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Abstract:    Perception is the interaction interface between an intelligent system and the real world. Without sophisticated and 
flexible perceptual capabilities, it is impossible to create advanced artificial intelligence (AI) systems. For the next-generation AI, 
called ‘AI 2.0’, one of the most significant features will be that AI is empowered with intelligent perceptual capabilities, which can 
simulate human brain’s mechanisms and are likely to surpass human brain in terms of performance. In this paper, we briefly review 
the state-of-the-art advances across different areas of perception, including visual perception, auditory perception, speech per-
ception, and perceptual information processing and learning engines. On this basis, we envision several R&D trends in intelligent 
perception for the forthcoming era of AI 2.0, including: (1) human-like and transhuman active vision; (2) auditory perception and 
computation in an actual auditory setting; (3) speech perception and computation in a natural interaction setting; (4) autonomous 
learning of perceptual information; (5) large-scale perceptual information processing and learning platforms; and (6) urban om-
nidirectional intelligent perception and reasoning engines. We believe these research directions should be highlighted in the future 
plans for AI 2.0. 
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1  Introduction 
 

The source of biological intelligence is the per-
ception of external stimuli. For example, the human 

brain perceives the outside world in real time through 
more than three million nerve fibers (more than one 
million fibers per eye). Similarly, perception is the 
interaction interface between an intelligent system 
and the real world. Without sophisticated and flexible 
perceptual capabilities, it is impossible to create ad-
vanced artificial intelligence (AI) systems. Just like a 
person has visual, auditory, taste, and other different 
sensory systems (Bear et al., 2001), perception in an 
AI system typically begins with (possibly distributed) 
sensor data in various modalities and forms. The 
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sensor data is processed and synthesized, often along 
with prior knowledge and models, to extract infor-
mation such as geometric features, attributes, location, 
and velocity that is relevant to the task of the AI sys-
tem. Therefore, integrated data from perception forms 
situational awareness that provides AI systems with 
comprehensive knowledge and models about the state 
of the world necessary to understand, plan, and exe-
cute tasks effectively and safely.  

For an animal from any species to exhibit intel-
ligent perception, it must be capable of being con-
sciously aware of what it perceives and capable of 
learning from this experience (Kendrick, 1998). That 
is, intelligent perception is the ability to both be aware 
and learn from it. In the AI community, researchers 
have struggled for several decades with the challenge 
of designing and implementing intelligent perception 
systems that can effectively simulate the brain’s 
mechanisms. Great success has been achieved with 
some specific problems and tasks such as face 
recognition in a constrained environment, especially 
given the recent advances in deep learning. However, 
these systems are still far from where they should be. 
For example, one of the main problems is that we 
often need to develop different computational algo-
rithms or tools for different perceptual tasks, while 
ignoring the correlation or dependency between these 
tasks. According to Mountcastle (1978), the cortex 
does something universal that can be applied to any 
type of sensory or motor system. Essentially, the brain 
uses the same process to see as to hear, to touch, to 
motion, etc. More importantly, future intelligent 
perception systems should not only simulate the brain 
effectively in terms of mechanism (referred to as 
‘human-like perception’), but also surpass the human 
brain in terms of performance (referred to as ‘trans-
human perception’). This is one of the most signifi-
cant features of the next-generation AI, called ‘AI 2.0’ 
by Pan (2016). Such a system is recognized as the 
next-generation, general-purpose AI, which will be 
beyond the theoretical capabilities and limitations of 
current AI. 

The main purpose of this article is to envision 
several R&D trends in intelligent perception in the 
forthcoming era of AI 2.0. Towards this end, we 
briefly review the state-of-the-art advances in dif-
ferent areas of perception, including visual perception, 
auditory perception, speech perception, perceptual 

information processing, and learning engines. We 
believe that these research directions should be high-
lighted in the future plans for AI 2.0.  

 
 

2  State of the art 
 

This section will briefly review the state-of-the- 
art across different areas of perception. After more 
than 30 years of continued efforts, many ideas have 
materialized into numerous transformative perception 
technologies. Due to space limitations, the following 
subsections will highlight only the recent progress in 
some of these areas. 

