
Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Keyword spotting in handwritten chinese documents using semi-markov
conditional random fields

Heng Zhanga,⁎, Xiang-Dong Zhoub, Cheng-Lin Liuc

a Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
b Intelligent Media Technique Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714,
PR China
c National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China

A R T I C L E I N F O

Keywords:
Online handwritten Chinese documents
Semi-Markov conditional random fields
Keyword spotting
Proxy-character driven search

A B S T R A C T

This paper proposes a document indexing method for keyword spotting based on semi-Markov conditional
random fields (semi-CRFs), which provide a theoretical framework for fusing the information of different
contexts. The candidate segmentation-recognition lattice is first augmented based on the linguistic context to
improve recognition results. For fast retrieval and to save storage space, the lattice is then purged by a forward-
backward pruning procedure. In the reduced lattice, we estimate character similarity scores based on the semi-
CRF model. The parameters of semi-CRF model are estimated using a binary classification objective, i.e., the
cross-entropy (CE) to discriminate candidate characters in the lattice. To locate mis-recognized character
instances in the lattice, we use confusing similar characters as proxies and search for proxy-characters in the
index file. The proxy-character driven search can significantly improve the performance compared with our
previous character-synchronous dynamic search (CSDS) method. Experimental results on the online hand-
writing database CASIA-OLHWDB justify the effectiveness of the proposed method.

1. Introduction

With the increasing use of pen-based input devices and user-
interfaces, more and more research attentions have been paid on
document analysis techniques including text segmentation, recognition
and retrieval. In spite of the great progress on handwritten text
recognition (Plamondon and Srihari, 2000; Graves et al., 2009),
remaining recognition errors can still prevent locating keywords.
Keyword spotting (Manmatha et al., 1996; Frinken et al., 2012;
Fischer et al., 2012) is to locate words or phrases in the document
without the need of accurate handwriting recognition. By computing a
similarity measure between the query word and a segmented candidate
in the document, the user can adjust the threshold to balance recall and
precision rates for fulfilling different needs. The application back-
ground of keyword spotting is the retrieval of handwritten pages such
as notes, bank checks, government files and historical documents.

For fast retrieval of documents from large database, it is necessary
to build and store an index file beforehand, on which the spotting
algorithm is run and gives spotting results for a query word (Zhang
et al., 2014). The state-of-art for English handwriting recognition, i.e.,
long-short term memory recurrent neural network (LSTM-RNN) has
been used for Chinese off-line handwritten text recognition (Messina

and Louradour, 2015) but its performance is still inferior to methods
based on character over-segmentation and classification (Wang et al.,
2012, 2014). Therefore, for keyword spotting in handwritten Chinese
documents, we build the index file based on the segmentation-
recognition framework (Zhang et al., 2014, 2013a; Huang et al.,
2013). In the document, each text line is first over-segmented into a
sequence of components according to the overlapping between strokes,
with the hope that each component is a character or part of a character.
Subject to constraints of character width, consecutive components are
combined to generate candidate characters, which constitute the
segmentation candidate lattice. On assigning each candidate character
a number of candidate classes using a character classifier, the
segmentation-recognition candidate lattice (referred to as lattice for
brevity) is constructed. Each path in the lattice corresponds to a
segmentation-recognition hypothesis of the text line. Each character-
label pair (a candidate character coupled with one of its candidate
labels) in the lattice is referred to as an edge. The character similarity
scores between each candidate character and its candidate classes, also
referred to as edge scores, are calculated and stored. In text search, the
query word is matched with sequences of candidate characters (partial
paths in the candidate lattice) starting from each component in the
lattice (Zhang et al., 2013a). The word similarity is obtained by
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combining the character similarity scores (edge scores). When the word
similarity is greater than a threshold, a word instance is located in the
document. So, the similarity measure is critical to keyword spotting.
For keyword spotting from large databases of multi-writer or writer
independent documents, to alleviate the effects of character shape
variation, edge scores are usually given by a character classifier (Oda
et al., 2004; Zhang et al., 2013a; Cheng et al., 2013). Ideally, the score
of a true character should be higher than any imposters. To improve
the discriminability, additional information (Huang et al., 2013), such
as geometric and linguistic contexts, are incorporated when calculating
edge scores.

In this paper, we propose an indexing method for keyword spotting
using semi-CRFs (Zhou et al., 2013), which are probabilistic graphical
models defined in the candidate lattice and provide a theoretical
framework for fusing the information of different contexts. With this
model, we first augment the original lattice to supplement candidate
character classes and then reduce the lattice complexity by a forward-
backward pruning procedure used in Zhou et al. (2013) which avoids
breaking high-probability paths, and edge scores are derived from the
marginal probabilities of edges. The semi-CRF model is derived from
the Chinese handwriting recognition system in Zhou et al. (2013), but
the proposed method is different from text line recognition.
Handwritten text recognition only retains the 1-best recognition result
which is limited for retrieval. Keyword spotting is performed in the
lattice which contains alternative candidate characters/words, such
that more instances can be located than 1-best list and the user can
adjust the threshold to balance recall and precision rates. The relations
between keyword spotting and handwriting recognition have been
discussed in Frinken et al. (2012). Different from handwriting recogni-
tion, keyword spotting is binary classification of edges in the lattice
desiring high similarities to target characters and low scores to all the
others. Hence, we propose a binary classification objective, i.e., the
cross-entropy (CE) to optimize semi-CRF parameters. Besides, to
enhance the recognition performance of the semi-CRF model, we
propose a proxy-character driven search algorithm to locate mis-
recognized character instances in the lattice. Confusing similar char-
acters can be used as proxies to search in the index file so that the
candidate character mis-recognized as its proxies can be matched.
Compared with the traditional character-synchronous dynamic search,
the use of proxy-characters can improve the keyword spotting perfor-
mance significantly. Keyword spotting from Japanese handwritten
documents (Cheng et al., 2013; Oda et al., 2004) is also performed
by scoring candidate characters in the lattice and locate instances by
the character-synchronous search. Here, we have paid more attentions
to character scoring and the search method to improve the word
matching accuracy and search efficiency.

