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Abstract— In many face recognition applications, the modali-
ties of face images between the gallery and probe sets are differ-
ent, which is known as heterogeneous face recognition. How to
reduce the feature gap between images from different modalities
is a critical issue to develop highly accurate face recognition algo-
rithm. Recently, Joint Bayesian (JB) has demonstrated superior
performance on general face recognition compared to traditional
discriminant analysis methods like subspace learning. However,
the original JB treats the two input samples equally and does
not take into account the modality difference between them and
may be sub-optimal to address the heterogeneous face recognition
problem. In this work, we extend the original JB by modeling
the gallery and probe images using two different Gaussian
distributions to propose a Heterogeneous Joint Bayesian (HJB)
formulation for cross-modality face recognition. The proposed
HJB explicitly models the modality difference of image pairs and
therefore is able to better discriminate the same/different face
pairs accurately. Extensive experiments conducted in the case of
VIS-NIR and ID photo vs. spot face recognition problems show
the superiority of HJB over previous methods.

Index Terms—Cross Modality, Heterogeneous Face Recogni-
tion, Joint Bayesian.

I. INTRODUCTION

Heterogeneous face recognition is a common issue in many
face recognition applications, where the gallery and the probe
face images come from different modalities. For example, in
the application of access control, the gallery is usually con-
trolled visible (VIS) photo, while the probe sometimes prefers
to be near-infrared (NIR) image which is robust to illumina-
tion variations [1]. This is a cross-modality face recognition
problem between VIS and NIR face images. In the remote face
verification, which is increased in recent years, the gallery is
usually the ID photo captured in the constrained condition,
while the probe is the face image captured by cellphone or
webcam in a more arbitrary environment, which contains more
variations of lighting, pose, expression, accessory etc.

Up to now, many approaches have been proposed to address
the heterogeneous face recognition problem. One category is
to extract modality-invariant features to reduce the feature gap
between different modalities so that the face images from
different modalities can be well matched. Liao et al. [2] uses
DoG to obtain the normalized appearances from different
modalities, and uses MB-LBP to extract discriminative fea-
tures. Zhang et al. [3] proposes a face descriptor based on
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coupled information-theoretic encoding to capture the local
face structure of photo and sketch face images. Liu et al. [4]
derives light source invariant features to extract invariant parts
between the different modalities. Lei et al. [5] extends the
discriminative local features in a coupled way to reduce the
difference between features of heterogeneous face images.

Another sort of methods focus on coupled metric or clas-
sifier learning. Lin et al. [6] proposes to learn two trans-
forms simultaneously and transform the inputs from different
modalities to a common features space. LSR-LDA [7] copes
with the irregular distribution of heterogeneous face data to
improve the conventional LDA. Lei et al. [8], [9] propose to
learn two coupled projections to map the face images from
different modalities to a common subspace in which good
discrimination can be gained. Klare et al. [10], [11] try to
learn multiple projections for forensic sketch-photo matching.
MCA [12] uses a learned generative model to infer the mutual
components of different modalities.

Besides, researchers also propose to deal with heteroge-
neous face recognition in an analysis-by-synthesis way. Face
Analogy [13] performs heterogeneous face matching by trans-
forming face images from one modality to another. Xu et
al. [14] proposes to reconstruct face image from each other
modality by using a learnt `-0 minimization based dictionary.
Other methods [15], [16] apply the depth information and LBP
to accomplish the recognition task.

In recent years, deep learning methods have achieved great
success in many computer vision tasks including face recogni-
tion. Certain deep convolutional neural network (CNN) models
have been successively applied for general face recognition,
such as DeepID2 [17], VGG Face [18] etc. There are also some
pioneering works to address cross-modality face recognition
by using deep learning methods. Yi et al. [19] uses the
Gabor feature and RBM to learn shared representation in order
to reduce the heterogeneity in the encoder layer. Ensemble
ELM [20] and MTC-ELM [21] employ the extreme learning
machine for the feature learning of cross-modality face images.
TRIVET [22] pretrains a deep CNN on a large dataset of
general human face, and finetunes it on the heterogenous face
dataset.