2.1  Visual signal acquisition 

In the field of signal acquisition, the Nyquist 
sampling theorem is a fundamental bridge between 
continuous-time signals (often called ‘analog signals’) 
and discrete-time signals (often called ‘digital sig-
nals’). Candès et al. (2006) proposed the theory of 
compressed sensing as a signal processing technique 
for efficiently acquiring and reconstructing a signal. 
This theory moves beyond certain limitations in the 
Nyquist sampling theorem, by assuming that the 
amount of signal to be sampled does not depend on 
the signal bandwidth but on its internal structure. If 
the signal is sparse in the original or a transformation 
domain, it can be projected onto the low-dimensional 
space using a measurement matrix that is dependent 
on the transform and that satisfies the restricted 
isometry property. Technologically speaking, com-
pressed sensing provides a new way to consider the 
relationship between the information and the signal.  

Basically, compressed sensing can be used in 
photography to reduce hardware complexity, increase 
the imaging frame rate, and improve image recon-
struction. This technology, called ‘compressive im-
aging’, provides a new approach incorporating more 
intelligent image acquisition, by transitioning from 
traditional imaging to information imaging. As a pi-
oneer work, a single pixel camera was developed at 
Rice University (Duarte et al., 2008), which could 
obtain an image or video with a single detection el-
ement (the ‘single pixel’) while measuring the scene 
fewer times than the number of pixels/voxels. Fol-
lowing that, a high-resolution, short-waved infrared 
compressed sensing camera was developed in 

http://cn.bing.com/dict/search?q=transition&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=traditional&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=to&FORM=BDVSP6&mkt=zh-cn
http://cn.bing.com/dict/search?q=information&FORM=BDVSP6&mkt=zh-cn
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McMackin et al. (2012), while a multi-view lenseless 
camera was developed in Jiang et al. (2014), in which 

aberration and focusing problems associated with 
lenses could be completely avoided. In Kadambi et al. 
(2013) and Tadano et al. (2015), the authors aimed to 
develop a unified theory and practical designs for 
adaptive coded imaging and display, which could 
adapt to scene geometry, motion, and illumination to 
maximize the information throughput. Obviously, 
new computational imaging theory and technologies 
such as ultra-high speed imaging and light-field im-
aging are highly desirable due to some recent large 
technological demands such as automated driving and 
virtual reality. 

2.2  Active vision—from looking to looking around 

In the past decades, computer vision has played 
an important role in AI. We have witnessed the dra-
matic change in various recognition tasks. After about 
30-year work on general object recognition and 3D 
recovery, researchers in the 1990s began focusing 
their attention on recognition of special objects such 
as faces, pedestrians, and vehicles (Turk and Pentland, 
1991). Now, computer vision systems are superior to 
human beings in large-scale face recognition tasks 
under controlled environments. Meanwhile, object 
categorization has been extended from several classes 
to thousands of classes (Deng et al., 2009). As one of 
the deep learning models, the convolutional neural 
network (CNN) and its derivatives have achieved 
great success in ImageNet and in other tasks 
(Krizhevsk et al., 2012). This achievement seemed to 
break the barrier to automatic recognition. However, 
this is misleading. Human beings, and even other 
animals, never look at something from a passive ac-
quisition of information point of view. They look 
around under various conditions, sometimes even 
touching and using other sensory organs. 

Therefore, active sensing and recognition will be 
the terminator in computer vision. In contrast to an 
animal’s active vision which can move only on six 
degrees of freedom (DoFs), an active computer vision 
system can have more DoFs. Some efforts in this 
regard have made significant progress in recent years. 
One example is Microsoft’s Kinect. With an active 
ejected infrared pattern, 3D reconstruction has be-
come easier than ever before. This kind of device 
takes image/video based human-computer interface 

(HCI) and other indoor applications a step forward 
(Han et al., 2013). Another example is city-scale 
reconstruction from multiple uncalibrated cameras 
(Musialski et al., 2013). Although these images are 
captured passively, the whole set can still be viewed 
as an active set. Self-driving cars, drones, and other 
mobile robots bring computer vision systems to a full 
capability of moving around in their environment. 
This mobility enables the computer vision system to 
observe an environment actively and continuously. 
Note that in the DARPA Robotics Challenge compe-
tition, continuous vision systems have shown their 
power preliminarily (Pratt and Manzo, 2013). 
Therefore, seeking methods to implement more 
comprehensive active sensing and recognition sys-
tems should be one of the most important tasks in the 
AI 2.0 era. 