The remainder of this paper is organized as follows: Section 2
reviews related works. Section 3 gives the overview of our keyword
spotting system. Section 4 details the index generation based on the
semi-CRF model. Section 6 introduces the proxy-character driven
search algorithm. Section 6 presents our experimental results on an
online handwriting database CASIA-OLHWDB and Section 7 draws
concluding remarks.

2. Related work

Keyword spotting was originally formulated as detecting words or
phrases in speech (Myers et al., 1981), and extended to locate words in
printed text documents (Kuo and Agazzi, 1994) a decade later. This
technique was first performed on online handwriting in Lopresti and
Tomkins (1994) for annotation retrieval and on handwritten document
images in Manmatha et al. (1996). With regard to word similarity
scoring techniques, keyword spotting methods can be categorized into
two groups: word shape matching (Jain and Namboodiri, 2003;
Jawahar et al., 2009; Rodriguez-Serrano and Perronnin, 2012;
Sarkar, 2013) and model-based scoring (Van der Zant et al., 2008;

Rodriguez-Serrano and Perronnin, 2009; Howe et al., 2009; Kumar
et al., 2013). The word shape matching technique is based on a distance
measure between the template/query (input image or an image
synthesized from the text query) and all candidate word images.
Without model training, it is vulnerable to word shape variation and
suffers from low matching accuracy. In contrast, the model-based
method can be used for retrieving multi-writer or writer independent
documents in large database, such as handwritten Chinese documents
used in our experiments, by storing similarity scores computed based
on handwriting recognition method.

For model-based scoring of handwritten Chinese documents, con-
text information is usually integrated when calculating character
similarity scores. In Huang et al. (2013), four geometric models were
combined with character classifier outputs, with combining weights
trained by optimizing a one-vs-all discrimination objective so as to
maximize similarities of true words and minimize similarities of
imposters. Similar methods could be found in Cheng et al. (2013) for
text retrieval in online handwritten Japanese documents. Cao et al.
(2009) proposed to incorporate probabilities of candidate word seg-
mentation into word similarities to enhance the spotting performance
in English documents. Different from these character/word model
based methods, character confidences can be estimated in the N-best
list (Rueber, 1997) or pruned lattice (named “word graph” in speech
recognition) (Quiniou and Anquetil, 2007), based on text line recogni-
tion. The posterior probability of an edge is computed by summing up
probabilities of all the paths that pass this edge, integrating character
classification scores, linguistic and geometric contexts. Our former
work (Zhang et al., 2012) estimated the character confidence based on
a N-best recognition list and performed better than the transcription-
based keyword spotting. Compared with the N-best list, lattices can
incorporate more competing hypotheses and the estimation of edge
scores will be more accurate. On the word graph (Ortmanns et al.,
1997) or word lattice (Kemp and Schaaf, 1997), there are too many
candidate paths to compute the path probability individually even if the
lattice is pruned (Ney et al., 1997; Wessel et al., 2001; Sixtus and
Ortmanns, 1999), so posterior probabilities are usually computed using
a forward-backward procedure (Quiniou and Anquetil, 2007; Wessel
et al., 2001).

Candidate word scoring in a document, i.e., probability calculation
of candidate paths, is a sequence classification problem, which is
usually formulated using Markovian sequence probabilistic models
such as hidden Markov models (HMMs) (Rabiner, 1989; Su et al.,
2009; Fischer et al., 2010), maximum entropy Markov models
(MEMMs) (McCallum et al., 2000), conditional random fields (CRFs)
(Lafferty et al., 2001; Do and Artieres, 2006; Yang et al., 2009). HMM
is a generative model, which assumes conditional independence of
observations given states. MEMMs use a conditional model to repre-
sent the probability of reaching a state given an observation and the
previous state. These conditional probabilities are specified by expo-
nential models, following from a maximum entropy argument. CRFs
have all the advantages of MEMMs but also solve the label bias
problem in a theoretical way. In addition to advantages of CRFs,
semi-CRFs (Sarawagi and Cohen, 2004) also output a segmentation S
of the observation sequence X, together with the label sequence Y
assigned to segments (sub-sequences) of X, rather than label individual
elements of X.

During keyword spotting in the lattice, dynamic programming
algorithms are often used for word matching between the query and
candidate characters. Inspired by beam-search for handwritten text
line recognition (Liu et al., 2002), the character-synchronous search
algorithm has been proposed for keyword spotting in Chinese (Zhang
et al., 2013b) and Japanese (Cheng et al., 2013) handwritten docu-
ments. The search process repeats with every primitive component (a
character or part of a character consisting a block of strokes after over-
segmentation of the text line) as start by a tree search strategy and
matched results are output as located instances. Using the Viterbi
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algorithm (Ploetz and Fink, 2009) with the character, filler and
keyword hidden Markov models, the query can be located on the
handwritten text lines without any segmentation (Fischer et al., 2012).
The CTC token passing algorithm has been successfully used in a
connectionist system (Graves et al., 2009) for handwriting recognition
and modified to search for the query in the lattice (Frinken et al.,
2012), which is the output of recurrent neural networks with long
short-term memory (LSTM) cells.

3. System overview

For fast keyword spotting from a large collection of documents, the
proposed system of online handwritten Chinese document retrieval
consists of two stages: indexing and keyword search, as shown in Fig. 1.
The indexing is done offline to generate the pruned candidate lattice
and compute character confidence measures (edge probabilities/
scores), while the keyword search is performed online to locate
instances matched with the query.

