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ABSTRACT

Different from traditional human activity recognition, human activity prediction aims to recognize an
unfinished activity, typically in absence of explicit temporal progress status. In this paper, we propose a new
human activity prediction approach by extending the recently proposed generalized time warping (GTW) [20],
which allows an efficient and flexible alignment of two or more multi-dimensional time series. More specifically,
for each activity video, either complete or incomplete, we first decompose it into a sequence of short video
segments. Then, we represent each segment by the local spatial-temporal statistics using the classical bag-of-
visual-words model. In this way, the comparison between a query sequence (i.e., containing an incomplete
activity) and a reference sequence (i.e., containing a full activity) boils down to the problem of aligning their
corresponding segment sequences. While GTW treats different portions of a sequence as equally important, our
task is in favor of early portions since an incomplete activity video always aligns from the beginning of a
complete one. Thus motivated, we develop a temporally-weighted GTW (TGTW) algorithm for the activity
prediction problem by encouraging alignment in the early portion of an activity sequence. Finally, the similarity
derived from TGTW is combined with the k-nearest neighbors algorithm for predicting the activity class of an
input sequence. The proposed approach is evaluated on several publicly available datasets in comparison with
state-of-the-art approaches. The experimental results and analysis clearly demonstrate the effectiveness of the
proposed approach.

1. Introduction

the progress or results of a sport game will be highly desirable. In
public area, we want to equip a surveillance system that can raise an

Recognizing human activities from videos has attracted an increas-
ing amount of research interest recently. It typically requires to capture
enough spatial and temporal information to distinguish different
activity classes, while handling the large intra-class variations. Recent
surveys can be found in [1-4].

Most of the existing methods usually focus on recognitions of
complete activity videos [7,8,15—17]. However, in many real-world
scenarios, the system is required to identify intended human activities
before they are fully executed. For example, in a surveillance scenario,
recognizing the fact that certain objects are missing after they have
been stolen may not be meaningful. The system could be more useful if
it is able to prevent the theft and catch the thieves by predicting the
ongoing stealing activity as early as possible based on live video
observations. In the sports video analysis, the capability of predicting
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alarm in advance before any potential dangerous activity happens. In a
smart room, people's intention of activity can be predicted by a user-
friendly sensor-camera, so that the system will adaptively provide
services, even help if necessary.

The intuitive approach is to extend traditional sequential models
such as hidden Markov models (HMM) to roughly approximate the
prediction problem, but these models often meet the problem about
how to extract high-dimensional features to provide an effective video
representation. The grammar based method [14] shows the effective-
ness in prediction of complex activities, but semantic representation
requires high resolution videos, and is easily influenced by noises in
realistic videos. A popular strategy [6,9,12,13] is to divide a video into a
set of consecutive segments, and measure the similarity between
corresponding segments in different videos. The correspondence is,
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however, nontrivial to obtain. For an unfinished test video, we usually
have no information about the status of its temporal progress, so we
can not decide the number of segments which the unfinished test video
and the complete training video are separately divided into for the
similarity measurement of corresponding segments. So far, it is still an
unsolved problem to automatically infer the progress status of an
incomplete activity, and this is the essential difference between activity
prediction and traditional activity recognition.

In this paper, we propose an activity prediction method based on
the alignment of time series. Having noticed that activities from the
same class are usually performed in similar action evolution processes,
we represent a video sequence by dividing it into a series of short
segments. The number of segments thus correlates to the progress
status of the activity the sequence carries. To capture the dynamic
appearance of each segment, the distribution of the spatial-temporal
interest points [19] are summarized in the bag-of-visual-words fashion.
In this way, an activity video, either incomplete or complete, is
represented by a time series of visual word histograms. In order to
compare such time series of different lengths, it is natural to use the
time warping algorithms such as the recently proposed generalized
time warping (GTW) [20] algorithm. The original GTW algorithm,
however, treats equally important each video segment, while in action
prediction, matching happens more often in the early portion than in
the latter portion of the activity. Addressing this issue, we design two
different temporally-weighted GTW (TGTW) based algorithms to align
an unfinished activity video with a full activity video in favor of its early
segments. More specifically, one approach intuitively modifies the
GTW objective function by a diagonal matrix to weight early portions
of activities less than the latter portions. The other approach directly
constrains the warping path which essentially determines the align-
ment position in the complete activity video. Finally, the similarity
derived from the TGTW based alignment is combined with the k-
nearest neighbors algorithm to predict the activity class. Fig. 1
illustrates the flowchart of our framework.