Recently, the Joint Bayesian (JB) [23] method is proposed
to model the intra and inter face pairs effectively for general
face recognition. As a metric learning method, the JB method
achieves superior accuracies of recognition with both the
traditional features [23] and the deep learning features [17].
However, the JB method does not take into account the
heterogeneity in cross-modality face recognition. Inspired by
the effectiveness of the JB method, we extend it to the range
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of heterogeneous face recognition.
To this end, in this paper, we reformulate the JB method

in an asymmetric form, namely Heterogeneous Join Bayesian
(HJB), in which the heterogeneity is taken into account for
learning a more effective metric across different modalities.
The HJB considers the two inputs as the samplings from two
different Gaussian distributions, and optimize the asymmetric
metric with respect to the log likelihood ratio across modali-
ties. In this way, HJB surpasses the baseline JB, and achieves
the state-of-the-art performance for the heterogeneous face
recognition. Extensive experiments on NIR-VIS and ID photo
vs. spot faces validate the superiority of HJB1.

The remainder of this paper is organized as follows. In Sec-
tion II, we revisit the ordinary JB method. In Section III, we
introduce the novel formulation of HJB and its solution using
the expectation maximization (EM) method. In Section IV,
we conduct the comparison of HJB with previous methods
on several benchmarks of NIR vs. VIS and ID vs. spot face
recognition. We conclude the paper in Section V.

II. REVISIT OF JOINT BAYESIAN

Let x be the representation of human face image. x is sup-
posed to be comprised by two independent random variables
µ and ε, i.e. x = µ + ε. The variable µ and ε represents the
identity and the intra-class variations (e.g. pose, expression,
illumination etc.). As described in the previous works [24],
[25], µ and ε can be regarded as two independent zero-mean
Gaussian variables, i.e. µ ∼ N (0, Sµ) and ε ∼ N (0, Sε).
As the sum of µ and ε, x follows the Gaussian distribution
N (0, Sµ + Sε) as well. Consider two inputs x1 and x2, their
joint distribution is also gaussian. Denote HI the hypothesis
the two inputs belong to the same subject, and HE the
hypothesis of different subjects. One can write the covariance
matrix of the intra-class joint distribution P (x1, x2|HI) as

ΣI =

[
Sµ + Sε Sµ
Sµ Sµ + Sε

]
, (1)

and the counterpart of the inter-class joint distribution
P (x1, x2|HE) as

ΣE =

[
Sµ + Sε 0

0 Sµ + Sε

]
. (2)

The assumption behind this neat formulation is that the identity
µ and the intra-class variations ε are independent. To measure
the similarity between x1 and x2, the log likelihood ratio is
computed by

r(x1, x2) = log
P (x1, x2|HI)

P (x1, x2|HE)
= xT1 Ax1+xT2 Ax2−2xT1Gx2.

(3)
One can refer to the original proposal [23] for the calculation
details of the matrices A and G.

III. HETEROGENEOUS JOINT BAYESIAN

In this section, we introduce the asymmetric formulation of
HJB and the solution via EM algorithm.

1The source code of HJB will be released at
http://www.cbsr.ia.ac.cn/users/hailinshi/

A. Asymmetric Model

By breaking the x1-x2 symmetry in the original JB, we
introduce the gallery x and the probe y as two different random
variables, and their decompositions as x = µx + εx and y =
µy + εy . The variables µx, µy are the identity variations, εx,
and εy are the intra-class variations, all of which follow the
zero-mean gaussians, i.e. µx ∼ N (0, Sxx), µy ∼ N (0, Syy),
εy ∼ N (0, Txx) and εx ∼ N (0, Tyy). Here, Sxx, Syy, Txx and
Tyy are the corresponding covariances respectively. To reveal
the connection between the gallery and probe, we introduce the
covariance of the cross-modality identity variations between x
and y as