To build the index file, the document is first segmented into text
lines according to the time and space interval between consecutive
strokes (Zhou et al., 2009). Then each line is over-segmented into
primitive components (stroke blocks) by stroke grouping according to
the off-stroke distance (Zhou et al., 2007). Candidate characters are
generated by combining consecutive components and are assigned
candidate classes by the character classifier. Candidate characters and
classes are represented in a candidate lattice representing alternative
segmentation-recognition hypotheses of text lines. To enhance the
character recognition performance, the original lattice is first augmen-
ted to supplement candidate classes and then pruned by a modified
forward-backward algorithm for less storage space and fast character
scoring. After edge scores are calculated based on the semi-CRF model,
we store the number of primitive components and the bound of each
primitive component. At each segmentation point, we store the number
of edges ending at this point, and for each edge, its primitive
component number, class label and edge score.

In text search, the query word is matched with sequences of
candidate characters (partial paths in the candidate lattice) with every
primitive component as the start. The word similarity is obtained by
combining character similarity scores. When the word similarity is
greater than a threshold, the word instance is located in the document.
Fig. 2 shows an example of text line segmentation. For two instances
with the same ground truth, Fig. 3(a) and Fig. 3(b) show text line over-
segmentation results, candidate characters in the lattice and candidate
classes of the desired segmentation path. In Fig. 3(a), the second
character on the desired path is not correctly recognized and cannot be

located by the previous CSDS algorithm (Zhang et al., 2013a). To locate
both instances in Fig. 3(a) and Fig. 3(b), we propose the proxy-
character driven search algorithm (cf. Section 6) by using proxies of
the query character to search in the index file.

4. Building the index file using Semi-CRFs

In this section, we first describe the candidate character augmenta-
tion technique and then briefly introduce the semi-CRF model for
lattice pruning and edge (character-label pair) score computation. At
last, we propose the model trained method, i.e., CE criterion which
views keyword spotting as binary classification of candidate characters.
The compact lattices together with edge scores (for text lines in a
document) are concatenated and stored into the index file for retrieval.

4.1. Candidate character augmentation

To reduce the risk of missing the true class in lattice generation, we
first supplement candidate classes using the candidate character
augmentation techniques based on linguistic context (Wang et al.,
2012, 2012):

Fig. 1. Block diagram of the keyword spotting system.

Fig. 2. Text line segmentation of a document.

Fig. 3. (a) The second character in the desired path is not correctly recognized; (b) All
the characters in the desired path are correctly recognized.
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(1) Predict the character with the maximum probability in forward
character bigram:

c P c c* = arg max ( | ).i
c

i i−1
i (1)

(2) Predict the character with the maximum probability in backward
character bigram:

c P c c P c c P c
P c

* = arg max ( | ) = arg max ( | ) ( )
( )

.i
c

i i
c

i i i

i
+1

+1

+1i i (2)

(3) Character sequences related to topics in the document are likely to
appear several times, so we predict the character by both forward
and backward bigram:

c c c best or c c best{ : ( , ) ∈ 1 ( , ) ∈ 1 },i i i i i−1 +1 (3)

where best1 stands for the candidate path with the maximum score in
the lattice.

4.2. Semi-CRFs in candidate lattice

In Zhou et al. (2013), the semi-CRF model is defined in the lattice
to directly estimate the posteriori probability of a hypothesized
segmentation-recognition path given the text string X:

∏P S Y X
Z X

Ψ X Y( , | ) = 1
( )

( , ),
c S

c c
∈ (4)

where (S,Y) stands for a segmentation S (candidate character sequence)
of X paired with the label sequence Y, and Ψ X Y( , )c c is the potential
function on maximal clique c (m consecutive characters in the lattice
when the order of semi-CRFs is m − 1, and Yc is the labeling of c):

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭∑Ψ X Y λ f X Y( , ) = exp ( , ) ,c c

k

K

k k c c
=1 (5)

f X Y( , )k c c is the k-th feature function defined on clique c, which models
character recognition, geometric or linguistic context.
Λ λ k K= { | = 1,…, }k are weighting parameters to be learned. Z(X) is
the partition function defined as the summation over all the paths in
the lattice:

∑ ∏Z X Ψ X Y( ) = ( , ′ ).
S Y c S

c c
( ′, ′) ∈ ′ (6)

4.3. Feature functions

In semi-CRFs, feature functions are used to capture attributes at
different levels of granularity of the same observations (Lafferty et al.,
2001). For text line recognition, feature functions include scores of
isolated character recognition, the language model (tri-gram) (Wang
et al., 2012, 2012) and four geometric models (Wang et al., 2012,
2012).

For candidate character feature extraction, we use the popularly
stroke direction histogram feature, implemented by the normalization-
cooperated feature extraction (NCFE) method of Liu and Zhou (2006)
with bi-moment normalization. The extracted 512D feature vector is
further reduced to 160D by Fisher linear discriminant analysis (FLDA)
(Fukunaga, 1990). The state-of-the-art modified quadratic discrimi-
nant function (MQDF) (Kimura et al., 1987) classifier is used for
isolated character recognition. The MQDF is a modified version of
quadratic discriminant function (QDF) which roots from the Bayesian
classifier with multivariate Gaussian density assumption. By replacing
minor eigenvalues of each class in QDF as a constant, the MQDF is

resulted in and only principal eigenvectors (50 in our experiments) are
used in the discriminant function. The MQDF classifier reduces the
computation complexity and meanwhile benefit the generalization
performance.

To model geometric contexts, we extract class-dependent and class-
independent unary/binary geometric features from bounding boxes of
a candidate character, and from two adjacent character patterns,
respectively (Yin et al., 2013). Based on the fact that many different
characters have similar geometric features, we particularly cluster
character classes into 6 super-classes using the EM algorithm and so,
the number of bi-character classes is 6*6 for binary class-dependent
geometric model. The scores for class-dependent and class-indepen-
dent geometries are given by quadratic discriminant functions (QDFs)
and linear SVMs, respectively. All the classifier outputs of character
recognition and geometric models are transformed to probabilistic
confidences (confidence transformation, CT) (Zhou et al., 2013)
according to the Dempster-Shafer theory of evidence:

P c x
αd x β

αd x β
( | ) =

exp[− ( ) + ]
1 + ∑ exp[− ( ) + ]

,j
j

i
M

i=1 (7)

whereM is the total number of defined classes, dj(x) is the dissimilarity
score of character cj output by the classifier, the α and β are confidence
parameters. All the feature functions used in Semi-CRFs are briefly
summarized in Table 1.