We evaluate the proposed TGTW-based activity prediction algo-
rithm on three public benchmark datasets including UT-Interaction
[36], DARPA-Y1 [38], and UCF Sports datasets [37]. Our method
achieves very promising results in all the experiments in comparison
with several state-of-the-art solutions.

The remainder of this paper is organized as follows. Section 2 gives
a review of related work. Section 3 introduces the proposed approach.
Section 4 demonstrates the experimental results. Section 5 concludes
this paper.

2. Related work

This section reviews previous work on activity prediction and time
series alignment.

2.1. Activity prediction

Human activity prediction is an important and challenging pro-
blem, and it is a relatively new topic in computer vision with several
notable recent studies. Ryoo [6] represents an activity with an integral

Interest point | |Activity representation

Training N
videos detection with segments
!
Time series alignment L Activity prediction
using TGTW by KNN
il

Interest point
detection

Activity representation|
with segments

N
Y

Test
videos

h

Fig. 1. Flowchart of the proposed framework.
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or dynamic bag-of-words model to probabilistically formulate the
activity prediction problem, and proposes a prediction algorithm to
consider the sequential structure formed by video features. Cao et al.
[9] recognize human activities from partially observed videos. They
take a set of completely observed training video samples of each activity
class as the bases, and then use sparse coding to derive the likelihood
that a certain type of activity is presented in a partially observed test
video. Kong et al. [12,13] extend the support vector machine, and build
multiple temporal scale templates to recognize activities with different
progress status. These methods all manually divide different videos
into the same number of segments, and use the segment index to reflect
the temporal status. But for the unfinished activity, it is hard to know
the temporal status and the number of segments it should be divided
into. In this paper, we also divide the videos into several consecutive
segments, but we don't impose the restriction on the same number of
segments for different videos. Most importantly, our method auto-
matically searches for the corresponding part of the unfinished activity
from the complete activity video.

Also, there are some enlightening works which are closely related to
the problem of human activity prediction. Xu et al. [10] regularize
different activity videos to the same length by upsampling or down
sampling, and extract discriminative patches to auto-complete partial
videos. Kitani et al. [11] use semantic scene understanding method to
predict plausible paths and destinations of pedestrian. Li et al. [14]
intend to discover the causal relationships between constituent actions
and the predictable characteristics of activities, and decompose an
activity into a set of atomic actions in a syntactic way. But the proposed
high-level features are only tested on two noise-free datasets. Walker
et al. [18] propose an unsupervised method to forecast the possible
change of scene with time. Hoai and De la Torre [5] propose max-
margin early event detectors to localize the starting and ending frames
of an activity.

2.2. Time series alignment in related problems

Aligning sequences of entities is one of the fundamental problems
in computer vision, consequently, time series alignment algorithms
have been widely explored in computer vision tasks such as curve
matching [22], shape matching [23], activity recognition [24], and
synthesis of human motion [25]. Despite a large body of literature, it is
still a challenging problem to finding correspondences between human
activities with distinct styles under large environment change. To
account for the variations of the same activity performed by different
subjects, Hsu et al. [26] propose to combine dynamic time warping
(DTW) [21] with a space warping step to transform the style of an
action into a new one while preserving original content. Heloir et al.
[27] propose a multi-level DTW algorithm to deal with the commu-
nicative gestural sequence alignment problem by removing the stylistic
part in gesture sequences. Singh et al. [33] establish sub-frame
synchronization for video sequences which are acquired via uncali-
brated cameras using a bi-directional or symmetrical alignment.
Although above methods achieve promising results, there are still
limitations in deal with data with multiple modalities and dimensions.
Zhou and De la Torre [34] propose the canonical time warping, by
extending the algorithms of CCA and DTW, for the spatial-temporal
alignment of two multivariate time series, and apply it to align human
activity videos of two subjects. Furthermore, they present the GTW
algorithm [20] to efficiently align semantically similar multi-modal
sequences, using multi-set canonical correlation analysis to find the
spatial transformations and considering the temporal warping as a
combination of multiple monotonic bases.

