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a b s t r a c t 

This paper develops a novel fault tolerant control (FTC) scheme for a class of nonlinear sys- 

tems with actuator failures based on adaptive dynamic programming (ADP). The estimated 

actuator failure from a fault observer is utilized to construct an improved performance in- 

dex function that reflects the failure, regulation and control simultaneously. By employing 

a proper performance index function, the FTC problem can be transformed into an opti- 

mal control problem. By using policy iteration, the Hamilton–Jacobi–Bellman equation can 

be solved by constructing a critic neural network. Then, the approximated optimal con- 

troller can be derived directly. The closed-loop system is guaranteed to be uniformly ul- 

timately bounded via the Lyapunov stability theorem. The effectiveness of the developed 

FTC scheme is demonstrated by two simulation examples. The significant contribution of 

the proposed strategy lies in that the well-known ADP method is extended to solving the 

FTC problem. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Modern industries are becoming increasingly complex and large-scale to satisfy the requirement of the improving pro-

duction efficiency [40] . Consequently, the demands for reliability and safety of sophisticated control systems are urgent. As

we know, various components such as actuators, sensors and processors may undergo abrupt failures individually or si-

multaneously during operation, which may lead to serious damages [28] . Among all kinds of malfunctions, actuator failures

significantly account for the degradation of control performance. Hence, it is important to develop fault tolerant control

(FTC) methods to deal with such failures and maintain acceptable system performance. 

In recent decades, many FTC approaches have been developed to solve the aforementioned problems through different

theories and methods. In early stages of research, hardware redundancy based FTC was achieved by installing some backup

components, which increased the weight, volume and cost. In contrast to hardware designs, analytical redundancy based FTC

was distinguished for its low cost and flexible structures, and therefore, it attracted many researchers’ attention. In general,
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analytical redundancy based FTC schemes could be categorized into passive approaches and active ones. By passive design,

Zhou et al. [50] proposed an architecture that included two parts, i.e., the feedback control system was solely controlled by

the performance controller, and the model uncertainties and external disturbances were handled by the robustness of the

controller. Wang et al. [33] investigated a robust fault-tolerant H ∞ 

control of active suspension systems with finite-frequency

constraints. The scheme considered actuator faults, suspension deflection and actuator saturation simultaneously. In fact, 

the insensitivity of passive FTCs depends on their robustness. Thus, they are quite limited in handling large failures. On

the contrary, active FTC methods provide stronger fault tolerant capability. Zhang and Jiang [46] and Hwang et al. [10] gave

some excellent reviews on fault reconfiguration methods. It should be mentioned that the observer technique [16] , which

is active in reconfiguring control, plays an important role in achieving active fault tolerance. For example, Cristofaro et al.

[5] reconfigured the control law by using an unknown input observer for fault detection and isolation (FDI) in overactuated

systems. The presented FTC was independent of fault estimation. Tong et al. [28] investigated an observer-based adaptive

decentralized fuzzy FTC scheme, which could be applied to a class of nonlinear large-scale systems with actuator failures

and without satisfying the matching condition. Shi et al. [25] proposed a descriptor sliding mode observer approach using

quantized signals for a class of Markovian jump systems against actuator faults. By injecting a quantizer density related

parameter to the sliding mode input term, the observer possessed the ability to compensate the quantization effects. Fault

accommodation strategy is another way to achieve the goal of active FTC. Yoo [43] investigated a time-delay independent

fault detection and accommodation scheme, where an approximation-based fault accommodation design was activated to 

compensate for multiple time-delay faults after the faults were detected. Based on the fault compensation technique, Wang

et al. [34] proposed an adaptive failure compensation control scheme with the nonlinear damping and parameter projection

techniques for parametric strict feedback nonlinear systems. In this method, the control module and parameter estimator

module were designed separately. 

As an effective tool to deal with optimal control problems in nonlinear systems, adaptive/approximate dynamic program-

ming (ADP) [12,32] is an useful approximation method proposed by Werbos [39] to solve Hamilton–Jacobi–Bellman (HJB)

equations. ADP has many synonyms such as neuron-dynamic programming [3] , neural dynamic programming [26] , adaptive

critic designs [24] and reinforcement learning [13] . Great effort s have been made on ADP and related research fields in the

past decade. Many excellent results have significantly promoted the development of relevant disciplines. For ADP in optimal

control, value iteration (VI) [14,38] and policy iteration (PI) [21,22] are fundamental algorithms. Al-Tamimi et al. [1] and