2.3  Auditory perception and computation 

Auditory perception is a central pathway for 
information interaction in human beings. It usually 
occurs within a complicated auditory setting, which 
includes multiple sound sources and reverberation. 
However, machine auditory perception shows a sig-
nificantly lower performance in actual environments. 
To reduce the detrimental effects caused by compet-
ing sound sources, signal processing algorithms for 
speech enhancement based on the input of a single 
microphone were studied in the 1960s, and they have 
achieved a good performance for near-field record-
ings but were useless for far-field recordings (Rob-
inson and Treitel, 1967). In the 1970s, algorithms 
based on microphone arrays were studied to detect 
and enhance target sounds in far-field situations, but 
they usually worked well only for high signal-to- 
noise ratio (SNR) scenarios and, critically, they re-
quired identical microphones for recording (Roy and 
Kailath, 1989).  

With the recent development in CNNs, some 
algorithms have helped enhance target sound sources 
in a reverberant environment, and the limitation of 
identical microphones was partially relaxed (Niwa et 
al., 2016). However, they were still not efficient for 
settings with multiple sound sources. The auditory 
mechanism of binaural processing has revealed that 
the physical structure of the human ear and body is 
important for sound localization, and this information 
is conveyed by the human head related transfer  
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function (HRTF). A recent work using CNN to de-
modulate this function showed a promising result for 
multiple sound source settings and low SNR (Song et 
al., 2016). Nevertheless, the question of how to de-
velop effective auditory perception and computation 
algorithms in complicated auditory settings remains 
open, and it should be addressed in future research in 
the era of AI 2.0. 

2.4  Speech perception and computing 

Speech perception and computing are together 
one of the core technologies to achieve man-machine 
interaction in the AI 2.0 era. Typically, speech 
recognition and speech synthesis are the two main 
tasks of speech perception and computing. The aim of 
speech recognition is to convert spoken language into 
text using automatic algorithms. Current speech 
recognition systems usually adopt an acoustic model 
and a language model to represent the statistical 
properties of speech. Since 2009, deep learning tech-
niques have been applied to the acoustic modeling of 
speech recognition and they have achieved great 
success (Hinton et al., 2012). The word error rates 
(WERs) in speech recognition systems are signifi-
cantly reduced compared to conventional hidden 
Markov model (HMM) based acoustic modeling. The 
WERs of several representative systems using deep 
learning techniques are listed in Table 1, where 
Switchboard is a standard large-vocabulary conver-
sational speech recognition task. The latest progress 
reported by the Microsoft speech team devoted to this 
task is that it has reached human parity (Xiong et al., 
2016). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The aim of speech synthesis is to generate intel-
ligible and natural-sounding artificial speech for input 
text. A typical speech synthesis system is composed 
of two main modules, text analysis and speech 
waveform generation. Statistical parametric speech 
synthesis and unit selection are two mainstream ap-
proaches to speech waveform generation nowadays 
(Tokuda et al., 2013). Statistical models, such as 
HMMs or CNNs, play an essential role in both ap-
proaches (Ling et al., 2015). Current speech synthesis 
systems are able to produce reading-style utterances 
with high intelligibility and naturalness when enough 
training data is available and appropriate algorithms 
are applied (King, 2014).  

At present, there are still many challenges in the 
technological progress and industrial development of 
intelligent speech perception and computing. In the 
field of speech recognition, current techniques still 
have limitations. First, most of the existing methods 
are language or dialect dependent, and the self- 
learning capability of intelligent speech perception is 
very limited (Makhoul, 2016). Second, the problem of 
distant and noise-robust speech recognition has still 
not been solved well (Amodei et al., 2015). In the 
field of speech synthesis, there are still gaps between 
the naturalness of synthetic speech and the human 
voice. Moreover, the performance of synthesized 
speech uttered with high expressiveness like a human 
being remains unsatisfactory. 