View-invariant representation is an important technique in video
alignment. Zhou and De la Torre [20] use multi-set canonical correla-
tion analysis to adapt series alignment for handling view-variability in
activity videos. Caspi and Irani [28] temporally align videos captured
from different cameras with no overlapped fields of view, while the
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cameras are attached closely to each other and move jointly in space.
Padua et al. [30] use homography-based constraints to align sequences
under different viewpoints. They reduce the alignment of N unsyn-
chronized videos into the estimation of a single line, which contains the
relations between different sequences without any prior knowledge. Li
and Chellappa [31] introduce an efficient method for spatial-temporal
alignment by designing a sequential importance sampling algorithm on
a Riemannian manifold. Rao et al. [32] propose a rank constraint based
similarity measurement to align human activities from different view-
points. Besides time series alignment, view-invariant representation is
also a pervasive problem in other computer vision areas. Junejo et al.
[24] present a view-invariant self-similarity descriptor for actions by
making use of the affinity matrix between time instances. This
descriptor captures the structure of temporal similarities and dissim-
ilarities within an action sequence, and requires neither structure
recovery nor multi-view correspondence estimation. Gritai et al. [29]
utilize the trajectory matching score and the projective camera model
to match actions captured from different viewpoints and performed at
different rates. Huang et al. [40] utilize the domain transfer ability of
the canonical correlation analysis algorithm to obtain a correlation
subspace as a joint representation for different viewpoints.

3. The proposed approach

Human activity prediction aims to infer an unfinished activity given
a temporally incomplete video, i.e., before the full execution of an
activity. We tackle the task by addressing two main problems: (1)
representing the unfinished activity video using temporal order in-
formation, and (2) predicting the activity class by measuring the
similarity between the unfinished query video and the complete
training videos.

3.1. Activity representation for prediction

Our approach takes advantage of the space-time features for human
activity representation. For the interest point detection, we use the
cuboid detector introduced in [19], which uses separable linear filters
for computing the response function of a video sequence. For the local
feature description, we adopt the histograms-of-optical-flow (HOF)
and histograms-of-oriented-gradients (HOG), which respectively char-
acterize the motion and appearance information of a volume surround-
ing the interest point. Afterwards, we employ the K-means clustering
method to obtain a vocabulary of size K based on the HOF and HOG
features of the interest points extracted from the training set. Under
the bag-of-visual-words model, each interest point is assigned to the
most similar visual word.

A human activity is usually composed of a sequence of simpler
actions, each of which contains different spatial-temporal information.
Assuming the intra-class activities in different videos are performed in
the similar action evolution progress, then we can group a small
number of continuous frames as a segment as in [9]. Therefore, a video
containing either an unfinished or complete activity is divided into a
number of consecutive segments, and the number of segments roughly
reflects the temporal status of the activity carried in the video. Each
segment is denoted as a vector capturing the distribution of visual
words, i.e., bag-of-visual-words, within the segment. Consequently, the
final representation of an activity video is a time series of feature
vectors, and the length of the series varies for different videos.

In practice, the same activity may be performed in speeds with
some minor variation. To deal with such intra-class variation, we use a
flexible representation with small perturbation in segment lengths
when representing training videos. More specifically, for each training
sequence, we generate five representations using segments of lengths
A—-4,A-2,A,A+2,and A + 4 respectively, where A is the average
segment length. That is, each activity video corresponds to five time
series with different lengths of the segment, and the variety of training
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time series is largely increased to better approximate the query time
series.