Liu et al. [20] solved the HJB equation by using the VI technique. Zhong et al. [49] and Dong et al. [7] proposed a novel

event-triggered ADP method to solve the optimal control problem of nonlinear systems. Compared with the traditional ADP

design with a fixed sampling period, the method can reduce the computational cost and transmission load. From these stud-

ies, we can conclude that VI can avoid the requirement of initial stabilizing control, but it cannot guarantee the stability of

the system. In fact, only the converged optimal control law can be used to control nonlinear systems [21] . In contrast to VI

algorithms, PI algorithms, which consist of policy evaluation and policy improvement, could avoid this shortcoming because

they begin with a stable control. Many researchers have investigated PI algorithms to solve optimal control for discrete-time

linear systems [4,22] , nonlinear systems with saturating actuators [2] , and partially model-free systems [29] . Recently, Wang

et al. [31] transformed the robust control problem into an optimal control problem, and established a robust control based

on an online PI algorithm for nonlinear systems with uncertainties. Song et al. [27] redesigned an off-policy actor-critic

structure to compensate the disturbances for unknown systems. Modares et al. [23] presented an online PI algorithm to ob-

tain the optimal control for completely unknown constrained input systems. Liu et al. [19] developed a decentralized control

strategy to stabilize the nonlinear interconnected system using an online learning optimal approach. Zhang et al. [44] pro-

posed a data-driven robust approximated optimal tracking control scheme for unknown nonlinear systems by using the ADP

method. It was the first solution to the tracking problem of unknown general nonlinear systems based on ADP. Through-

out the literature on ADP, many excellent works have been carried out on various classes of nonlinear systems, such as

continuous-time systems [31] , discrete-time systems [35,36] , nonlinear systems with uncertainties [27] and constraints [2] ,

unknown nonlinear systems [15] and data-driven systems [37] . Due to the advantages of ADP methods in solving optimal

control problem of nonlinear systems, they have been implemented in many real applications, such as transportation [47] ,

temperature control systems [37] , cooperative control [45] , smart grid systems [42] , multimachine power systems [11] and

zero-sum game problems [17,18] . 

For the FTC problem, only a few results were presented based on ADP methods. Feng et al. [8] proposed a reconfigurable

fault-tolerant deflection routing algorithm based on reinforcement learning for network on chip (NoC). It reconfigured the

routing table through Q-learning and used 2-hop fault information to make efficient routing decisions to avoid faults. He

et al. [9] developed a reinforcement-learning-based fast algorithm for proactive network fault management. Tradeoffs were

made by a partially observable Markov decision process between the collected and transformed data, as well as between the

speed and accuracy of fault detection and diagnosis. Zhu et al. [51] presented a novel approach to automate recovery policy

generation with reinforcement learning techniques. The method could learn a new locally optimal policy to outperform

the original one. Zhao et al. [48] established an online fault compensation control scheme based on PI algorithm for affine

nonlinear systems with actuator failures. Yen et al. [6,41] proposed a supervisor which made use of two quality indices to

perform fault detection, identification and isolation based on the knowledge stored in a dynamic model bank (DMB), which

could reduce the reconfiguration time of the globalized dual heuristic programming (GDHP) controller, but they did not give

a systematic FTC strategy. 
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Motivated by the above ADP and observer techniques, in this paper, a fault tolerant controller based on fault observer

and ADP algorithm is developed for nonlinear systems with actuator failures. The estimated failure from a fault observer

is utilized to construct the performance index function, which reflects the actuator failure, regulation and control. Hence,

the FTC problem is transformed into an optimal control problem. A PI algorithm is employed to solve the HJB equation by

constructing a critic neural network. Based on the Lyapunov stability theorem, the closed-loop system with actuator failures

can be guaranteed to be uniformly ultimately bounded (UUB). 

The main contribution of this paper can be summarized as follows. (i) By designing a fault observer, the estimated un-

known actuator failure can be employed to construct the improved performance index function, which reflects the actuator

failure, regulation and control. Thus, the FTC problem is transformed into an optimal control problem. (ii) The FTC can be

derived depending only on the critic neural network. The training of the action neural network which was commonly im-

plemented is no longer required. (iii) The well-known ADP method is extended to solve FTC problems. It implies that this is

a novel approach against actuator failures in operated systems. 

The rest of this paper is organized as follows. In Section 2 , we present the problem statement. In Section 3 , with the

help of the estimated actuator fault from the fault observer, the performance index function is constructed to transform

the FTC problem into an optimal control problem, and then the approximated fault tolerant controller is derived directly. In

Section 4 , two simulation examples are provided to demonstrate the effectiveness of the proposed scheme. In Section 5 , the

conclusion is drawn. 

2. Problem statement 

Consider the following continuous-time nonlinear system with an actuator failure: 

˙ x = f (x ) + g(x )(u − u a ) (1)

where x ∈ R 

n is the system state vector, u ∈ R 

m is the control input vector, f ( ·) and g ( ·) are locally Lipchitz and differentiable

in their arguments with f (0) = 0 and u a (t) ∈ R 

m is an additive actuator failure. Here, let x (0) = x 0 be the initial state. 

Assumption 1. The actuator failure u a is unknown but norm-bounded as ‖ u a ‖ ≤ δ1 < + ∞ , where δ1 is a positive constant. 

Remark 1. In real applications, the occurrence of actuator failures is random, and it is reasonable to assume that the un-

known actuator failure u a is bounded. 

