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Abstract. Domain knowledge about the brain is embedded in the litera-
ture over the whole scientific history. Researchers find there are intricate
relationships among different cognitive functions, brain regions, brain
diseases, neurons, protein, gene, neurotransmitters, etc. In order to inte-
grate, synthesize, and analyze what we have known about the brain,
the brain knowledge graph is constructed and released as part of the
Linked Brain Data (LBD) project, to reveal the existing and potential
relationships of brain related entities. However, there are some incorrect
and missing relationships in the extracted relations, and researchers also
cannot find the key topics overwhelmed in the massive relations. Some
researchers analyze the properties of vertices based on the network topol-
ogy, but they cannot verify and infer the potential relations. In order to
address the above problems, we propose a framework which consists of
3 parts. Firstly, based on complex network theory, we adopt the embed-
dedness to verify the relations and infer the potential links. Secondly, we
use the network topology of existing knowledge to build the self-relations
graph. Finally, the structural holes theory from sociology is adopted to
discover the key and core vertices in the whole brain knowledge graph
and we recommend those topics to users. Compared with logic inference
methods, our methods are lightweight and capable of processing large-
scale knowledge efficiently. We test the results about relation verification
and inference, and the result demonstrates the feasibility of our method.

Keywords: Complex network · Brain knowledge graph · Relation
inference · Network analysis · Linked Brain Data

1 Introduction

There is a long history of the research on the brain from the perspectives of
its cognitive functions, its building blocks, and related brain diseases, etc. Brain
research is not only useful because it is highly related to answer the question of
who we are, the understanding of the brain is also important for the develop-
ment of Artificial Intelligence. There is massive known and unknown knowledge
about the brain, while knowledge engineering can help to extract, organize, and
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analyze these domain knowledge. Under this background, The Linked brain data
(LBD) project is developed and the platform is released1. It’s aim is to extract,
synthesize, and analyze the data and knowledge about the brain from the World
Wide Web [16]. However, it is inevitable that errors and missing relations exists
in the LBD knowledge base. Besides, it is also hard to find the key topics which
are overwhelmed in the enormous knowledge network.

Our work focuses on the network topology analysis to obtain new knowledge
and new understandings based on the existing LBD brain knowledge graph. In
[7], clustering coefficient is used to analyze the network topology of extracted
information. In [8], graph theory based method is used to generate the document
summarization. Their works mainly analyze the properties of vertices or relations
according to their degrees. However, they cannot infer the potential links or verify
the relations. Our contribution is the relation verification and inference based
on the complex network theory.

In this paper, we propose a framework of analyzing brain knowledge graph
by complex network theory. Firstly, the embeddedness is adopted to improve
the accuracy of extracted relations and infer potential relations. Secondly, as
an extension to the existing brain knowledge graph in Linked Brain Data,
which focused on category inter-relationship, this paper extract category intra-
relationship construction. Namely, the correlation of entities in the same cat-
egories (i.e. the category of cognitive functions, brain diseases, brain regions,
neurons, proteins, genes, neurotransmitters). Finally, the structural holes theory
[2] is adopted to find key topics for users.

2 Related Works

From the spatial perspective, domain knowledge on the brain is distributed
around the world, such as different universities, laboratories and institutes, differ-
ent literature sources, different databases. From the temporal perspective, they
have been distributed almost in the whole history of Science. Although they are
physically distributed, these knowledge on the brain are connected implicitly by
nature, and they collectively provide a more comprehensive understanding of
the brain. Nevertheless, the brain is still a mystery, and scientists are still on
the way to provide a hologram of the brain. Most brain scientists focus on spe-
cific directions and scales for the investigation, and it is impractical for a brain
scientist to know every scientific conclusion of existing brain research.

Under this background, the Linked Brain Data platform makes an effort to
integrate and extract distributed knowledge on the brain and make a 10 million
scale brain knowledge base accessible to all academic and industry communities.
It integrates multi-source data and knowledge and links them semantically [16].
For the next stage, we not only plan to provide a brain knowledge graph that
users could explore, but also want to provide domain knowledge based services
(such as research recommendations).