In the following we assume that the fully observed training video
and the unfinished query video are separately divided into »n, and n,
segments. The training video and query video are thus denoted
respectively as T = {#, t,....t,} and Y = {y,, yz,...,yny}. Their feature
matrices are expressed as two time series Xr and Xy, where
X; = [x{,....x}] € R% andi € {T, Y}. The columns of feature matrices
are the d-dimensional histogram features extracted from correspond-
ing video segments, i.e., x; from t; and x} from y.

With these representations, our task boils down to align an
unfinished test video (e.g. Y) with the fully observed training videos
(e.g., T), and then predict the activity class of the test video according to
the similarity derived from the alignment. Because each training video
results in five different time series, we separately align each time series
with the test video, and adopt the maximum alignment accuracy as the
similarity between the training video and the test video. A straightfor-
ward solution to our alignment problem is to use existing time warping
algorithms. In the next subsections, we review one such choice,
generalized time warping (GTW) [20], and we then propose a
temporal-weighted generalized time warping (TGTW) algorithm to
better meet the requirement of the prediction task.

3.2. Generalized time warping

GTW [20] extends the classical dynamic time warping (DTW) by
incorporating a more flexible temporal warping scheme to compensate
for temporal changes, and simultaneously allowing feature space
manipulation (e.g., dimensionality reduction). It adopts an efficient
linear-time optimization by using a Gauss-Newton algorithm.

In our problem setting, given two time series X; and Xy, where
X; = [x{,...x}] € R%" and i € {T, Y}, they respectively denote the
feature matrices of the training video T and the query video Y
computed from the above subsection. For each X;, GTW adopts a
non-linear temporal transformation W, = (W (k, j)) € {0, 1}/ and a
low-dimensional spatial embedding V; € R%*¢, so the resulting se-
quence V' X;W, € R is aligned with each other in the least-squares
algorithm. GTW minimizes the following objective function:

2
JeWr, Wy, Ve, W) = IE X We = WXy We i+ D (w W) + ¢ (W),
ie{T,Y}

1)

s.t. We¥ and Ved, Viel(Tl, Y},

where y (-) and ¢(-) are regularization terms; ¥ and @ represent the
domains for W, and V.. To solve the above non-convex optimization, in
[20] an iterative solution is proposed and it contains two key steps:
solving for W using a Gauss-Newton algorithm and computing V; using
multi-set canonical correlation analysis [35].

Given a warping matrix W, the alignment in GTW is described by a
warping path, denoted here by p = (p(1),....,p())) € {1: n}, such that
Wk, j) = 8(p(j) — k). In [20], p is further written as a linear combina-
tion of a set of non-decreasing functions which compose the columns of
basis matrix Q, i.e., p = Qa where a contains the combination
coefficients. With the new formulation, W can be parameterized as
W (a) and a solution is derived to iteratively minimize J, based on the
first order Taylor expansion, and in each iteration V; and W; are
updated alternately. Details of the solution can be found in [20].

3.3. Activity prediction with TGTW

GTW can be used for aligning a partial sequence to a complete one
for activity prediction. However, in activity prediction, an unfinished
activity always starts from the beginning of the activity, suggesting that
the aligning is in favor of the early portion of an activity. An intuitive
example is illustrated in Fig. 2. Under the BOW representation, the
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(a) Fully observed activity: a person is sitting down.

(b) Partially observed activity. Is this activity the same as (a)?

(c) Partially observed activity. Is this activity the same as (a)?

Fig. 2. An intuitive example showing the importance of matching position to activity
prediction.

incomplete video (b) is analogous to the ending portion of (a), and (c) is
similar to the beginning part of (a). Consequently, it's hard to decide
which belongs to the same activity class as (a) using traditional GTW
algorithm. But if encourage to match the unfinished action with the
early portion of complete one, we can obtain that the alignment
accuracy between (a) and (c) is obviously higher than that between
(a) and (b). Actually, this is consistent with the fact that both (a) and (c)
represent sitting down, and the activity in (b) is standing up.