Since f ( ·) and g ( ·) are locally Lipchitz continuous on a set � ⊂ R 

n , the system (1) with u a = 0 is controllable. Thus, it is

desired to find the feedback control policy u ( x ) which minimizes the infinite horizon performance index function as 

J(x 0 ) = 

∫ ∞ 

0 

(
ρ ˆ u 

T 
a (τ ) ̂  u a (τ ) + U(x (τ ) , u (τ )) 

)
d τ , (2)

where ρ is a positive constant, U(x, u ) = x T Qx + u T Ru is the utility function, U(0 , 0) = 0 , and U ( x, u ) ≥ 0 for all x and u ,

Q ∈ R 

n ×n and R ∈ R 

m ×m are positive definite matrices, and ˆ u a ∈ R 

m is the estimation of the actuator failure u a . We can see

that (2) appropriately reflects the actuator failure, regulation and control simultaneously. 

To obtain an acceptable control performance after the actuator failure occurs, the designed feedback control must be

admissible. Therefore, before the algorithm is presented, the definition of admissible control is introduced [1] . 

Definition 1. For system (1) with u a = 0 , a control policy u ( x ) is said to be admissible, if u ( x ) is continuous on a set � ⊂ R 

n ,

u (0) = 0 , u ( x ) stabilizes the system, and J ( x 0 ) in (2) is finite for all x 0 ∈ �. 

For any admissible control policy μ ∈ �( �), where �( �) denotes the set of admissible control, if the performance index

function 

V (x 0 ) = 

∫ ∞ 

0 

(
ρ ˆ u 

T 
a (τ ) ̂  u a (τ ) + U(x (τ ) , μ(τ )) 

)
d τ (3)

is continuously differentiable, then the infinitesimal version of (3) is the so-called nonlinear Lyapunov equation 

0 = ρ ˆ u 

T 
a ˆ u a + U(x, μ) + ( ∇V (x ) ) 

T 
( f (x ) + g(x ) μ) (4)

with V (0) = 0 , and the term ∇V ( x ) denotes the partial derivative of V ( x ) with respect to x , i.e., ∇V (x ) = 

∂V (x ) 
∂x 

. 

Define the Hamiltonian of the problem and the optimal performance index function as 

H ( x, μ, ∇V (x ) ) = ρ ˆ u 

T 
a ˆ u a + U(x, μ) + ( ∇V (x ) ) 

T 
( f (x ) + g(x ) μ) 

and 

J ∗(x 0 ) = min 

μ∈ �(�) 

∫ ∞ 

0 

(
ρ ˆ u 

T 
a ˆ u a + U(x (τ ) , μ(τ )) 

)
d τ (5)

respectively. Let J ∗( x ) be the optimal performance index function, then 

0 = min 

μ∈ �(�) 
H ( x, μ, ∇J ∗(x ) ) , (6)
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where ∇J ∗(x ) = 

∂ J ∗(x ) 
∂x 

. If the solution J ∗( x ) exists and is continuously differentiable, the optimal control can be expressed

as 

u 

∗(x ) = −1 

2 

R 

−1 g T (x ) ∇J ∗(x ) . (7) 

In general, if the system is fault-free (i.e., u a = 0 ), the solution of (6) can be approximated with the PI technique (see

Algorithm 1 ). 

Algorithm 1 Online policy iteration. 

Step 1 Let i = 0 , begin with an initial admissible control policy μ(0) (x ) , and select a small positive constant ε; 

Step 2 Let i > 0 , based on the control policy μ(i ) (x ) , solve V (i +1) from 

0 = ρ ˆ u 

T 
a ˆ u a + U(x, μ(i ) ) + 

(∇V 

(i +1) (x ) 
)T 

( f (x ) + g(x ) μ(i ) ) . 

Step 3 Update the control policy by 

μ(i +1) = −1 

2 

R 

−1 g T (x ) ∇V 

(i ) (x ) . 

Step 4 If i > 0 and 

∥∥V (i +1) (x ) − V (i ) (x ) 
∥∥ ≤ ε, stop and obtain the approximate optimal control; else, let i = i + 1 and return

to Step 2. 

By simple transformation, (7) implies 

( ∇J ∗(x ) ) 
T 

g(x ) = −2 ( u 

∗(x ) ) 
T 

R. (8) 

3. Fault tolerant controller design via observer based ADP 

3.1. Problem transformation 

For system (1) , a feedback control policy u ( x ) should be presented to deal with the FTC problem, such that the closed-

loop system can be guaranteed to be UUB for all possible actuator failures u a . In order to achieve this objective, we will

transform the FTC problem into designing an optimal controller for the fault-free system, i.e., u a = 0 , with a proper perfor-

mance index function. 

Assumption 2. The actuator fault estimation error e a = u a − ˆ u a is norm-bounded as ‖ e a ‖ ≤ δ2 , where δ2 is a positive con-

stant. 