4.4. Calculation of edge scores

To calculate edge scores, we should first estimate marginal prob-
abilities on each lattice edge (the probability that an edge is on the
desired segmentation-recognition path) using the forward and back-
ward algorithm, and edge scores are just the logarithm of marginal
probabilities.

Let m ≥ 2 be the maximal clique size (unless otherwise stated, the
defaultm is 3). Assume that candidate segmentation points are indexed
from 0 to T in the lattice. We denote a sub-segmentation path
(character sequence) by ta b: , with t t t, ,…,a a b+1 being b a− + 1 ordered
candidate segmentation points, and the labeling of ta b: is denoted by
ya b+1: , with y y y, ,…,a a b+1 +2 being b a− labels for each character of ta b: .
Let S Y( , )t

t
t
t

a
b

a
b be an arbitrary sub-path (character sequence and labeling)

from candidate segmentation point ta to tb. The forward variables
α y{ ( )}nt 2:n1: are calculated on each t y( , )n n1: 2: in the lattice, where

t T= 1,…,n . For each t y( , )n n1: 2: , α y( )nt 2:n1: is a summation of potential
products (sum-product) over all the partial paths (character sequence
and labeling) starting from segmentation point 0 and ending at
t y( , )n n1: 2: . The forward variables and the partition function Z(X) can
be calculated by the forward algorithm:

(1) Initialization

∑α Ψ X t n my y( ) = ( , ), for = 0, 2 ≤ ≤ ,n
j

n

jt t2:
=2

2: 1n j1: 1:
(8)

Table 1
Summary of all the feature functions used in Semi-CRFs.

Type Features classes Classifier CT

Character recognition NCFE 7356 MQDF Yes
Language model Tri-gram ⧹ ⧹ ⧹
Unary class-dependent Unary geometric 7356 QDF Yes
Unary class-independent Unary geometric 2 SVM Yes
Binary class-dependent Binary geometric 36 QDF Yes
Binary class-independent Binary geometric 2 SVM Yes
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(2) Recursion

∑ ∏

∑

α Ψ X Y

Ψ X α t n m

y

y y

( ) = ( , )

= ( , ) ( ), for ≠ 0, = ,

n
S Y

S Y

c S
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t y
n n

t

t y

t t

2:
( , ):

( , )∈( , )

∈

,
1: 1: −1 1

n
tn tn

n n
tn tn

tn

n n

1:

0 0
1: 2: 0 0

0

0 1
0: 0: −1

(9)

(3) Termination

∑Z X α t Ty( ) = ( ), for = .n n
t y

t
,

2:
n n

n
1: 2:

1:
(10)

In the above algorithm, Ψ X y( , )nt 1:n0: denotes the potential function on
maximal clique-labeling pair t y( , )n n0: 1: . α y{ ( )}nt 2:n1: are calculated
sequentially from t = 1n to t T=n .

Similarly, we can deduce the backward variables β y{ ( )}nt 1: −1n0: −1
defined on each t y( , )n n0: −1 1: −1 in the lattice, where t T= 0,…, − 10 .
When t T=n−1 , n m2 ≤ ≤ , otherwise n m= . β y( )nt 1: −1n0: −1 is a summa-
tion of potential products over all the partial paths starting from
t y( , )n n0: −1 1: −1 and ending at segmentation point T.

(1) Initialization

β t T n my( ) = 1, for = , 2 ≤ ≤ ,n nt 1: −1 −1n0: −1 (11)

(2) Recursion
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∑

β Ψ X Y

Ψ X β t T n m
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y y

( ) = ( , )

= ( , ) ( ), for ≠ , = ,

n
S Y
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t
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t
T

n n t
T

t
T
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T

n n
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0: −1

0 0

0: −1 1: −1 0 0

−1

0: 1:
(12)

β y{ ( )}nt 1: −1n0: −1 is calculated in reverse order from t T= − 10 to t = 00 .

From the forward and backward variables, we can calculate the
marginal probability on any subpath yt( , )k k0: 1: :

∑

∑ ∑

∏

P y X P S Y X

Z X
α

β Ψ X Y m

t

y

y

( , | ) = ( , | )

= 1
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( )

× ( ) ( , ), for ≥ 2,

k k
S Y y S Y

m

k k m
c

c c

t

t
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t
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t

0: 1:
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3− :1
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∈

k k

m
m
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m

k k m
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0: 1:

2− :1
3− :1
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2− :1

−1: + −2
1: + −2

(13)

where α y{ ( )}mt 3− :1m2− :1 denotes all the forward variables ending at
yt( , )0:1 1 , and β y{ ( )}k k mt −1: + −2k k m−1: + −2 denotes all the backward variables

starting from yt( , )k k k−1: . By setting k=1, we can calculate the marginal
probability on the edge yt( , )0:1 1 :

∑

∑ ∑

∏

P y X P S Y X

Z X
α

β Ψ X Y m

t

y

y

( , | ) = ( , | )
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0:1 1

2− :1
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0: −1
1: −1

2− :1

0: −1
1: −1 (14)

4.5. Lattice pruning

To build a compact index file, the edge scores are computed on a
pruned lattice. The difficulty of lattice pruning lies in that the edges are
not independent, i.e., to remove an edge will break the paths through it.
To avoid breaking the high-probability paths, we consider a forward-

backward lattice pruning method.
Replacing the summation by maximization in Eqs. (9) and (12) will

yield another type of forward and backward variables
( α t Ty{ ( )| = 1,…, }n nt 2:n1: and β t Ty{ ( )| = 0,…, − 1}nt 1: −1 0n0: −1 , respec-
tively), with which we can calculate the posterior probability of the
best path traversing an edge by replacing the summation with max-
imization in Eq. (14). In this paper, the initial dense lattice will be
pruned by a first-order semi-CRFs (m = 2), thus

P S Y S y Y X P S Y X

Z X
α y β y

t( *, *, ∈ *, ∈ *| ) = max ( , | )

= 1
( )

( ) ( ).