Sxy = cov(µx, µy), (4)

Syx = cov(µy, µx), (5)

which are mutual transposes Sxy = STyx. The cov(·, ·) denotes
the covariance. Consequently, the covariance matrix of the
intra-class joint distribution P (x, y|HI) is written as

ΣI =

[
Sxx + Txx Sxy

Syx Syy + Tyy

]
, (6)

and the counterpart of the inter-class joint distribution
P (x, y|HE) is written as

ΣE =

[
Sxx + Txx 0

0 Syy + Tyy

]
. (7)

With these covariance matrices, we revise the cross-modality
log likelihood ratio of x and y as

r(x, y) = log
P (x, y|HI)

P (x, y|HE)
= xTAx+ yTBy − 2xTGy, (8)

where
A = (Sxx + Txx)−1 − E, (9)

B = (Syy + Tyy)−1 − F, (10)[
E G
GT F

]
=

[
Sxx + Txx Sxy

Syx Syy + Tyy

]−1

. (11)

B. Solution

Based on the learning process in [23], we develop the EM-
fashion algorithm to estimate the covariances Sxx, Syy , Txx,
Tyy and Sxy for each modality separately.

1) E-step: We introduce two latent variables hx and
hy , composed by hx =

[
µx, εx,1, . . . , εx,ng

]T
and hy =[

µy, εy,1, . . . , εy,np

]T
, corresponding to the galleries x =[

x1, . . . , xng

]T
and probes y =

[
y1, . . . , ynp

]T
, respectively,

of each subject.
Considering the decomposition of identity variations and

intra-class variations, the galleries and the probes can be
represented by the latent variables as x = Pxhx and y =
Pyhy , where Px and Py are the matrices with the form of

I I 0 . . . 0
I 0 I . . . 0
...

...
...

. . .
...

I 0 0 . . . I

. I is identity matrix. Obviously, the latent

variables also follow the gaussian distributions. Based on
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the algorithm in [23], we compute the expectation of latent
variables in each modality by

E(hx|x) = Σhx
PTxΣ−1

x x

=


Sxx 0 . . . 0
0 Txx . . . 0
...

...
. . .

...
0 0 . . . Txx




I I . . . I
I 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 0 . . . I



Sxx + Txx Sxx . . . Sxx

Sxx Sxx + Txx . . . Sxx
...

...
. . .

...
Sxx Sxx . . . Sxx + Txx


−1 

x1
x2
...
xng

 ,
(12)

E(hy|y) = Σhy
PTy Σ−1

y y

=


Syy 0 . . . 0
0 Tyy . . . 0
...

...
. . .

...
0 0 . . . Tyy




I I . . . I
I 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 0 . . . I



Syy + Tyy Syy . . . Syy

Syy Syy + Tyy . . . Syy
...

...
. . .

...
Syy Syy . . . Syy + Tyy


−1 

y1
y2
...
ynp

 .
(13)

On the right side of Equation (12) and (13), Σhx
and Σhy

are
the covariances of the latent variables hx and hy . Σx is the
covariance matrix of the joint distribution of the intra-class
set x. Σy is the counterpart for y. To start the E-step, the
parameters Sxx, Syy , Txx and Tyy are initialized by the inter-
and intra-class covariances of the training set.

2) M-step: Once the latent variables hx and hy are es-
timated in the E-step, we compute the covariances of µx,
µy , εx, and εy , and use them to update the parameters, i.e.
Sxx = cov(µx, µx), Syy = cov(µy, µy), Txx = cov(εx, εx),
Tyy = cov(εy, εy) and Sxy = cov(µx, µy).

We train the model with the EM algorithm for a few itera-
tions when the algorithm converges (generally in 2 iterations).
Then, we use the formulas (9), (10) and (11) to compute the
model components A, B and G, and the log likelihood ratio
(Equation (8)) for testing.