Theorem 1. Consider system (1) with u a = 0 , with Assumptions 1 and 2 , and the control policy (7) , the continuously differen-

tiable function J ∗( x ) is a Lyapunov function with the conditions ρ ≥ λmin ( R ) and ‖ x ‖ ≥ δa 
λmin (Q ) 

satisfied. Furthermore, assume

that J ∗( x ) is a solution to the HJB Eq. (6) . Thus, the optimal control policy (7) can guarantee the closed-loop nonlinear system

with an actuator failure (1) to be UUB, i.e., u ∗( x ) in (7) is a solution to the FTC problem. 

Proof. In order to prove that u ∗( x ) in (7) is a solution to the FTC problem, we prove that J ∗( x ) is a Lyapunov function.

According to (5) , we can see that J ∗( x ) > 0 for all x 
 = 0 and J ∗(0) = 0 . It means that J ∗( x ) is a positive definite function.

Thus, its time derivative is 

˙ J ∗(x ) = ( ∇J ∗(x ) ) 
T 

˙ x 

= ( ∇J ∗(x ) ) 
T 
( f (x ) + g(x )(u 

∗ − u a ) ) 

= ( ∇J ∗(x ) ) 
T 
( f (x ) + g(x ) u 

∗) − ( ∇J ∗(x ) ) 
T 

g(x ) u a . (9) 

From (6) , we have 

( ∇J ∗(x ) ) 
T 
( f (x ) + g(x ) u 

∗) = − ˆ u 

T 
a ˆ u a − U(x, u 

∗) . 

Hence, (9) becomes 

˙ J ∗(x ) = − ˆ u 

T 
a ˆ u a − U(x, u 

∗) − ( ∇J ∗(x ) ) 
T 

g(x ) u a . 

Noticing (8) , we have 

˙ J ∗(x ) = −ρ ˆ u 

T 
a ˆ u a − U(x, u 

∗) + 2 u 

∗T Ru a 

= −ρ ˆ u 

T 
a ˆ u a − x T Qx − u 

∗T Ru 

∗ + 2 u 

∗T Ru a 

≤ −ρ ˆ u 

T 
a ˆ u a − x T Qx − u 

∗T Ru 

∗ + u 

∗T Ru 

∗ + u 

T 
a Ru a 

≤ −ρ ˆ u 

T 
a ˆ u a − x T Qx + λmin (R ) ‖ 

u a ‖ 

2 
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= −
(
ρ − λmin (R ) 

)
ˆ u 

T 
a ˆ u a − x T Qx + λmin (R ) 

(
‖ 

u a ‖ 

2 −
∥∥ ˆ u a 

∥∥2 
)

= −
(
ρ − λmin (R ) 

)
ˆ u 

T 
a ˆ u a − x T Qx + λmin (R ) 

(‖ 

u a ‖ 

+ 

∥∥ ˆ u a 

∥∥)(‖ 

u a ‖ 

−
∥∥ ˆ u a 

∥∥)
= −

(
ρ − λmin (R ) 

)
ˆ u 

T 
a ˆ u a − x T Qx + λmin (R ) 

(‖ 

u a ‖ 

+ 

∥∥ ˆ u a − u a + u a 

∥∥)(∥∥u a − ˆ u a 

∥∥)
≤ −

(
ρ − λmin (R ) 

)
ˆ u 

T 
a ˆ u a − x T Qx + λmin (R ) 

(
2 ‖ 

u a ‖ 

+ 

∥∥ ˆ u a − u a 

∥∥)(∥∥u a − ˆ u a 

∥∥)
. (10 )

From Assumptions 1 and 2 , we can obtain 

˙ J ∗(x ) ≤ −
(
ρ − λmin (R ) 

)
ˆ u 

T 
a ˆ u a − x T Qx + λmin (R ) 

(
2 δ1 + δ2 

)
δ2 . 

Let δa = λmin (R ) 
(
2 δ1 + δ2 

)
δ2 . Thus 

˙ J ∗(x ) ≤ −
(
ρ − λmin (R ) 

)
ˆ u 

T 
a ˆ u a − λmin (Q ) ‖ 

x ‖ 

2 + δa . 

Hence, we can conclude that ˙ J ∗(x ) ≤ 0 , i.e., J ∗( x ) is a Lyapunov function, if the following conditions hold: {
ρ ≥ λmin (R ) 

‖ 

x ‖ 

≥ δa 

λmin (Q ) 
. 

This indicates that x ( t ) will converge to a small neighborhood surrounding the initial position. This ensures the equivalence

of problem transformation. This completes the proof. �

In light of Theorem 1 , the optimal control policy (7) is derived to handle the FTC problem for system (1) , which suffers

from the actuator failure. However, it is difficult to find the solution to the HJB function and derive ˆ u a to construct the

performance index function (3) . 