S Y
y S Yt

t t

0:1 1 ( , ):
( , )∈( , )

1 1

0:1 1

0:1 0:1 (15)

In Eq. (15), Z(X) is a constant with trained parameters. The value
α y β y( ) ( )t t1 10:1 0:1 will be used as a score of yt( , )0:1 1 for pruning the lattice.

Note that α y β y( ) ( )t t1 10:1 0:1 is also the score of the best path traversing
yt( , )0:1 1 .

Considering that a high-score path is unlikely to go through a low-
score edge, removing a low-score edge may impossibly break a high-
score path. Denote the best path score in the dense lattice by Qmax, an
edge is retained if the following condition is held:

Q α y β y γlog − log( ( ) ( )) ≤ ,max pt t1 10:1 0:1 (16)

where γ > 0p is the pruning threshold. With this method, paths with
higher scores are retained, while those with lower scores are discarded.

Fig. 4(a) and Fig. 4(b) respectively show the two pruned lattices and
edge probabilities resulting from original lattices in Fig. 3(a) and
Fig. 3(b). The pruning strategy results in a compact index file and
speeds up the edge scoring, but it also cuts some correctly recognized
edges. So we use the proxy-character driven search algorithm described
in Section 5 to locate the mis-matched instances.

4.6. Model training with CE criterion

The semi-CRF model trained with MAP (maximum a posteriori) has
been demonstrated to give high classification accuracies on Chinese
document recognition (Zhou et al., 2013). However, MAP criterion
aims to optimize the model for multi-classification while keyword

Fig. 4. The pruned lattices and edge probabilities (the red label indicates the correctly
recognized characters).
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spotting is binary classification of candidate characters in the lattice.
In our keyword spotting, the CE loss is proposed for semi-CRF

model training to separate the target character from the others. We use
edges in the lattices of training text lines as the training set, defined as:

y yt t{( , ) |( , ) ∈ ϝ},0:1 1 0:1 1 (17)

where yt( , )0:1 1 is an edge in the entire or pruned lattice ϝ (to alleviate
the computational burden in model training, the original lattice is first
pruned with a pre-trained first-order semi-CRF (Zhou et al., 2013)).
The multi-class label y1 is transformed to binary label L δ y g= ( , )1 1 1 ,
where g1 is the ground truth of t0:1 and function δ y g( , ) = 11 1 if y g=1 1 or
δ y g( , ) = 01 1 . Then given N training samples X i N{ | = 1, 2… }i and
corresponding lattices i N{ϝ | = 1, 2… }i , the CE criterion is to minimize
the expected cost:
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where P y X Λt(( , ) | , )i0:1 1 denotes the marginal probability on edge
yt( , )0:1 1 in the lattice, and function F yt( , )i 0:1 1 is defined as:

F y L P y X Λ L log P y X Λt t t( , ) = log (( , ) | , ) + (1 − ) (1 − (( , ) | , )).i i i0:1 1 1 0:1 1 1 0:1 1

(19)

We minimize the empirical loss in Eq. (18) by stochastic gradient
descent to estimate parameters Λ. On each training edge yt( , )0:1 1 in the
lattice ϝi of Xi, the parameters can be updated as:
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(20)

and the derivative of F yt( , )i 0:1 1 on λk can be computed as:
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To compute the derivatives of the marginal probability in Eq. (21), we
rewrite the marginal probability in Eq. (14) as:
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Then the partial derivatives of P y X Λt(( , ) | , )i0:1 1 can be computed as:
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where
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According to Eq. (6), we can calculate the partial derivatives of Z X Λ( , )i
in Eq. (23) as:
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Substituting Eqs. (24) and (25) into Eq. (23), we can get the derivatives
of the marginal probability P y X Λt(( , ) | , )i0:1 1 as:
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Denoting the size and segmentation point of clique c Y( , )c as s and tc,
then the joint probability P c Y y X Λt(( , ), ( , ) | , )c i0:1 1 in Eq. (26) can be
rewritten as P y y X Λt t(( , ), ( , ) | , )c c s c c s i: + : + 0:1 1 and computed by:
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where the sub-path yt( , )c c s c c s−1: + −1: + / yt( , ))c c s c c s: + +1 : + +1 is the concate-
nation of the edge yt( , )0:1 1 and the clique yt( , )c c s c c s: + : + when
t t= c1 /t t=c s+ 0. In Eq. (27), we can see that when t t ort t< <c s c+ 0 1 , the
partial derivatives of P y X Λt(( , ) | , )i0:1 1 is zero and so the summation
space in Eq. (26) is reduced.

5. Proxy-character driven search algorithm

Previously, we use a character-synchronous dynamic search algo-
rithm for locating keywords in the lattice (Zhang et al., 2013a). The
search algorithm contains two key steps: one is the candidate character
scoring and the other is the word search. If the query is matched with
the candidate character/word, the similarity score is the logarithm of
the edge probability; otherwise, is −∞. So, the query mis-matched with
the candidate character/word cannot be located and the recall rate is
limited. In Fig. 4(a), the candidate character between segmentation
points (1,3) is not correctly recognized, and so, this instance cannot be
located by the previous CSDS algorithm. Fig. 5 shows the spotting
result in the document and we can see only the instance in Fig. 4(b) is
located. In this section, to locate incorrectly recognized candidate
characters, we propose a new character-synchronous dynamic search
algorithm by using proxy-characters of the query to search in the index
file.

