks on 6-DOF
industrial robots. Unlike most existing motion planners, our
method can let the robots have the abilities to sense the
environment with the help of a visual system, which will make
the robots more smarter and accomplish their tasks totally
automatic, and we optimized the trajectory in joint space
immediately following generating the collision-free space
geometric path. It is shown that our method can complete
vision-based handing tasks very well and have a preferable
performance comparing to some other motion planning
algorithms.

The proposed method in this paper is suitable for many
industrial robot tasks, and in the near future further
improvement will be made aiming at handing mobile object in
a dynamic environment.
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