3.2. Fault observer design 

For the system with actuator failure (1) , we can develop a fault observer as 

˙ ˆ x = 

ˆ f (x ) + 

ˆ g (x )(u − ˆ u a ) + L 1 (x − ˆ x ) (11)

where ˆ x is the observation of the system state x, L 1 is the positive definite observer gain matrix, and ˆ u a is the estimated

actuator failure which can be updated by the following adaptive law: 

˙ ˆ u a = −L 2 ̂  g T (x ) e o (12)

where L 2 is a positive definite matrix, and e o = x − ˆ x is the state observation error. Combining (1) with (11) , we have 

˙ e o = e f + e g u − g(x ) u a + 

ˆ g (x ) ̂  u a − L 1 e o 

= e f + e g (u − u a ) − ˆ g (x )(u a − ˆ u a ) − L 1 e o (13 )

where e f = f (x ) − ˆ f (x ) and e g = g(x ) − ˆ g (x ) are the observation errors of nonlinear terms f ( x ) and g ( x ), respectively. Define

w = e f + e g (u − u a ) . 

Assumption 3. w is norm-bounded as ‖ w ‖ ≤ δ3 , where δ3 is a positive constant. 

Theorem 2. For the system with actuator failure (1) with Assumptions 1 and 3 , the fault observation error can be guaranteed to

be UUB through the developed fault observer (11) with the adaptive law (12) . 

Proof. Select the Lyapunov function candidate as 


1 = 

1 

2 

e T o e o + 

1 

2 

˜ u 

T 
a L 

−1 
2 

˜ u a (14)

where ˜ u a = u a − ˆ u a is the estimation error of the actuator failure. 

Substituting (13) into the time derivative of (14) , one can obtain 

˙ 
1 = e T o ˙ e o − ˙ ˆ u 

T 
a L 

−1 
2 

˜ u a 

= e T o 

(
e f + e g (u − u a ) − ˆ g (x )(u a − ˆ u a ) − L 1 e o 

)
− ˙ ˆ u 

T 
a L 

−1 
2 

˜ u a 

≤ δ3 ‖ 

e o ‖ 

− e T o ̂  g (x ) ̃  u a − λmin (L 1 ) ‖ 

e o ‖ 

2 − ˙ ˆ u 

T 
a L 

−1 
2 

˜ u a 

= −( λmin (L 1 ) ‖ 

e o ‖ 

− δ3 ) ‖ 

e o ‖ 

−
(
e T o ̂  g (x ) + 

˙ ˆ u 

T 
a L 

−1 
2 

)
˜ u a . (15 )

Substituting the adaptive law (12) into (15) , it becomes 

˙ 
1 = −( λmin (L 1 ) ‖ 

e o ‖ 

− δ3 ) ‖ 

e o ‖ 

. 

This indicates ˙ 
1 < 0 as long as e o lies outside the compact set ‖ e o ‖ ≤ δ3 
λmin (L 1 ) 

. According to the Lyapunov stability theorem,
the fault observation error is UUB. This completes the proof. �
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3.3. Online PI algorithm 

In this subsection, we will introduce an online PI algorithm to overcome the difficulty in solving the HJB equation. The

PI algorithm consists of policy evaluation based on (4) and policy improvement based on (7) , and its iteration process can

be described as follows. 

This algorithm will converge to the optimal performance index function and optimal control policy, i.e., V 

( i ) ( x ) → J ∗( x )

and μ( i ) ( x ) → u ∗( x ) as i → ∞ [30] . 

3.4. Neural network implementation 

In this section, a single-layer neural network V ( x ) is employed to approximate the assumed differentiable performance

index function on the compact set � as 

V (x ) = W 

T 
c σ (x ) + ε c (x ) (16) 

where W c ∈ R 

l is the ideal weight vector, σ (x ) ∈ R 

l is the activation function, l is the number of neurons in the hidden layer,

and εc ( x ) is the approximation error of the neural network. Then, the gradient of (16) along with x is 

∇V (x ) = ( ∇σ (x ) ) 
T 

W c + ∇ε c (x ) (17) 

where ∇σ (x ) = 

∂σ (x ) 
∂x 

∈ R 

l×n and ∇εc ( x ) are the gradients of the activation function and the approximation error, respec-

tively. 

Substituting (17) into (4) , one can obtain 

0 = ρ ˆ u 

T 
a ˆ u a + U(x, μ) + 

(
( ∇σ (x ) ) 

T 
W c + ∇ε c (x ) 

)
˙ x . 

Thus, the Hamiltonian can be expressed as 

H ( x, μ, W c ) = ρ ˆ u 

T 
a ˆ u a + U(x, μ) + W 

T 
c ∇ σ (x ) ̇ x = −∇ ε c (x ) ̇ x 

�= e cH (18) 

where e cH is the residual error due to the neural network approximation. 

Since the ideal weight of vector W c is unknown, the critic neural network is employed to approximate V ( x ) as 

ˆ V (x ) = 

ˆ W 

T 
c σc (x ) . 

Then, the gradient of ˆ V (x ) can be expressed as 

∇ ̂

 V (x ) = ( ∇σ (x ) ) 
T ˆ W c . 

Thus, the approximate Hamiltonian can be obtained as 

H( x, μ, ˆ W c ) = ρ ˆ u 

T 
a ˆ u a + U(x, μ) + 

ˆ W 

T 
c ∇σ (x ) ̇ x 

�= e c . 