The above observation motivates us to encode temporal weights
during series alignment. We first explore a solution (denoted by
TGTW-D) by naturally introducing time sensitive weights. We then
derive a more effective solution (denoted by TGTW) that constrains on
the warping path in GTW.

TGTW-D-Time Sensitive Cost Function. One way to encode
the time sensitive prior is to modify the cost function in GTW by
weighting more the alignment in latter portions than in early ones. This
can be realized by multiplying a diagonal weighting matrix, denoted by
D = diag(dy, d,....d)) € R™/, to the difference in J,. The weight dj
constrains the corresponding column vector of the aligned feature
matrix (Vf Xy Wy or VJ XyWy), corresponding to an aligned video
segment in X or Y. To encourage alignment in the early portion, dj
is defined as increasing with k

k
di=1+ &=,
=l @
where £ is the variation span of video segments' weights.
Using the weight matrix D, we extend the original GTW to the
following minimization problem:

~ 2
TeWr, Wo, Vi, Vi) = VI Xe WeD = WXy We DI+ D (pr (W)

ie{T,Y}

+ (V). (3)

s.t. WeY¥ and Veod, Viel(Tl, Y}

Due to the similarity between J, and Zg, we can solve the above problem
similarly as GTW by iteratively first-order Taylor approximating and
alternately updating W and V.

The above weighting strategy naturally inhibits the alignment in the
ending portion of an activity, and hence improves the original GTW for
activity prediction. However, the strategy meanwhile increases the
importance of later segments if they are aligned. This accompanied
effect probably impedes the performance of activity prediction and
inspires us to seek for better alternatives.

TGTW-Time Sensitive Constraints over Warping Paths.
Since the alignment is determined by the warping path, an alternative
way to constrain the alignment is to penalize paths that have large
elements (i.e., positions of the later portion). Given the two sequences
T and Y described previously, such constraint can be naturally modeled
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by the time sensitive importance term Zle pr(t), where
pr = (pr (1), pr(2),....,py ()Y is the warping path for T — note that only
the constraint on the training (complete) activity sequence is needed.
In this way, we have a new extension of GTW, named TGTW, as below:

2
JeWr, W, Vi, Vo) = IF X W = WX Wy I+ D (W) + (V)
ie(T.Y)

!
+u ZPT(I)’

t=1

C))

s.t. WeY¥ and Ved, Viel(T, Y}

where u is the regularization weight.

The formulation of TGTW in (4) is similar to the original GTW, with
an additional regularization term. We use the same technique as in [20]
to solve TGTW, i.e., to iteratively and alternately solving for V and W.
Notice that, when W is fixed, the term u Zf:l pr (1) becomes a negligible
constant, and hence the step for updating V (when fixing W) is identical
as the original GTW [20].

When updating W for fixed V, we modify the solution in [20] to
include the regularization term. Briefly speaking, for i € {T, Y}, the
warping matrices are first parameterized by the warping paths p,, which
are further represented as linear combinations of non-decreasing basis
Q; in the form of p, = Q;a;. Subsequently, updating W is equivalent to
minimizing w.r.t. ar,ay the following objective function Jyy

Jwar, ay) = ||V§ Xy W (Qrar) — VYTXYW(QYaY)”,Zr + z v (a;)

ie(T.Y}

+ ul] Orar, ()

s.t. W(Qa)e¥, Viell, Y},

where 1, is a vector of ones of size L

Imitating the optimization process in [20], we linearize the para-
meterized objective function Jy- by performing the first order Taylor
approximation on it. Therefore, the minimization of Eq. (5) is
transformed to a quadratic programming problem which can be solved
by classical methods.

By optimizing J, through alternately updating W; and V7, the query
activity video is aligned with all the training videos. For each training
video, the alignment error is computed as:

2
R= V7 X Wr — V¥ Xy Wy |l (6)

For an ongoing activity, our ultimate goal is to predict the class it
belongs to according to the incomplete information. Based on our
TGTW method, the query unfinished activity is aligned with each of the
training videos. Obtaining all the alignment errors, the k-nearest
neighbors algorithm is used to assign the query activity to the class
which generates the minimum alignment error. Note that, the pro-
posed TGTW strategy can be combined with other learning tools for
activity prediction. In this paper, we focus on the alignment using
TGTW, and therefore use k-NN for better understanding and fair
evaluation.