2.5  Machine learning for perceptual information 

Although deep learning has achieved great suc-
cess in many tasks, we cannot explain exactly why 
such networks are effective theoretically. Recently, 
studies have emerged concerned with the mathemat-
ical theory of deep models. Mahendran and Vedaldi 
(2015) tried to understand deep representations by 
inverting them, reconstructing both the shallow and 
deep features to investigate the connections to the 
original signal. Bruna and Mallat (2013) proposed a 
scattering network based on cascades of wavelet fil-
ters and average operations. More details and math-
ematical demonstrations have been discussed to in-
terpret scattering networks. These studies proved that 
the combination of signal processing tools and ma-
chine learning methods helps build the theoretical 
basis of deep learning.  

Table 1  Performance of the speech recognition systems 
using deep learning techniques on the Switchboard part 
of the Hub5-2000 evaluation test set* 

System Amount of train-
ing data WER (%) 

Seide et al. (2011) 309 h 16.1 
Veselý et al. (2013) 309 h 12.6 
Soltau et al. (2014) 309 h 10.4 
IBM’s system  

(Saon et al., 2015) 
309 h   9.6 
2000 h   8.0 

Microsoft’s system  
(Xiong et al., 2016) 2000 h   5.9 

* A comparable HMM-based system achieved a WER of 23.6% 
(Seide et al., 2011). WER: word error rate 



Tian et al. / Front Inform Technol Electron Eng   2017 18(1):58-67 62 

Traditional deep learning models often rely on 
labeled data (Krizhevsk et al., 2012), which is very 
difficult and expensive to obtain, and thus the ability 
to use unlabeled data holds a significant promise. The 
ability to learn with unlabeled data could be treated as 
autonomous learning, since machines are not told 
what to learn. On the other hand, unsupervised 
learning had a catalytic effect in reviving interest in 
deep learning, but that has been overshadowed by the 
successes of purely supervised learning. Raina et al. 
(2007) described an autonomous learning approach to 
self-teach the models via sparse coding to construct 
higher-level features using the unlabeled data. Since 
unlabeled data is significantly easier to obtain than  
the typical supervised learning data, autonomous 
learning is widely applicable to many practical 
learning problems (Fig. 1). 

Moreover, traditional neural networks lack the 
memory for dynamic information input streams (such 
as video streams and voice streams) with strong cor-
relations. To address this issue, Hochreiter and 
Schmidhuber (1997) proposed a long short-term 
memory (LSTM) neural network, which can process 
sequence data. LSTM units can extract and store 
some previous correlative information.  

Note that deep networks have been successfully 
applied to learn models from a single modality, while 
in the real world, the information comes from  
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

different sources. For example, audio and visual data 
coming from the same video has correlations at a 
‘mid-level’. It is better for the networks to learn fea-
tures over multiple modalities. Ngiam et al. (2011) 
presented a multimodal learning framework and 
demonstrated that cross-modality feature learning is 
able to obtain better features compared with single- 
modality feature learning. Deep Boltzmann machines 
(Salakhutdinov and Hinton, 2009) are usually used to 
find a unified representation of different modes based 
on the probability density of a multimodal input. 

In summary, the development of more effective 
autonomous learning models and algorithms for var-
ious types of perceptual information and data should 
be one of the central tasks for AI 2.0. 

2.6  Large-scale processing and learning platform 

To achieve high performance, deep learning al-
gorithms often require incredible amounts of data and 
computational power to train a recognition or classi-
fication model, and in this regard, hardware acceler-
ation is highly desirable. Clusters of graphics pro-
cessing units (GPUs) are the most popular solution 
and have been widely used in many open-source deep 
learning platforms, such as Google TensorFlow, Mi-
crosoft DMTK, Samsung Veles, Baidu Paddle, and 
DMLC MXNet. As reported in the NVIDIA DGX-1 
Deep Learning System, the training speed of a GPU  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  The potential autonomous learning directions for intelligent perception 
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could be 75 times faster than that of a CPU. In addi-
tion, studies on deep-learning-friendly field pro-
grammable gate arrays (FPGAs) (Lacey et al., 2016) 
are also active, focusing on data parallelism, model 
parallelism, and pipeline parallelism. Except for 
computing units, some neural-network-like sensors 
are also designed to speed up the data processing of 
deep learning. 