1 Linked Brain Data: http://www.linked-brain-data.org/.

http://www.linked-brain-data.org/
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For the relation verification, Liu et al. propose a method to verify “isa” rela-
tion based on specific features and rules [9], while the method is relation specific
and cannot generalize to other relations. Zhang et al. propose an ontology based
method to verify semantic relations, and their work needs a domain ontology
and a vector space model [17]. Our paper proposes a model free method to ver-
ify the relations merely depending on the topology of the knowledge graph. As
for the relation inference, Schoenmackers et al. propose a method to learn the
inference rules from Web text [13]. Our method applies the existing topological
structure to infer potential relations without rules. Currently, many efforts on
recommender system focus on the adaptability to users [11]. Nevertheless, to the
best of our knowledge, the work concerning recommending the key topics in the
knowledge graph attracts little attention. Catanese et al. adopt the clustering
coefficient to analyze the structural properties of Facebook Graph [4]. Here, we
adopt clustering coefficient to find key topics in the brain knowledge graph.

3 Relation Verification and Inference

Since the domain knowledge is automatically extracted from scientific litera-
tures, uncertainty are inevitable due to the reason that understanding of the
brain may be inconsistent and the limitation of current automatic knowledge
extraction techniques. The embeddedness [5] is the number of common neigh-
bors of 2 vertices. The high embeddedness means high confidence, stability and
consistency, and vice versa [1,6,12]. As for the knowledge graph, the relation con-
fidence can be represented by embeddedness which also represents the strength
or probability of a relationship.

The embeddedness of relations is calculated by Algorithm 1. Our first step is
to find the corresponding entity pair according to the relation list in the knowl-
edge graph. After getting the specific vectors, we can calculate their summation.
If there is a common vertex, the corresponding element is 2 in the summation
of the 2 vectors. For example, dementia is correlated with working memory. At
the same time, the dementia is also correlated with white matter which is also
correlated with working memory. So the white matter is the common vertex of
the relation between dementia and working memory. It also means there is a
triadic closure.

The higher the embeddedness value is, the stronger the binary relationship is.
This method can support the correctness of the existing relations from a specific
perspective. In addition, embeddedness can be used to infer currently unknown
relations. More common vertices are available, more likely that a binary relation
exists between the vertex pair. For example, based on the current brain knowl-
edge graph in LBD, there is no direct relationship between the Zona incerta and
the Lysine, but they have 36 common vertices, so the relationship between them
may exist with a high probability. Hence, the method can support researchers
to validate existing relations and predict unknown relationships.

We propose that we acquire new relations, the embeddedness calculation
process is being carried out simultaneously as a supporting factor. We propose
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Algorithm 1. Binary Relation Embeddedness Calculation Algorithm
Require: The adjacency matrix of vertices and the relation lists between those vertices
Ensure: The embeddedness of every vertices pair

procedure CE(String[][] matrix,List relation)
for i ← 0, relation.length − 1 do

row[2]=findRows(relation[i])
for j ← 1, relation.length − 1 do

ele[j] = matrix[row[0]][j]+matrix[row[1]][j]
end for
for j ← 1, relation.length − 1 do

if ele[j] > 1 then
multi++

else if ele[j] == 1 then
single++

end if
emr = multi/(multi + single)

end for
end for

end procedure

this method as statistical topology inference (STI) which investigate on the
probability of relations from a completely different perspective compared to logic
inference. It transforms the topological properties of a graph into statistical
features to infer the potential relations and support analysis on existing relations.

4 Category Intra-relationship Inference and Verification

For the previous version of the brain knowledge graph in Linked Brain Data,
links are mainly established between entities in different categories, since for the
first stage, we want to obtain relationships among different cognitive functions,
brain diseases, and brain building blocks at multiple scales. However, links within
the same category are also very important. For example, connections among
different type of neurons are essential to understand the structural connectivity
mechanism of the brain.

Category intra-relationship for cognitive functions (such as correlated rela-
tions of different cognitive functions) are also very important. Sometimes one
kind of cognitive function does not play a separate role. Many cognitive functions
serve as closely related building blocks to complex cognitive tasks. For example,
Moscovitch et al. took the experiments to investigate on the relationship between
long-term memory and episode memory in the same patient [10]. Now, by sta-
tistical topology inference, we may obtain possible relationships among different
cognitive functions even before the experimental studies. Besides, possible corre-
lated relations among brain diseases are also very important. This effort can be
used to help doctors and medical researchers find potential relationships among
different brain diseases to support their medical diagnosis and treatment.
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5 Key Topics Discovery and Recommendation

Within the brain knowledge graph, some of the topics (domain terms) are essen-
tial from the topology point of view. The topology structure of a vertex can
reflect its degree of importance compared to others. Here, we adopt the struc-
tural holes theory to find the key topics. Our method can find some topics located
at a significant or special position of this knowledge graph.