Fig. 3 is a toy illustration for the difference between TGTW and
GTW. In (a), though achieving the minimum matching cost, GTW
matches the partial sequence to all over the full sequence. By contrast,
our solution in (b) nicely constrains the matching to the starting
portion, which is more appropriate for activity prediction. GTW only
targets minimizing the alignment error, but TGTW considers a trade-
off between the alignment error and the warping path.

4. Experimental results

To evaluate the capability of the proposed activity prediction
method, three challenging datasets, i.e., the UT-Interaction dataset
[36], the DARPA-Y1 dataset [38], and the UCF Sports dataset [37] are
used in the experiments. Examples of these datasets are shown in
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(a) GTW

(b) TGTW

Fig. 3. A toy example showing the difference between GTW and TGTW. (a) GTW targets
minimizing the alignment error. (b) TGTW inclines to align the short series with the
beginning part of the long series which is consistent with the requirement of the
prediction task.

Fig. 4. The methods in [6,9] also use the interest point features to
represent the activities. So we follow the same parameter setting with
them, and generate a vocabulary with 800 visual words by K-means
clustering for all three datasets in order to compare the performances
with previous methods in the same condition. For each dataset, five
percent of the average full activity length is considered as a video
segment, and then an unfinished or complete activity is represented as
a time series. For the TGTW-D model, the coefficient & is empirically set
to 0.5 for three datasets. To align different time series in the TGTW
model, the weight coefficient u is important to the alignment accuracy.
Therefore, we test different values for it on each dataset in the following
subsections, and empirically set the coefficient x = 0.004 for the UT-
Interaction and UCF Sports datasets, and set 4 = 0.002 for the DARPA-
Y1 dataset. Because the videos on the DARPA-Y1 dataset are longer
than those on the other two datasets, the value of the time sensitive
importance term in TGTW corresponding to DARPA-Y1 is obviously
larger. So a smaller trade-off weight is set on DARPA-Y1. The other
parameter settings in time warping algorithm are identical as original
GTW [20]. We simulate the technique in GTW, and optimize the
temporal alignment problem using a Gauss-Newton algorithm. It has

e = \
e

= -

kick

kick

dive lift

Fig. 4. Representative frames from videos on three datasets. From top to bottom: the UT-Interaction dataset, the DARPA-Y1 dataset, the UCF Sports dataset.
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the linear complexity in terms of the length of the sequence. The
average cost time to align two sequences is about 2.8 s using Matlab on
a laptop with a 2.9 GHz Intel CPU and a 4 GB memory.

We compare our methods with several state-of-the-art methods,
including integral bag-of-words (Ry_int) [6], dynamic bag-of-words
(Ry_dyn) [6], sparse coding (SC) [9], and sparse coding on a mixture of
segments (MSSC) [9]. Ry_int models the evolution of feature distribu-
tions as observations increase to predict partially observed activities.
Based on Ry_int, Ry_dyn considers a video as a sequence of ordered
intervals, and combines more activity structure information. MSSC
uses features of video segments as bases, and apply sparse coding to
construct the test video. MSSC adopts more bases corresponding to
different temporal lengths than traditional sparse coding.

4.1. Experiments on the UT-interaction dataset

The UT-Interaction dataset has been used in the first Contest on
Semantic Description of Human Activities [36]. This dataset contains
action sequences of six interactions: hug, kick, point, punch, push, and
hand-shake. For classification, 120 video segments cropped based on
the ground-truth bounding boxes and time intervals are provided by
the dataset organizers. These segments are further divided into two
sets, and each set has 60 segments with 10 segments per class. Set 1 is
captured at a parking lot and Set 2 at a lawn. Importantly, this dataset
contains complex activities having sufficient temporal durations.
Therefore, it is suitable for the experiments on activity prediction.