Another key for large-scale applications in ma-
chine learning is the use of commercial machine 
learning clouds. On the cloud, data scientists no 
longer need to manage the infrastructure or imple-
ment their codes; instead, the cloud system automat-
ically performs this work for them and generates a 
new model in real time, which is faster and will pro-
vide more accurate results. To date, Microsoft, 
Google, HP, and IBM have released their own ma-
chine learning clouds. Chinese corporations and re-
searchers need to build their own commercial ma-
chine learning clouds to boost the application of 
large-scale machine learning. Towards this end, the 
ability of these machine learning cloud systems to 
cope with the huge amounts of perception data needs 
to be extensively verified.  

2.7  A typical application paradigm: urban intel-
ligent surveillance system 

Public security is a growing problem for cities 
worldwide. A smart city should first be a safe city. To 
this end, urban surveillance is becoming increasingly 
important in a modernized safe city. With the fast 
development and deployment of all kinds of digital-
ized devices in every aspect of people’s daily life, 
intelligent surveillance systems and the Internet of 
Things are drawing extensive attention from both 
research and industrial communities. Governments 
from the US, Canada, the EU, Japan, and China have 
all launched a series of related projects to improve the 
social and public security. By 2014, there were more 
than 300 cities around the world that aimed to build 
an intelligent city (Hou and Jiao, 2014). Global 
transnational corporations like IBM, Cisco, Siemens, 
Huawei, and Hikvision have invested enormously in 
the study and development of related solutions and 
products for intelligent surveillance systems. 

From a technological perspective, an urban 
surveillance system usually involves a set of inde-
pendent or weakly related sub-systems such as traffic 

monitoring systems (Zhang et al., 2011), crowd 
analysis systems (Li et al., 2015), criminal tracking 
systems (Zheng et al., 2016), and property protection 
systems (Kale and Sharma, 2014). These sub-systems 
focus mainly on multi-source heterogeneous infor-
mation processing, e.g., exploiting potential infor-
mation behind surveillance video data to organize it 
into a structured video surveillance repository. How-
ever, they always encounter different sorts of bottle-
necks in handling the scenarios of spatio-temporal 
large-span sensing, multi-layer multi-view analysis, 
and multi-source heterogeneous information fusion 
from a panoramic view. Therefore, there is an urgent 
need to promote an accelerated development of urban 
surveillance systems in order to reach a new fully 
intelligent surveillance sensing and reasoning engine. 

 
 

3  R&D trends 
 

Despite many research efforts devoted to intel-
ligent perception in the past several decades, further 
progress is still needed in the development of more 
advanced theories, algorithms, and technologies that 
can effectively determine what an AI system can 
perceive and predict about the future states of the 
world. Essentially, we can envision that future intel-
ligent perception systems should not only simulate 
the brain’s mechanisms effectively, but also surpass 
the human brain in terms of performance.   

Towards this end, we suggest the following 
two-step R&D strategy: 

Short-term goal: To achieve intelligent percep-
tion methods and technologies that can successfully 
generate a uniform semantic representation of objects, 
scenes, behavior, and events in the real world, realize 
audio analysis and speech recognition in a natural 
auditory setting, and develop new machine learning 
algorithms and methods for large-scale perception 
data. 

Long-term goal: To establish human-like, and 
even transhuman, intelligent perception theories, 
methods, and technologies. These will include active 
perception and learning models, human-like auditory 
perception and understanding technologies in actual 
auditory settings, and autonomous, self-evolving, and 
collaborative learning theories and models on intel-
ligent perception. 
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Moreover, these intelligent perception methods 
and technologies should be applied to some important 
applications, such as urban surveillance systems, to 
significantly improve their intelligent services. 

Fig. 2 provides a graphical illustration of the 
technological framework of intelligent perception in 
AI 2.0. The core of the framework is to derive a uni-
form semantic representation of the real world 
through next-generation intelligent perception tech-
nologies, including active vision, auditory perception, 
speech perception and computation, and autonomous 
learning. These technologies take the roles like the 
human eyes, ears, and mouth, as well as their corre-
sponding neural information processing systems. 
Meanwhile, they may work on large-scale perceptual 
information processing and learning platforms (i.e., 
iMedia), and then can be applied to the urban omni-
directional intelligent perception and reasoning en-
gine (i.e., iEye). Here, iMedia acts as the computa-
tional engine or infrastructure of intelligent percep-
tion in AI 2.0, while iEye is a comprehensive system 
that can apply these new-generation intelligent per-
ception methods and technologies in a smart city. In 
the following subsections we describe our vision from 
these aspects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1  Vision 2.0: towards human-like and trans-
human active vision 