IV. EXPERIMENTS

We examine the performance of HJB compared with the
previous methods including LCKS-CSR [26], MTC-ELM [21],
NIR-VIS Reconstruction + UDP (DLBP) [14] and other state-
of-the art methods on three databases, i.e., CASIA-HFB [26],
CASIA NIR-VIS 2.0 [27] and a private database consisting of
ID photo and spot face images.

A. Experiments on CASIA-HFB

CASIA HFB contains 300 subjects, with around 5 NIR
images and 5 VIS images per subject. In this part, we follow

Rank-1
Accuracy

VR
@FAR=10%

VR
@FAR=1%

VR
@FAR=0.1%

LDA [24] 72.43% 48.75% 26.55% 14.04%
CDFE [6] 16.10% 40.05% 12.75% 3.41%

LDA + CCA [28] 72.65% 42.90% 25.76% 13.79%
LCSR [8] 81.12% 71.28% 51.07% 33.98%

LCKS-CDA [26] 73.18% 54.11% 31.21% 16.61%
LCKS-CSR [26] 81.43% 75.18% 54.81% 35.69%

JB 82.30% 73.75% 50.31% 18.19%
HJB 85.49% 80.82% 59.30% 33.65%

TABLE I: Performance comparison with the previous methods
on CASIA-HFB.

the same protocol as in [26]. We use the images from the first
150 persons to form the training set and the left images to form
the testing set. All the images are cropped into 32x32 gray
images according automatically detected eye locations. Some
cropped examples are shown in Fig. 1. The pixel intensity is
directly used as input. In testing, the VIS images are used as
the gallery set and the NIR ones are used as the probe set.

Fig. 1: CASIA-HFB database. Top: NIR images. Bottom: VIS
images. Each column belongs to an identity.

We compare HJB method with previous methods including
traditional homogenous method like LDA [24] and heteroge-
neous face recognition methods including LCSR [8], LDA +
CCA [28], CDFE [6], LCKS-CDA [26] and LCKS-CSR [26]
methods. The face recognition is evaluated in terms of rank-1
accuracy and ROC performance.

Table I shows the rank-1 accuracy and verification rate (VR)
at different rate of false accept rate (FAR). From the results,
one can see that:

• For the homogeneous face recognition methods, the orig-
inal JB achieves better performance than LDA, indicating
that JB has good ability as a baseline for the heteroge-
neous face recognition. This leads to the basic motivation
that we develop heterogeneous Joint Bayesian to exploit
its advantage.

• Comparing HJB with JB, one can see that HJB achieves
significantly better performance than JB, especially at the
low FAR. HJB enhances JB about 7 to 15 percents in ver-
ification rate with different FARs. It validates HJB does
improve the heterogeneous face recognition performance
by taking into account the modality difference in learning
process.

• HJB outperforms previous heterogeneous face recogni-
tion methods in most cases. It improves about 4 percents
over the previously best method (LCKS-CSR), validating
HJB is an effective method to address heterogeneous face
recognition problem.
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Rank-1 Accuracy VR@FAR=0.1%
Cognitec [29] 58.56± 1.19% N/A

CDFL [30] 71.5± 1.4% 55.1%
DSIFT + LDA [29] 73.28± 1.10% N/A
Gabor + RBM [19] 86.16± 0.98% 81.29± 1.82%

NIR-VIS Reconstruction
+ UDP (DLBP) [14] 78.46± 1.67% 85.80%

MTC-ELM [21] 89.1% N/A
TRIVET [22] 95.7 ± 0.5% 91.0 ± 1.3%

Gabor + JB 89.45± 0.79% 83.28± 1.03%
Gabor + HJB 91.65 ± 0.89% 89.91 ± 0.97%

TABLE II: Performance comparison with the state of the art
on CASIA NIR-VIS 2.0.