We follow the evaluation method in [6,9], and report the recogni-
tion rates corresponding to different observation ratios. For the
performance evaluation, we use the leave-one-out cross validation,
cycling each sample as the test video one at a time. The average
accuracy over all tests is used as a quantitative metric of the
performance.

Fig. 5 illustrates the prediction results on the UT-Interaction
dataset. Different from traditional fully observed activity recognition,
prediction is to classify a partially observed video. So we report the
accuracies corresponding to different observation ratios. In most
observation ratios, the proposed TGTW outperforms other methods
on both sets by using the time sensitive importance term to constrain

point

sWing

ride golt-swing
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Fig. 5. Prediction results on the UT-Interaction dataset.

the warping path. TGTW-D can also regulate the alignment position,
but it simultaneously changes the weights of different video segments
in alignment measurements. It obtains good performance but a little
lower than TGTW. The accuracies of baseline GTW are more close to
the proposed TGTW-D method in high observation ratios. By utilizing
multi-scale segments to handle intra-class variations, MSSC performs
better than SC, and outperforms TGTW-D and GTW in some observa-
tion ratios. The accuracy of Ry_dyn is higher than that of Ry_int, which
ignores temporal relations among video segments.

In most existing methods for activity prediction, manual video
segmentation is a preliminary operation, which is also a crucial step in
time series alignment. Notice that, existing methods need some human
intervention to achieve the segment correspondence between different
activity sequences. However, the proposed TGTW-D and TGTW
methods both automatically match the video segments in partially
observed activity with corresponding parts in the complete sequence
without any manual annotation. Obviously, our method is more
appropriate to deal with automatic activity prediction problem.

In this paper, we compute the average length of complete activities
in a dataset, and uniformly set five percent of it (i.e., consecutive six
frames) as a segment. Moreover, the performances corresponding to
different segment lengths, such as four, eight, and ten frames per
segment, are tested using the whole UT-Interaction dataset (including
setl and set2). Fig. 6 illustrates the comparison results. When we
respectively set six, eight, and ten consecutive frames as a segment, the
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Fig. 6. Prediction results corresponding to different segment lengths.
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prediction performances are approximative in most observation ratios.
The result corresponding to four frames per segment is a little lower
than others. The reason is that short video segment contains fewer
action information, which decreases the sequence alignment accuracy.
In general, the proposed prediction method is robust to the segment
length variance.

In TGTW algorithm, the time sensitive importance term constrains
the alignment position, which is the essential difference from the
original GTW. In order to test the influence of time sensitive impor-
tance term on prediction rates, we compare the performances corre-
sponding to different weight coefficients u as shown in Fig. 7. If u = 0,
the formulation of TGTW is transformed into original GTW. When the
observation ratio is high, the accuracies of GTW and TGTW are
comparative. However, TGTW corresponding to different nonzero
weight coefficients all performs better than GTW when the observation
ratio is below 0.6. Through constraining the alignment position, the
proposed time sensitive term improves the original GTW algorithm and
makes it more effective to recognize partially observed activity.

4.2. Experiments on the DARPA-YI dataset

To validate the effectiveness of our TGTW-based methods, we
further conduct experiments on the DARPA-Y1 dataset. It is challen-
ging in several aspects: the actor size in the same activity class varies

0.9
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0.7
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0.5

Recognition rate

03

0.4
Observation ratio

05 06 0.7

Fig. 7. Prediction results corresponding to different weight coefficients on the UT-
Interaction dataset.
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Fig. 8. Prediction results on the DARPA-Y1 dataset.

significantly in different videos; the overhead time for an activity class
varies from one video to another; activities are captured from different
camera viewpoints; and backgrounds are more complex due to
shadows and non-uniform illuminations. Being a subset of videos from
the Year-1 corpus of the DARPA Mind's Eye program [38], DARPA-Y1
contains videos from seven human activities: fall, haul, hit, jump, kick,
push, and turn.