In the coming decade, most robots, including 
self-driving cars and drones, will be equipped with 

various computer vision systems. The requirements 
for these computer vision systems are significantly 
different from those cases in the past decades. The 
system should perform like an ordinary person, able 
to deal with most daily visual tasks easily, rather than 
as a specialized expert, capable of dealing with only 
specific tasks. For this purpose, we need to have a 
new generation of active vision systems. These sys-
tems need to have the capability of understanding the 
environment and recognizing thousands of objects in 
almost real time. In some cases, these systems are 
expected to be superior to the human vision system. 
To achieve this goal, efforts should focus on the fol-
lowing areas: 

1. On-site and active learning for vision tasks 
In contrast to those offline learned tasks, the ac-

tive vision system needs to have the capability of 
recognizing zero-shot objects on-site. For this pur-
pose, it needs to capture and model objects interac-
tively with other components. An active loop of cap-
turing and modeling ego motion will be a key issue 
for on-site learning. 

2. Beyond human sensing 
Human beings capture visual information with 

two eyes, and across a limited spectrum. This leads to 
a very complex procedure to recover 3D in later 
stages. With the progress in computing power, 
memory size, and sensing, it is possible to have next- 
generation cameras which can record full information 
from the environment. This will cause vision systems 
to be superior to human sensing in many aspects. 

3.2  Auditory 2.0: towards auditory perception 
and computation in an actual auditory setting 

To date, the performance of machines is still far 
below that of human beings in natural auditory set-
tings, especially in understanding audio in reverber-
ant environments and noisy backgrounds (Lippmann, 
1997). To resolve this problem, it is necessary to 
study the mechanism of auditory binaural processing, 
as the binaural advantage is prominent in natural 
settings with multiple sound sources. Related studies 
include psychoacoustic models for sound localization 
and for interpreting the precedence effect (Litovsky  
et al., 1999), adaptive learning models based on 
HRTF, computational models for multi-scale har-
monic analysis, demodulation methods for HRTF, and 
computational models for sound localization in re-
verberant environments. Additionally, as speech  

Fig. 2  A vision about the technological framework of 
intelligent perception in AI 2.0 
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signals inherently contain rich information and per-
ceptual cues, it is necessary to study the mechanisms 
underlying the perception of speech with interfering 
sounds (Mattys et al., 2012). Eventually, novel algo-
rithms and auditory computational models will be 
produced to improve the performance of machines in 
sound localization and audio understanding in com-
plicated auditory environments. 

3.3  Speech 2.0: towards speech perception and 
computation in a natural interaction setting 

The ultimate purpose for Speech 2.0 is to de-
velop perception and computation for a natural in-
teraction setting. Towards this end, future research 
directions for speech recognition may include ex-
ploring brain-like models and learning algorithms by 
integrating the mechanism of speech perception and 
selective attention, and developing novel end-to-end 
speech recognition frameworks with auditory context 
perception and adaptation. 

For speech synthesis, one future direction may 
be to develop advanced deep generative models for 
speech generation, such as modeling speech wave-
forms directly (Oord et al., 2016) and constructing  
a unified model for end-to-end speech synthesis 
(Wang et al., 2016). Another direction may be to 
explore approaches to extract rich information from 
texts to boost expressive speech synthesis, such as 
emotion classification, semantic understanding, and 
paraphrase-level text analysis. 

3.4  Learning 2.0: towards autonomous learning of 
perceptual information 

Current deep learning models are composed of 
multiple processing layers to learn the representations 
of data with multiple levels of abstraction, while ig-
noring a crucial point: the structure of the data. In fact, 
structured prediction methods have been widely 
studied in the traditional signal processing field. Such 
methods use graph models like conditional random 
fields to construct a structured model to represent and 
predict the latent knowledge and correlations of mul-
tiple output data. Following this idea, we need to 
establish such a set of intelligent perceptual infor-
mation processing and learning frameworks with 
sufficient theoretical support and autonomous learn-
ing capabilities so that the deep network is no longer 
trapped in a hyper-parameter selection framework. 