5.1. Use of proxy-character

Proxy characters are generated on training character samples. The
set of training samples is denoted as x i Candn N{ | = 1,…, = 1,…, }in i ii ,
where C is the total class number of Chinese characters and Ni is the

Fig. 5. The locating result by the previous CSDS algorithm: the instance in the first line
is not found.
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total number of training samples for character ci. During the proxy-
character generation, each sample xini is classified into N1 (set to 20 in
the experiments) candidate classes Ωini. If character c Ω∈j ini, do
N N← + 1ij ij where Nij (initialized as 0) is denoted as the total number
of times that character cj ( j i≠ ) appears in the candidate classes of
character ci. After the classification of all the training samples, for each
character ci, we rank N j Candj i{ | = 1,…, ≠ }ij and the top N2 (set to 20
in our experiments) confusing characters are generated as the proxy
characters of ci. Fig. 6 shows an example of character proxies which can
be used to search in the index file. We can see that in Fig. 3(a), the

second character on the desired path is not correctly recognized but can
be located with proxy-characters to search in the lattice.

Our use of proxy characters is inspired by proxy keywords in speech
search, which entails some in-vocabulary keywords that are acousti-
cally similar as the proxies of OOV (out of vocabulary) query (Chen
et al., 2013). Compared with proxy keywords in speech search, our use
of proxy-characters has several different issues:

(1) We use proxies to spot the in-vocabulary but incorrectly recognized
characters while proxy keywords in speech are used to search OVV
words.

(2) We use proxies of characters not words to drive the character-
synchronous dynamic search.

(3) We entail characters that are similar in feature space as proxies
while speech search augments proxy keywords that are acoustically
similar.

(4) Our proxies are generated on training character samples while
speech proxies are generated in the lattice.

(5) A candidate character may be recognized as different proxies of the
ground truth, so we sum the probabilities of all the proxies in the
candidate classes to compute matching score.

(6) To reduce the time cost in keyword search, we use proxy-
characters only when the candidate character cannot be matched
with the query and only one character in the query is searched with
the proxies.

5.2. Word spotting by proposed search

In the dynamic search, the query word y y yy = , ,…,n n1: 1 2 is matched
with sequences of candidate characters (partial paths in the candidate
lattice) with every component as the start. The similarity between the

Fig. 6. An example of character proxies: the red small characters are part of proxies.

Fig. 7. The flow chart of the proposed keyword search.
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query and a sequence of n candidate characters t n0: , with t t t, ,…, n0 1
being n + 1 ordered candidate segmentation points, is obtained by
combining the similarities of candidate characters:

∑SIM
n

sim yy t t( , ) = 1 ( , ),n n
i

n

i i i1: 0:
=1

−1:
(28)

where sim y t( , )i i i−1: denotes the similarity between candidate character
ti i−1: and class yi, which is defined as the logarithm of marginal
probability P t y X(( , ) | )i i i−1: on edge yt( , )i i i−1: ; otherwise, is −∞ for mis-
matched characters in our previous works (a, 2013). In this paper, we
use proxies of miss-matched character for keyword searching and the
similarity can be computed as:
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where pi is the proxy of character yi and Ωti i−1: is the candidate class set
of ti i−1: in the lattice. When the word similarity score is greater than the
given threshold, the word instance is located in the document. To
accelerate text search, we use two thresholds to prune matched
candidate characters: a character threshold Tc to prune those char-
acters with sim y t( , )i i i−1: and a word threshold Tw to prune those words
with SIM y t( , )n n1: 0: .

For a specific start component sj, the flow chart of proposed search
process is described in Fig. 7, wherein a pair of matched candidate-
query characters without proxies is stored as a reality node in the state
space or virtual node for the pair with proxy-characters. Compared
with the previous CSDS algorithm, the main modification of the
proposed search lies in character matching and located instance
pruning when multiple instances are returned during tracking back.
At character matching step, the virtual node is stored as an OPEN node
to search proxies for mis-matched characters. To keep the precision
rate not too low and reduce the search time, we constrain that there is
at most one virtual node on each search path. At pruning step, it is
more likely for reality instances to be correctly recognized than virtual
instances, so we retain the reality one of maximum score and prune the
other. If all the matched instances are virtual, we retain the one whose
virtual node score is maximum. The pruning metric is similar to the
previous algorithm in Zhang et al. (2013a).

Fig. 8 shows an example of the proposed search process. There are
two located instances (W1,W2) and both of them virtual. For instances
W1 and W2, their virtual nodes are the same. So we retain the W2

whose path score is higher. Fig. 9 shows an example of the proposed
search results. Compared with the result in Fig. 5, the proposed search
can locate all the instances and so the recall rate is high.

6. Experiments

We evaluated the performance of the proposed keyword spotting
method on a database of online Chinese handwriting: CASIA-
OLHWDB (Liu et al., 2011). This database is divided into six data
sets, three for isolated characters and three for handwritten texts.
There are 3,912,017 isolated character samples and 5,092 handwritten
pages (52,220 text lines) in total. Both the isolated data and hand-

written text data have been divided into standard training set (816
writers) and testing set (204 writers). The training set contains
3,129,496 isolated character samples of 7356 classes and 4072 pages
of handwritten texts (41,710 text lines, including 1,082,220 characters
of 2,650 classes). The presented system was evaluated on the test set of
texts, which contains 10,510 text lines from 1,020 text pages, including
269,674 characters of 2631 classes. Fig. 10(a) shows some samples of
isolated characters, and Fig. 10(b) shows a handwritten text page with
multiple lines of characters.

6.1. Experimental setting

The training isolated characters and the characters segmented from
the training text pages were used for parameter estimation of the
character classifier, confidence estimation and proxy-character genera-
tion. The classifier parameters were learned using 4/5 of the data and
the remaining 1/5 were used for confidence parameter estimation. The
geometric features were extracted from the training text lines and used
to learn the respective geometric models. The language model is the
same as in Wang et al. (2012, 2012) and the semi-CRF parameters
were learned on the training text lines.

For evaluating the retrieval performance on the test dataset, we use
the high-frequency words in the lexicon of the Sogou labs (SogouLab,)
as query words. The top 60,000 frequently used words, including

Fig. 8. An example of the proposed proxy-character driven search: two proxy characters
are used in depth2.

Fig. 9. The locating results by the proposed proxy-character driven search: both of the
two instances are correctly located.