Fig. 8 illustrates the prediction results on the DARPA-Y1 dataset.
Under the leave-one-out cross validation, the proposed TGTW outper-
forms other methods in most observation ratios. TGTW-D, GTW,
MSSC, and SC all obtain comparable performances. The accuracies of
the proposed TGTW methods are both increased from the baseline
GTW. Different from the results on the UT-Interaction dataset, the
integral bag-of-words outperforms the dynamic bag-of-words method.
But the recognition rates of them are both not as good as above
methods. They require two sequences have the same number of
segments and the similarity is measured between corresponding
segments. The rigid correspondences restrict the performance of them
in large intra-class variation datasets. However, the proposed two
GTW-based methods are more flexible in series matching. These
results further validate the effectiveness of our methods.
Furthermore, we test the influence of the time sensitive term on this
dataset, and record the prediction accuracies corresponding to different
weight coefficients as shown in Fig. 9. Obviously, in low observation
ratios, the proposed TGTW (4 # 0) outperforms traditional GTW (u=0).
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Fig. 9. Prediction results corresponding to different weight coefficients on the DARPA-
Y1 dataset.
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Fig. 10. Prediction results on the UCF Sports dataset.

It validates the effectiveness of the proposed time sensitive term for the
prediction of activity videos with low observation ratios. However,
through the comparisons of different nonzero weight coefficients,
larger weights don't result in better performances. The reason is that
the time sensitive term only constrains the alignment position, but it
doesn” increase the alignment accuracy.

4.3. Experiments on the UCF sports dataset

The UCF Sports is a challenging dataset for the activity prediction
task. It is a collection of 150 broadcast sports videos of ten different
classes of activities, including dive, golf swing, kick, lift, horseback
ride, run, skate, swing-bench, swing-side, and walk. The videos are
captured in dynamic and cluttered environments from a wide range of
camera views and realistic scenes. Most previously reported results on
this dataset use leave-one-out manner. But Lan et al. [39] propose to
split the dataset into disjoint training and test sets to avoid the
background regularity for evaluation. We follow Lan's strategy to
evaluate recent prediction methods.

Fig. 10 shows the prediction results on the UCF Sports dataset. The
proposed TGTW-based methods again achieve promising perfor-
mances, and TGTW outperforms TGTW-D in all observation ratios.
When the length of unfinished video is less than thirty percents of the
whole activity video, the performance of baseline GTW is lower than
others, but it obtains competitive results when the observation ratio is
high. MSSC and SC have similar recognition rates in most observation
ratios. The results of Ry_int and Ry_dyn are not as well as others
which is similar to the DARPA-Y1 dataset. The performances on the
large intra-class variation dataset further validate that the proposed
TGTW-based methods are effective for the prediction task. To further
validate the importance of the proposed warping path constraint, we
also adopt different weight coefficients to test the prediction results on
the UCF Sports dataset. The performances illustrated in Fig. 11
validate the robustness of the proposed TGTW model.

The activity prediction task is more challenging than traditional
fully observed human behavior analysis. Besides the common difficul-
ties (e.g., losing spatial and temporal information in activity represen-
tation) in traditional activity recognition, the prediction task has to deal
with some new problems (e.g., searching for the corresponding part
between different activity videos). Because of these challenges, current
methods still have high prediction errors on benchmark datasets, and
need many improvements in the future.

5. Conclusion

In this paper, we have proposed integrating temporal prior in time
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Fig. 11. Prediction results corresponding to different weight coefficients on the UCF
Sports dataset.

series alignment for predicting unfinished human activities. In parti-
cular, we have extended the recently proposed generalized time
warping (GTW) algorithm by adding temporal constraints over the
warping path to encourage the matching in the early portion of an
activity, which is desired by the nature of activity prediction. The
proposed algorithm, named temporally weighted GTW (TGTW), has
been validated for activity prediction on three publicly available
benchmark datasets. In all experiments, TGTW shows excellent results
and outperforms several state-of-the-art activity prediction algorithms.
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