Let θ = ∇σc (x ) ̇ x , and define the weight approximation error as ˜ W c = W c − ˆ W c . By (18) and (20) , one has 

e c = e cH − ˜ W 

T 
c θ . 

The weight approximation error can be updated as 

˙ ˜ W c = − ˙ ˆ W c = l( e cH − ˜ W 

T 
c θ ) θ . (19) 

In order to tune the critic neural network weight vector ˆ W c , the objective function E c = 

1 
2 e 

T 
c e c should be minimized by the

normalized gradient algorithm. ˆ W c should be updated as 

˙ ˆ W c = −le c θ (20) 

where l > 0 is the learning rate of the critic neural network. 

Hence, according to (7) and (16) , the ideal control policy can be described as 

μ(x ) = −1 

2 

R 

−1 g T (x ) 
(
( ∇σ (x ) ) 

T 
W c + ∇ε c (x ) 

)
. 

It can be approximated as 

ˆ μ(x ) = −1 

2 

R 

−1 g T (x ) ( ∇σ (x ) ) 
T ˆ W c . (21) 

The structural diagram of the observer based ADP scheme for FTC is depicted in Fig. 1 . 

Remark 2. From the approximate control policy (21) , we can observe that it can be derived depending only on the critic

neural network, whose weight vector can be updated by (20) . Meanwhile, the training of the action neural network is no

longer required. Hence, it is feasible for the implementation and computation. 
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Fig. 1. The structural diagram of observer based ADP scheme for FTC. 

 

 

 

 

Theorem 3. Considering the nonlinear system (1) without an actuator failure, if the weights of the critic neural network are

updated by (19) , then the weight approximation error is UUB. 

Proof. Select the Lyapunov function candidate as 


2 = 

1 

2 l 
˜ W 

T 
c 

˜ W c . 

Its time derivative is 

˙ 
2 = 

1 

l 
˜ W 

T 
c 

˙ ˜ W c 

= 

˜ W 

T 
c 

(
e cH − ˜ W 

T 
c θ

)
θ

= 

˜ W 

T 
c e cH θ −

∥∥ ˜ W 

T 
c θ

∥∥2 

≤ 1 

2 

e 2 cH −
1 

2 

∥∥ ˜ W 

T 
c θ

∥∥2 
. 

Hence, ˙ 
2 < 0 if ˜ W c lies outside the compact set ‖ ̃  W c ‖ ≤ ‖ e cH 
θM 

‖ with assumption ‖ θ‖ ≤ θM 

, where θM 

is a positive constant.

According to the Lyapunov stability theorem, the weight approximation error is UUB. This completes the proof. �

3.5. Stability analysis 

Theorem 4. Assume that the neural network based HJB solution to the optimal control problem exists. For the considered system

(1) , the approximate FTC policy (21) can guarantee the closed-loop system UUB with the performance index function (2) . 

Proof. Select the Lyapunov function candidate as 


3 = 

1 

2 

x T x + J ∗(x ) . 

Its time derivative is 

˙ 
3 = x T ˙ x + ( ∇J ∗(x ) ) 
T 

˙ x 

= x T ( f (x ) + g(x )(μ − u a ) ) + ( ∇J ∗(x ) ) 
T 
( f (x ) + g(x )(μ − u a ) ) 

= x T f (x ) + x T g(x ) μ − x T g(x ) u a − ( ∇J ∗(x ) ) 
T 

g(x ) u a + ( ∇J ∗(x ) ) 
T 
( f (x ) + g(x ) μ) . (22 )

According to (4), (22) becomes 

˙ 
3 = x T f (x ) + x T g(x ) μ − x T g(x ) u a − ( ∇J ∗(x ) ) 
T 

g(x ) u a − ρ ˆ u 

T 
a ˆ u a − x T Qx − μT Rμ. 
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As f ( x ) is locally Lipchitz, there exists a positive constant D f such that ‖ f ( x ) ‖ ≤ D f ‖ x ‖ . Assume that ‖ g ( x ) ‖ ≤ D g . By Young’s

inequality, we can obtain 

˙ 
3 ≤ D f ‖ 

x ‖ 

2 + 

1 

2 

‖ 

x ‖ 

2 + 

1 

2 

D 

2 
g ‖ 

μ‖ 

2 + 

1 

2 

‖ 

u a ‖ 

2 + 

1 

2 

D 

2 
g ‖ 

x ‖ 

2 − ( ∇J ∗(x ) ) 
T 

g(x ) u a − ρ ˆ u 

T 
a ˆ u a 

− λmin (Q ) ‖ 

x ‖ 

2 − λmin (R ) ‖ 

μ‖ 

2 

= −
(
λmin (Q ) − D f −

1 

2 

D 

2 
g −

1 

2 

)
‖ 

x ‖ 

2 −
(
λmin (R ) − 1 

2 

D 

2 
g 

)
‖ 

μ‖ 

2 + 

1 

2 

‖ 

u a ‖ 

2 

− ( ∇J ∗(x ) ) 
T 

g(x ) u a − ρ ˆ u 

T 
a ˆ u a . (23 ) 