In fact, autonomous learning has already been 
applied to deep learning, but mostly to show the ad-
vantage of unlabeled examples and it is far from 
achieving satisfactory performance. A promising 
direction for autonomous learning is to analyze the 
properties of a signal itself, and to try to reconstruct 
signals in terms of structured sparsity and topology 
properties. Furthermore, autonomous learning is able 
to determine not only what to learn, but also where to 
learn it (LeCun et al., 2015). Since human vision is an 
active process that sequentially samples the optic 
array in an intelligent, task-specific way, we hope 
future studies on autonomous learning focus on de-
ciding where to learn. Moreover, the memory man-
agement mechanism of the human brain provides a 
quite appealing property in its ability to rank the pri-
orities of our prior knowledge, which is important for 
refining and reusing human-rated data to efficiently 
train a learning model. Overall, autonomous learning 
systems are in their infancy, but they are appealing 
because they represent true AI. 

3.5 iMedia: towards large-scale perceptual in-
formation processing and learning platforms 

To date, the research in large-scale perceptual 
information processing and learning focuses mainly 
on two areas: (1) cognition and perception inspired 
learning frameworks that are more suitable for ex-
ploring the relevance of massive data; (2) highly ef-
ficient and low-power hardware that supports deep 
learning on mobile and portable devices. With respect 
to the first area, the collaborative computing model 
over multiple datasets presents great potentials for 
improving the training efficiency of a learning algo-
rithm by reducing the redundancy of big data. For the 
second area, the processors that support highly par-
allel floating point arithmetic would facilitate the 
development of learning-based applications. For 
example, chips that are specifically designed for 
convolution and probability computations are highly 
desired. The construction of distributed parallel 
computing systems (DPCSs) is also very important 
for integrating existing computing resources and fa-
cilitating big data processing. More powerful DPCSs 
would lower the barriers to entry for big data related 
businesses and services. Meanwhile, low-power  
system-on-chip (SoC) technology will promote the 
popularity of deep learning in many consumer elec-
tronics, such as smart phones and tablet computers. 
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3.6  iEye: towards urban omnidirectional intelli-
gent perception and reasoning engines 

To deal with the challenges in current urban 
perception systems, such as information fragmenta-
tion and islanding problems (Suzuki, 2015; Priano et 
al., 2016), the trend is towards building a multi- 
dimensional intelligent perception and reasoning 
engine, which is called ‘iEye’ in this article. Specifi-
cally, based on the collected massive image and video 
data in an urban scale, and through associative ana-
lyzing and synthesis reasoning, the iEye system is 
expected to have features that include big capacity, 
large view-angles, big data, and excellent service. 

The core technologies behind the iEye system 
include intelligent perception within the scope of a 
whole city, associative analysis among multiple tar-
gets, cross spatial-temporal behavioral understanding, 
synthesis of heterogeneous information from multiple 
sources, and urban panorama modeling. With algo-
rithmic innovations in these core technologies, the 
iEye system will open up new service models for 
smart cities. 
 
 
4  Conclusions 
 

AI has great potential to help address some of the 
biggest challenges that society faces. Towards this 
end, AI systems would greatly benefit from ad-
vancements in theory, algorithms, and hardware to 
enable more robust, reliable, and intelligent percep-
tion. In this article, we envision several R&D trends 
in intelligent perception in the forthcoming era of AI 
2.0. Actually, it is a summary of the specialists’ 
opinions from a subcommittee on intelligent percep-
tion technologies, supported by the research project 
on the National Artificial Intelligence 2.0 Research 
and Development Strategy from the Chinese Acad-
emy of Engineering.  

Note that our opinions are also very close to 
those in a recent strategic plan (https://www.nitrd. 
gov/PUBS/national_ai_rd_strategic_plan.pdf) released 
by the subcommittee on Networking and Information 
Technology Research and Development (NITRD), 
under the National Science and Technology Council 
(NSTC), USA. In this strategic plan, enhancing the 
perceptual capabilities of AI systems is highlighted as 
one of the important areas for long-term investments. 

Therefore, we believe that the research directions 
listed in this article should be highlighted in AI 2.0. 
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