In Sociology, there are some vertices with low embeddedness which are called
structural holes [2,3]. The structural hole has many properties. For example, it
is the connection vertex between several communities [2,3]. Based on its struc-
tural characteristic, the structural hole, the traffic hub of information, has higher
power than other vertices. In the social network, the person, who is in the posi-
tion of the structural hole, has a lot of interpersonal relations and becomes
the key to communicating among several communities [2,3]. As for the knowl-
edge graph, the structural holes are key concepts playing an important role in
the connection of different local knowledge networks. In our experimental brain
knowledge graph, there are only a few structural holes in the strict sense. In
order to extend the result, we make some improvement to increase the number
of candidates, and we can also get some vertices which are very similar with
structural holes from topology perspective. When we increase the threshold of
being a structural hole, the key vertices are more likely to show up.

Given the special position of structural holes in a network, their presence or
disappearance will greatly affect the connectivity of the network. For example,
it makes human more vulnerable to some extent that structural holes sometimes
establish a shortcut for the diseases. It also reminds us of an effective way to
eliminate the factors that can cause brain disease. Finding the structural holes
would help people to prevent diseases with more explicit targets. If we removed
the structural holes, a specific disease would only occur when several other con-
ditions are satisfied together. Because we have already cut off this short path so
that this disease only appears when it finds another complete pathway. It means
that we can reduce the probability of a specific disease once we cut off the
connectivity to structural holes. For example, the left fusiform gyrus correlated
with various brain diseases and cognitive functions, as illustrated in Fig. 1(a).
However, based on the partial knowledge graph, the semantic memory does not
connect to brain diseases directly and it only connects to the left fusiform gyrus
directly. If the semantic memory disorder symptom occurs in a patient, we may
need to pay attention to the left fusiform gyrus, although it may be with no
problem. The correlated vertices have the higher probability to be affected than
those uncorrelated ones. If we take care of the left fusiform gyrus, we can predict
or prevent the diseases, since based on the partial knowledge graph, semantic
memory is not directly related to anorexia nervosa, amblyopia, etc. through the
left fusiform gyrus, as shown in Fig. 1(a). It means paying special attention to
these key vertices may can decrease the disease incidence, especially when the
related vertices are starting lesion in patients.
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(a) (b)

Fig. 1. (a) An example of structural hole, Left fusiform gyrus, and its related nodes.
(b) An example of core vertex, the Sleep disorder, which has more triadic closures and
is topologically very different from the structural holes.

The formation of structural holes is decided by the existing knowledge graph,
so the relationships in this area may have not been revealed completely by sci-
entists. We adopt the Algorithm 2 to find the structural holes.

There is another kind of important vertices, core vertices, which have more
triadic closures around and present a totally different characteristic with the
structural holes. Those core vertices can be found by the clustering coefficient
[15], as shown in Eq. (1). ci represents the clustering coefficient of vertex i. ti is
the number of edges among the neighbors of vertex i, and ki is the number of
its neighbors [14].

ci =
ti
C2

ki

(1)

We adopt Algorithm 2 to calculate the clustering coefficient. Those vertices
with the higher clustering coefficient are the core of stable communities which
influence the whole network stability [15]. For example, the sleep disorder has
many triadic closures around, as Fig. 1(b) shows. The sleep disorder has the
capacity to form an intensive correlation with the surrounding vertices. This
special structure characteristic represents special meaning to the whole structure.
The key and core vertices can be recommended to the users.

6 Experiments

We take all the none duplicated correlated relations (265,946 relations) and
related vertices (16,890) in Linked Brain Data to perform our experiments (The
original data are brain related literature titles and abstracts from PubMed, rang-
ing from the year 1874 to 2014). We take the above vertices and relations as seeds
to generate 142,627,605 possible relations. In the relations, we found that 597,946
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Algorithm 2. Calculating the clustering coefficient
Require: The adjacency matrix of vertices
Ensure: The structural holes and the clustering coefficient of every vertex

procedure Clus(String[][] matrix)
for row ← 1,matrix.length − 1 do

List<Integer> li = findOnes(matrix[row])
for i ← 0, li.length − 1 do

initialize indexList
for j ← i + 1, li.length − 1 do

x = li.get(i)
y = li.get(j)
indexList.add(combinationIndex(x,y))

end for
clusteringCofficient(indexList)

end for
end for

end procedure

relations have more than 20 common vertices in their neighbors between different
categories and 602,389 relations in the same category, some examples are shown
in Table 1. S represents the number of the neighbors which only have one rela-
tionship with Entity 1 or Entity 2. The EM represents the number of common
vertices of a specific entity pair. The EMR is the embedding ratio. The gene,
reg, dis, protein, trans, func and neu represent the gene, brain regions, brain dis-
eases, protein, neurotransmitters, cognitive functions and neurons respectively.
When we sort relations by EMR (with a threshold EMR > 0.5), there are only
8,250 relations between different categories and 204,345 relations without cate-
gory limitation. The huge difference indicates that there are extensive relations
in the same category and the portion of common vertices of many entity pairs
is small.