Substituting (8) into (23) , it follows 

˙ 
3 ≤ −
(
λmin (Q ) − D f −

1 

2 

D 

2 
g −

1 

2 

)
‖ 

x ‖ 

2 −
(
λmin (R ) − 1 

2 

D 

2 
g 

)
‖ 

μ‖ 

2 + 

1 

2 

‖ 

u a ‖ 

2 + 2 μT Ru a − ρ ˆ u 

T 
a ˆ u a 

≤ −
(
λmin (Q ) − D f −

1 

2 

D 

2 
g −

1 

2 

)
‖ 

x ‖ 

2 −
(
λmin (R ) − 1 

2 

D 

2 
g − R 

2 
)
‖ 

μ‖ 

2 + 

3 

2 

‖ 

u a ‖ 

2 − ρ ˆ u 

T 
a ˆ u a 

= −
(
λmin (Q ) − D f −

1 

2 

D 

2 
g −

1 

2 

)
‖ 

x ‖ 

2 −
(
λmin (R ) − 1 

2 

D 

2 
g − R 

2 
)
‖ 

μ‖ 

2 

−
(
ρ − 3 

2 

)
ˆ u 

T 
a ˆ u a + 

3 

2 

(‖ 

u a ‖ 

2 − ˆ u 

T 
a ˆ u a 

)
. 

Noticing (9) , it follows 

˙ 
3 ≤ −
(
λmin (Q ) − D f −

1 

2 

D 

2 
g −

1 

2 

)
‖ 

x ‖ 

2 −
(
λmin (R ) − 1 

2 

D 

2 
g − R 

2 
)
‖ 

μ‖ 

2 −
(
ρ − 3 

2 

)
ˆ u 

T 
a ˆ u a + 

3 

2 

(2 δ1 + δ2 ) δ2 

= −
(
λmin (Q ) − D f −

1 

2 

D 

2 
g −

1 

2 

)
‖ 

x ‖ 

2 −
(
λmin (R ) − 1 

2 

D 

2 
g − R 

2 
)
‖ 

μ‖ 

2 −
(
ρ − 3 

2 

)
ˆ u 

T 
a ˆ u a + δb 

where δb = 

3 
2 
(2 δ1 + δ2 ) δ2 . Hence, we can observe that ˙ 
3 ≤ 0 when x ( t ) lies outside the compact set ‖ x ‖ ≤ δb 

λmin (Q ) −D f −D 2 g − 1 
2 

if

the following conditions hold: ⎧ ⎨ 

⎩ 

λmin (Q ) ≥ D f + 

1 
2 

D 

2 
g + 

1 
2 

λmin (R ) − R 

2 ≥ 1 
2 

D 

2 
g 

ρ ≥ 3 
2 
. 

Therefore, the state trajectories of the closed-loop system under the FTC input are UUB. This completes the proof. �

4. Simulation studies 

In order to show the effectiveness of the proposed FTC based on ADP, two simulation examples are given in this section.

Example 1. A torsional pendulum system is employed to examine the control performance of the proposed FTC scheme

[21] . The system dynamics of the torsional pendulum with an actuator failure is as follows: ⎧ ⎨ 

⎩ 

d θ

d t 
= ω 

J 
d ω 

d t 
= ( u − u a ) − Mgl sin θ − f d 

d θ

d t 
. 

where M = 

1 
3 kg and l = 

2 
3 m are the mass and length of the pendulum bar, respectively. The angle θ and the angular

velocity ω are the system states. u a (t) ∈ R is an unknown actuator failure, which we choose as 

u a (t) = 

{
0 , 0 ≤ t ≤ 30 s 

0 . 3 + 0 . 5 sin 

(
3 t 
2 π

)
, 30 s < t ≤ 60 s . 

Let J = 

4 
3 Ml 2 and f d = 0 . 2 be the rotary inertia and frictional factor, respectively. Let g = 9 . 8 m/s 2 be the gravitational accel-

eration. 

Define x = [ x 1 , x 2 ] 
T = [ θ, ω ] T ∈ R 

2 . Let the initial state of the torsional pendulum system and the observed state be

x 0 = [ 1 , −1 ] T and ˆ x 0 = [ 2 , −2 ] T , and the admissible control be u = [ −0 . 4 , −0 . 8 ] x . In this simulation, the performance in-

dex function is approximated by a critic neural network, whose weight vector is denoted as ˆ W c = [ ̂  W c1 , ˆ W c2 , ˆ W c3 ] 
T , and its

initial value is ˆ W c0 = [ 5 , 3 , 7 ] T . The activation function of the critic neural network is chosen as σc (x ) = [ x 2 
1 
, x 1 x 2 , x 2 

2 
] . Let

Q = I 2 and R = 0 . 05 I 1 , where I n denotes the n × n identity matrix, the fault observer gain be L 1 = 20 I 2 , the learning rate of

the critic neural network and actuator failure be l 1 = 0 . 01 and L 2 = 50 I 1 , and the gain in performance index function (3) be

ρ = 8 , respectively. The initial value of the actuator failure is chosen as u = 1 . 
a 0 
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Fig. 2. The weights of the critic neural network. 