B. Experiments on CASIA NIR-VIS 2.0

The CASIA NIR-VIS 2.0 [27] is the largest and most
popular database for the NIR-VIS face recognition task. It
contains 725 subjects, each of which has 1-22 VIS and 5-50
NIR face images. Under the View2 protocol, the evaluation
is performed via the 10-fold process, In each fold, there are
357 subjects for training, and the remaining 358 subjects for
test. We compare the proposed HJB with the previous methods
which give the state-of-the-art performances on CASIA NIR-
VIS 2.0. Considering the good performance in [19], we use
the local Gabor features as the inputs of the proposed HJB. We
also compare the performance of our HJB with the baselines,
i.e. the original JB.

Table II shows the performance of different methods on
NIR-VIS 2.0 database. The result reveals that:

• The general face recognition method proposed by Cog-
nitec gives poor performances compared with the het-
erogeneous methods. It is critical to take into account
the difference between modalities for heterogeneous face
recognition.

• Compared with Gabor + RBM [19], Gabor + HJB gains
significantly better performance. It improves the RBM
method by about 5 percents in both rank-1 and veri-
fication performance, validating the superiority of HJB
compared to RBM.

• HJB outperforms the previous state-of-the-art methods
except the method TRIVET which trains a deep CNN
on a large out-side dataset. Without any help of CNN,
our HJB shows its effectiveness for the heterogeneous
face recognition.

C. Experiments on ID vs. spot recognition

To further evaluate the HJB, we collect an ID vs. spot
face dataset, with 10,000 identities in it. Each identity has
an ID photo and a spot photo (Fig. 2). The ID photos
and the spot photos are captured under different conditions
(i.e. the lightening, background, pose etc.). This is a very
challenging dataset due to the significant difference between
the modalities, and the large variations in the spot set.

Because each subject has only one ID photo (gallery) and
one spot photo (probe), we are not able to estimate the intra-
class covariances εx and εy . Instead, we suppose εx and εy are
not random but determined entities. Therefore, the components

Fig. 2: Top: ID photos. Bottom: Spot photos. Each column
belongs to an identity.

Rank-1
Accuracy

VR
@FAR=10%

VR
@FAR=1%

VR
@FAR=0.1%

Cosine similarity 37.22% 76.07% 51.21% 29.67%
LDA 38.36% 86.65% 56.66% 30.50%
JB 41.64% 85.67% 61.75% 38.13%

HJB 50.82% 94.74% 77.29% 55.10%

TABLE III: Performances on ID vs. spot.

Txx and Tyy vanish in the relevant computation, keeping the
rest part unchanged.

To perform the evaluation, we divide the dataset into 10
subsets with non-overlapping, equal number of subjects in
each. Then, the 10-fold cross-validation is performed. In each
fold, 9 subsets are used for training, and the remaining one
is used for test. We apply the features extracted by the model
from Yi et al. [31] as the input for this experiment.

(a) CMC (b) ROC

Fig. 3: CMC curves and ROC curves on the ID vs. spot
recognition task.

Table III lists the performance of different methods whose
corresponding CMC and ROC curves are shown in Fig. 3.
Four methods, including cosine similarity, LDA, JB and HJB,
are compared. As expected, LDA, JB and HJB, which learn
discriminative metric, achieve higher face recognition perfor-
mance than cosine similarity. HJB, which models the modality
differences, achieves the best and improves JB by a large
margin.

V. CONCLUSION

In this paper, we develop an asymmetric formulation from
Joint Bayesian model for heterogeneous face recognition. The
modality difference is involed so the HJB is more adaptive
to cross-modality face matching. The metric is learned via
optimizing the parameters in each modality separately. We
evaluate the HJB on the benchmarks of CASIA-HFB and CA-
SIA NIR-VIS 2.0, and obtain better results than the baseline
JB and most other existing methods. The effectiveness of HJB
is also validated in the case of ID vs. spot photo recognition.
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