Fig. 10. (a) Example of isolated character samples; (b) A handwritten text page. Each
character sample is attached with a class label.
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39,057 two-character words, 9975 three-character words and 9451
four-character words, were tested in our experiments. The keyword
spotting performance is measured using the recall-precision curve,
EER (Equal Error Rate, recall(1 − )*100% when recall equals to
precision) and AUC (Area Under the Curve).

Our experiments were implemented on a PC with Intel(R)
Core(TM) i5-3470 CPU, 3.20 GHz processor and 4 GB RAM, and the
algorithms were programmed using C++.

6.2. Effects of lattice pruning

For simplification, we perform the character detection to evaluate
the effects of lattice pruning. Table 2 lists the effects of different lattice
pruning thresholds (γp). The total recall (TR) rate is defined as the
number of true instances in the lattice divided by the number of
instances in the transcript (ground truth), which is a upper bound of
the recall rate. Lattice edge density (LED) is defined as the total
number of edges divided by the total number of characters in the
transcript, which is used to measure the complexity of the index file.
From Table 2 we can see that, by decreasing γp, lattice pruning can
effectively reduce LED and consequently the size of index file, while
EER and AUC change just slightly when γp is not too small. The default
threshold γ = 10p performs sufficiently well in respect of EER and AUC.
Enlarging the threshold, though increases the total recall rate, does not
improve the two metrics. Fig. 11 shows the recall-precision curves of
character detection with different lattice pruning thresholds and
similar results can be found: the metrics will not improve significantly
when the threshold γp is above 10. So in the following experiments, we
use threshold γ = 10p for the lattice pruning to balance the perform
metric and the disc cost.

6.3. Effects of contexts

To evaluate the effects of different contexts, we perform the
keyword spotting experiments with all the three kinds of keywords by
our previous semi-CRF model and search algorithm in Zhang et al.
(2013). Fig. 12 compares the recall-precision curves of different
contexts, where “c”, “g” and “l” denote the feature functions for
character recognition, geometric contexts and linguistic context, re-
spectively. From Fig. 12, we can see that compared to using the
character recognition model (“c”) only, the performance is remarkably
improved by combining geometric contexts (“c+g”). The incorporation
of linguistic context (“c+l”) is much more effective than the geometric
contexts. The best result is given by combining both types of contexts
(“c+g+l”). Because the language model was trained on a large corpus
and can help distinguish between confusing similar characters, the
system can always produce very high recall rate with linguistic context
(“c+l” and “c+g+l”). Table 3 lists the keyword spotting results of
different contexts, and we can directly find the best results combining
all the contexts. So the following experiments are performed with the
three features combined in semi-CRFs.

6.4. Effects of candidate character augmentation

The above experiments evaluate the effects of lattice pruning and
the different features combined in semi-CRFs, but the candidate
character augmentation technique has not been used. We then
augment candidate characters of the original lattice, prune the lattice
with the default threshold and perform the keyword spotting experi-
ments with all the three features in the semi-CRFs model. The recall-
precision curves are shown in Fig. 13, where CCA denotes spotting with
candidate character augmentation, and Non-CCA denotes spotting
without candidate character augmentation. Table 4 lists the EER and
AUC with and without CCA. We can see that the candidate character

Table 2
Effects of lattice pruning.

γp 1 5 10 15 20 30

EER (%) null 5.42 5.29 5.28 5.28 5.28
AUC (*0.01) 91.45 93.88 94.34 94.40 94.40 94.40
TR (%) 93.65 95.05 95.49 95.64 95.73 95.80
LED 1.05 1.45 2.94 6.07 10.86 23.83
Index-Size (Mb) 5.96 6.49 8.51 12.73 19.19 36.68
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Fig. 11. Recall-precision curves of character detection with different lattice pruning
thresholds.
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Fig. 12. Recall-precision curves of spotting results combining different contexts.

Table 3
Keyword spotting results combining different contexts.

Contexts c c+l c+g c+g+l

EER (%) 12.36 5.87 10.57 5.29
AUC (*0.01) 87.51 93.93 89.36 94.34
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augmentation technique can slightly improve the spotting perfor-
mance.

Based on the above experimental results, we use the exact config-
uration, i.e., the candidate character augmentation technique, lattice
pruning and all the context features for the CE based semi-CRFs, and
also the proxy-character driven search to perform experimental
comparisons with reference methods.

6.5. Comparison with reference methods

We compare the proposed keyword spotting performance with
several reference methods: the previous system based on semi-CRFs
trained with MAP criterion (Zhang et al., 2013), keyword spotting by
CSDS search without proxy characters (Zhang et al., 2014, 2013a),
character scoring based on the N-best list (Zhang et al., 2012) and
keyword search on text line recognition (transcription) (Zhou et al.,
2013).

6.5.1. Comparison with MAP based semi-CRFs
We compare the proposed CE based semi-CRFds with our previous

method (Zhang et al., 2013) using MAP criterion derived from the
handwriting recognition (Zhou et al., 2013). Given N training samples:

X S Y i N{( , , ) | = 1,…, }i i i (strings with segmentation points and charac-
ter classes labeled), following the standard MAP estimation, the
weighting parameters Λ can be learned by minimizing the negative
log-likelihood loss:

∑L Λ P S Y X Λ( ) = − log ( , | ; ).NLL
i

N
i i i

=1 (30)

With MAP criterion, the parameters of semi-CRFs are also optimized
using stochastic gradient descent. The recall-precision curves are
shown in Fig. 14. The EER and ACU results are shown in Table 5.
We can see that the CE training criterion can slightly improve the
spotting performance.

6.6. Comparison with traditional character-synchronous search

In this section, to evaluate the effects of the proposed proxy-
character driven search for keywords of different length, we perform
the keyword spotting experiments using queries with 2, 3, 4 characters
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Fig. 13. Recall-Precision curves of spotting results with and without candidate character
augmentation.

Table 4
Keyword spotting results with and without candidate character augmentation.