Fig. 3. The estimated fault based on the fault observer. 

 

 

 

 

 

 

The simulation results are illustrated in Figs. 2–5 . We can see in Fig. 2 , the weights of the critic neural network converge

to [ 5 . 091011 , 3 . 802569 , 4 . 409337 ] T with the proposed algorithm. As the estimated value of actuator failure ˆ u a is required

in the constructed performance index function (3) , Fig. 3 shows the precise estimation performance of the actuator failure,

which is the key point in the proposed FTC method. As shown in Fig. 4 , the converged system states under the ADP based

FTC are shown for the system suffers from an actuator failure. Fig. 5 illustrates the control input. We can observe that

after the failure occurs at t = 30 s , the control input presents a change against the failure, so that an acceptable control

performance can be derived. Therefore, the simulation results demonstrate that the proposed FTC scheme is effective. 

Example 2. Consider the following nonlinear system with an actuator failure: 

˙ x = 

⎡ 

⎢ ⎣ 

x 2 − x 1 
−0 . 5 x 1 − 0 . 5 x 2 + 0 . 5 x 2 ( cos (2 x 1 ) + 2 ) 

2 

x 4 − x 3 
−x 3 − 0 . 5 x 4 + 0 . 5 x 4 x 

2 

⎤ 

⎥ ⎦ 

+ 

⎡ 

⎢ ⎣ 

0 0 

cos (2 x 1 ) + 2 0 

0 0 

0 x 3 

⎤ 

⎥ ⎦ 

(u − u a ) 
3 
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Fig. 4. The system states under the ADP based FTC input. 

Fig. 5. The system input of the proposed FTC scheme. 

 

 

 

 

 

 

 

where x = [ x 1 , x 2 , x 3 , x 4 ] 
T ∈ R 

4 and u = [ u 1 , u 2 ] 
T ∈ R 

2 are the state and control input variables, respectively. The term

u a = [ u a 1 , u a 2 ] 
T ∈ R 

2 reflects the unknown actuator failure, which we choose as 

u a (t) = 

{
[ 0 , 0 ] 

T 
, 0 ≤ t ≤ 10 s 

[ 6 , 0 ] 
T 
, 10 s < t ≤ 20 s 

for the purpose of simulation. 

Let the initial system state be x 0 = [ 1 , −1 , 1 , −1 ] 
T 
, the initial observed state be ˆ x 0 = [ 2 , −2 , 2 , −2 ] 

T 
, and the initial

admissible control policy be u = [ −0 . 2 , −0 . 4 , −0 . 6 , −0 . 8 ] x, respectively. We employ a critic neural network to approxi-

mate the performance index function, and its weight vector is denoted as ˆ W c = 

[
ˆ W c1 , ˆ W c2 , . . . , ˆ W c10 

]T 
, whose initial value

is ˆ W c0 = [ 20 , 25 , 80 , 10 , 90 , 15 , 60 , 50 , 35 , 75 ] 
T . The activation function of the critic neural network is chosen as σc (x ) =[

x 2 1 , x 1 x 2 , x 1 x 3 , x 1 x 4 , x 2 2 , x 2 x 3 , x 2 x 4 , x 2 3 , x 3 x 4 , x 2 4 

]
. Let Q = I 4 , R = 0 . 05 I 2 , the fault observer gain be L 1 = 20 I 4 , the learn-

ing rate of the critic neural network and actuator failure be l 1 = 0 . 5 and L 2 = 50 I 2 , and the gain in performance index

function be ρ = 5 , respectively. The initial value of the actuator failure vector is chosen as u = [ 0 , 0 ] 
T . 
a 0 
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Fig. 6. The weights of the critic neural network. 

Fig. 7. The estimated fault based on the fault observer. 

 

 

 

 

 

 

 

 

By using the proposed algorithm, the weights of the critic neural network converge to [8 . 883293 , 4 8 . 669910 , 6 8 . 846 855 ,

34 . 323722 , 48 . 565825 , 40 . 415194 , 26 . 800737 , 38 . 819658 , 59 . 425341 , 37 . 962929] T . The simulation results are shown as

Figs. 6–9 , and from these figures, we can conclude similar results as in Example 1 . Therefore, we can declare the effective-

ness of the developed ADP based FTC scheme. 

5. Conclusions 

An observer based ADP algorithm for the FTC problem of a class of nonlinear systems with actuator failures is devel-

oped in this paper. With the help of the estimated failure from the fault observer, a novel performance index function is

constructed to account for the system failure. Thus, the FTC problem can be transformed into an optimal control problem.

A critic neural network is constructed to solve the improved HJB equation online, and the approximated optimal controller

can be directly derived. Based on the Lyapunov stability theorem, the closed-loop system is guaranteed to be UUB. Two

numerical simulations are provided to reinforce the theoretical results. 
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Fig. 8. The system states under the ADP based FTC input. 

Fig. 9. The system input of the proposed FTC scheme. 
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