In the existing relations, 155,729 relations have more than 20 common ver-
tices. The cardinal number of common vertices can be very big, but the embed-
ding ratio of most relations is less than 40 %. It implies that most of the neighbors
are correlated with only one entity of the two entities in a specific relation pair.
According to the various situation mentioned above, we design some rules to
find the relations with both high cardinal number and embedding ratio. These
relations are considered as the highly confident ones.

We randomly select 1000 verified relations about brain regions, brain diseases
and cognitive functions from the extracted relations, and we manually check the
correctness of them. Our experimental results show the verification precision is
95.3 % when we set the EM> 20. This method can filter some of the incorrect
relations. As for the inferred relations, they are to some extent generated hypoth-
esis, and we expect and invite Brain Scientists to investigate on these hypothesis
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Table 1. Example relations and their corresponding parameters

Entity1 Entity2 S EM EMR

Schizophrenia [dis] Encoding [func] 6672 1140 0.14592

Atherosclerosis [dis] Encoding [func] 6534 865 0.11690

CA2 [reg] Encoding [func] 6290 1226 0.16311

Hippocampus [reg] Movement [func] 1798 616 0.25517

and verify them by biological experiments2. The above inference function can
be considered as a novel way to find the potential links.

Table 2. Some examples of the inferred brain region correlations which are not
extracted directly

Entity1 Entity2 S EM EMR

CA2 [reg] Hippocampus [reg] 1391 737 0.34633

Hypothalamus [reg] CA2 [reg] 1278 558 0.30392

Cerebellum [reg] Hippocampus [reg] 1091 763 0.41154

CA2 [reg] CA1 [reg] 1179 553 0.3192

Hypothalamus [reg] Forebrain [reg] 810 469 0.36669

In the category intra-relation inference experiment, some examples of the
inferred relations about brain regions are shown in Table 2. We randomly select
100 inferred relations between brain regions and manually check the correctness
of them. The precision is currently 85 % when we set EM> 20.

Table 3. Examples of the key ver-
tices in the brain knowledge graph

Structural holes Num

NO [protein] 47

GABA [protein] 43

Knowledge retrieval [func] 7

Core of nucleus accumbens [reg] 7

Barbiturate dependence [dis] 5

Table 4. Some examples of the core ver-
tices in the knowledge graph

VERTICES R V CC

Encoding [func] 195765 7277 0.0074

Movement [func] 96921 1630 0.0730

Alzheimer [dis] 91519 1582 0.0732

Schizophrenia [dis] 68227 1675 0.0487

As for the topics discovery experiments, some examples of the key vertices
are shown in Table 3 where Num denotes the number of neighbors of a specific
vertex. Most of the key vertices have high value of Num and many relations with
2 Inferred relationships can be accessed through Linked Brain Data.
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their neighbor vertices. Some examples of the core vertices in the brain knowl-
edge graph is shown in Table 4. R represents the number of relationships with
the neighbors of a corresponding vertex. V represents the number of neighbor
vertices. CC is the value of the clustering coefficient. Some vertices with low CC
value but high R value also can be considered as the core vertices since they also
have many triadic closures. Finally, users can get some structurally important
vertices and relations overwhelmed in the massive knowledge on the Brain.

7 Conclusion and Future Work

Based on complex network theories, we propose a framework to address the
problems of relation verification, inference and key topics discovery on brain
knowledge graph. Firstly, the verification and inference of relation extraction
are investigated based on the embeddedness. We test our verified results based
on the annotated data. The experimental results demonstrate the feasibility
of our method. Secondly, we investigate on the category intra-relations and
use embeddedness for verification. Finally, the discovery function of key and
core topics is realized by the structural holes algorithm which is borrowed from
sociology.

Our future work will consider extracting the specific types of the correlated
relations in the brain knowledge graph. We will also invite brain scientists to
verify the potential links that we generated based on the prediction model intro-
duced in this paper.
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