Methods non-CCA CCA

EER (%) 5.01 4.80
AUC (*0.01) 94.55 94.88
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Fig. 14. Recall-precision curves of spotting results with semi-CRFs trained by the MAP
and CE criterions.

Table 5
Keyword spotting results with semi-CRFs trained by the MAP and CE criterions.

Methods MAP CE

EER (%) 5.29 5.01
AUC (*0.01) 94.34 94.55
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Fig. 15. Recall-precision curves of spotting results with the previous CSDS and the
proposed PCDS search respectively.

Table 6
Effects of the proposed PCDS search compared with the previous CSDS algorithm.

Word Length Previous CSDS method Proposed PCDS search

EER (%) AUC (*0.01) EER (%) AUC (*0.01)

2c 5.25 93.47 5.19 94.47
3c 5.57 93.97 4.62 95.32
4c 7.06 93.66 4.72 95.31
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(2c, 3c,4c) respectively. After pruning the augmented lattice with the
default threshold and the computation of the edge scores with the three
features in semi-CRFs, we perform the previous and the proposed
search algorithms respectively. The recall-precision curves are shown
in Fig. 15, where CSDS-2c denotes spotting with previous CSDS
method, and PCDS-2c denotes spotting with proposed proxy-character
driven search (PCDS) algorithm. The EER and AUC comparison can be
found in Table 6. We can see that the PCDS search can improve the
spotting performance especially for long words.

6.6.1. Comparison with N-best list based scoring
The former work (Zhang et al., 2012) estimates the character

confidence based on the N-best recognition list obtained using the
beam search algorithm from the original lattice. There is no essentially
difference between the N-best list and the lattice. But the lattice
includes more candidate paths than the N-best list, so the edge
probability calculated in the lattice is better than the one on the N-
best list. Besides, our semi-CRF model can better fusing the different
contexts for evaluation of the path confidence/score. Fig. 16 compares
the recall-precision curves of the proposed method and the N-best-
based method. For fairly comparison, both methods use the previous
CSDS algorithm, and N is set to 50 as in Zhang et al. (2012). From
Fig. 16, we can see that the proposed method outperforms the N-best-
based approach.

6.6.2. Comparison with transcription-based search
Because of the limited accuracy in handwriting recognition, most

previous works on keyword spotting avoid using a text recognition
system to transcribe the handwriting and search on the output text.
However, some experimental studies (e.g., the one in (Frinken et al.,
2012; Zhang et al., 2012)) show that transcription-based spotting can
perform competitively. Here, on handwritten Chinese documents, we
compared the proposed method with transcription-based search using
a semi-CRFs based text line recognition method (Zhou et al., 2013).
Since text line recognition gives unique text output, transcription-
based word search gives a unique point of recall-precision rates
(Fig. 17). In contrast, the proposed method provides flexible options
of tradeoff between the two metrics. By properly sacrificing the
precision rate, much higher recall rate can be achieved than the
transcription-based method.

Table 7 shows the index size (the size of the index file for all test

documents) and the average searching time (with threshold−∞ so as to
spot all the query words present in the lattice) for one word by the
proposed method and reference methods. The data size of the test
pages in stroke trajectory (4 bytes for a sampled point) is 47.71 Mb. We
can see that though the proposed method consumes larger index
storage and more search time than reference methods, the increased
data size of index file is much smaller than the original handwriting
data and the search time is acceptable.

6.7. Error analysis

The error reasons related to the semi-CRFs model are already
analyzed in Zhou et al. (2013), so we only discuss about the proposed
proxy-character driven search in this paper. If the candidate character
is not correctly recognized and the proxy-characters are also not
included in the candidate classes, the query will be mis-matched
resulting in low recall. On the other hand, the candidate character is
correctly recognized but some proxies of the wrong character are
included in the candidate classes, the query will be incorrectly matched
resulting in false positives.

Fig. 18 shows the example that the candidate character (3,5) is not
correctly recognized and the candidate classes are not included in the
proxies of the true character. Using the proposed proxy-character
search, the candidate character at depth4 can not be matched with the
forth character in the query. Such that the right word will be rejected.
Fig. 19 shows the example that the candidate character (3,4) is
correctly recognized in the candidate classes. Using the proposed
proxy-character search, candidate character at depth4 can be matched
with one proxy of the forth character in the query. Such that the wrong
word will be accepted by a low threshold. To alleviate the wrong
matching with proxy-characters, we use the proxies to match the
candidate character with its maximum candidate score (logarithm of
the edge probability) below a threshold (set to −0.3 in our experi-
ments). For the candidate character with a large recognition score, it is
possible that this candidate character is correctly recognized and so the
proxy-characters are not needed.
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Fig. 16. Recall-Precision curves of keyword spotting by the N-based search and the
proposed method.
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Fig. 17. Recall-Precision curves of keyword spotting by the transcription-based search
and the proposed method.

Table 7
The index size (Mb) and the average keyword spotting time (ms) with different methods.

Method Ink Size (Mb) Index Size (Mb) Search Time (ms)

Transcription 2.66 2.83
N-Best 47.71 6.32 6.47
Proposed 8.51 18.03
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7. Conclusion

In this paper, we present an indexing method for keyword spotting
in online handwritten Chinese documents based on semi-CRFs, which
provide a theoretical framework for fusing the information of character
recognition, geometric and linguistic contexts. By candidate character
augmentation and lattice pruning, we obtain a compact index file for
keyword spotting. In the pruned candidate segmentation-recognition
lattice, the candidate character sores are estimated based on the semi-
CRF model. The parameters of semi-CRFs are optimized using the
cross-entropy (CE) criterion which can discriminate the candidate
characters in the lattice. To locate mis-recognized characters, the
confusing similar characters are used as proxies to search in the index
file. Experimental results on the CASIA-OLHWDB database demon-
strate the effectiveness of the proposed method, and justify the benefits
of lattice pruning, the combination of different contexts, candidate
character augmentation, CE training and the proxy-character driven
search algorithm respectively. The spotting performance can be further
improved by a systematical study on the re-scoring of incorrectly
recognized candidate characters.
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