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Iterative Adaptive Dynamic Programming for
Solving Unknown Nonlinear Zero-Sum Game

Based on Online Data
Yuanheng Zhu, Member, IEEE, Dongbin Zhao, Senior Member, IEEE, Xiangjun Li, Senior Member, IEEE

Abstract—H∞ control is a powerful method to solve distur-
bance attenuation problems that occur in some control systems.
The design of such controllers relies on solving the zero-sum
game. But in practical applications, the exact dynamics is mostly
unknown. Identification of dynamics also produces errors that
are detrimental to the control performance. To overcome this
problem, an iterative adaptive dynamic programming algorithm
is proposed in this paper to solve the continuous-time, unknown
nonlinear zero-sum game with only online data. A model-free
approach to the Hamilton-Jacobi-Isaacs equation is developed
based on the policy iteration method. Control and disturbance
policies and value are approximated by neural networks under
the critic-actor-disturber structure. The neural network weights
are solved by the least-squares method. According to theoretical
analysis, our algorithm is equivalent to a Gauss-Newton method
solving an optimization problem, and it converges uniformly to
the optimal solution. The online data can also be used repeatedly,
which is highly efficient. Simulation results demonstrate its
feasibility to solve the unknown nonlinear zero-sum game. When
compared with other algorithms, it saves a significant amount of
online measurement time.

Index Terms—H∞ control, zero-sum game, adaptive dynamic
programming, policy iteration

I. INTRODUCTION

OPTIMAL control [1], [2], [3] has always been a hot
topic in control theory. Its goal is to find a policy that

minimizes a predefined performance index. In various control
applications, there are numerous situations where disturbance
exists in systems and plays a negative role in the control
performance. H∞ control [4], [5] provides a powerful tool
to reduce disturbance effect. According to the game theory
[6], finding the H∞ controller is equivalent to solving a two-
player zero-sum game (ZSG) [7] where the controller attempts
to minimize the performance index under the worst possible
disturbance. For a system with continuous-time (CT) nonlinear
dynamics, solution to the ZSG can be obtained by solving
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the Hamilton-Jacobi-Isaacs (HJI) equation [8]. However, it is
almost impossible due to the inherent nonlinearity.

Many approximation methods have been proposed to solve
the HJI equation [9], [10]. Recently, a newly developed
technique, adaptive/approximate dynamic programming (AD-
P) [11], [12], [13], [14], [15], [16], [17], [18], [19], has
solved various optimal control problems with a focus on the
ZSG problem. For example, Abu-Khalaf et al. proposed an
offline inner-outer-loop policy iteration (PI) algorithm to solve
the constrained HJI equation in [20], [21]. It was proved
that policies in the algorithm were convergent to the optimal
solution. Zhang et al. [22] studied a specific case in which
the saddle point might not exist. Their work resulted in a
mixed optimal control pair. Note that both these methods are
offline. In [23], Dierks and Jagannathan used a single online
approximator to address the ZSG. It was proved that both the
states and the approximation errors were uniformly ultimate-
ly bounded (UUB). Vamvoudakis and Lewis [24] proposed
an online ADP algorithm which extended their synchronous
policy iteration algorithm (SPIA) [25] to the ZSG with a critic-
actor-disturber neural-network (NN) structure. Unfortunately,
these two works still require complete knowledge of system
dynamics. Wu and Luo [26], [27] went further to use the
idea of integral reinforcement learning (IRL) that removed
the dependence on the internal dynamics. They proposed a
simultaneous policy update algorithm which only included 1-
loop iteration as opposed to 2-loop iteration used in [20], [21].
In [28], Yasini et al. combined IRL with synchronous PI and
applied concurrent learning in their concurrent reinforcement
learning algorithm (CRLA), which improved the learning
speed significantly. For the discrete-time (DT) ZSG, ADP is
also successful in [29], [30], [31], [32].

In contrast to classical dynamic programming, ADP solves
dynamic programming in a forward-in-time way. ADP is
developed from reinforcement learning (RL) [33], [34], [35],
[36], and is capable to deal with various control problems.
As an example, the famous Hamilton-Jacobi-Bellman (HJB)
equation was addressed in [37], [38], [39]. For the CT multi-
player non-zero-sum (NZS) game, [40] proposed an online
adaptive control solution based on policy iteration. Zhang et al.
designed an algorithm to learn the Nash equilibrium of the
NZS game with only the critic network [41]. We introduced
experience replay to solve the unknown NZS game [42].

In practical applications, the exact mathematical dynamics is
usually unknown. Some researchers employed NNs to identify
unknown dynamics, and then applied ADP on the identifier
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networks to find the optimal solutions [32], [43], [44], [45],
[46], [47]. Unfortunately, identification errors in networks are
detrimental to the optimality of final controllers. Training
identifier networks also increases the computational cost and
increases the learning time. A totally model-free approach is
more efficient. In [48], [49], Jiang and Jiang proposed a robust
ADP to solve the nonlinear optimal control problem without
any dynamics. The uniform convergence to the optimal solu-
tion was proved in their work. As for linear quadratic ZSG
with linear dynamics and quadratic performance index, the
HJI equation is reduced to the generalized algebraic Riccati
equation (GARE). Vrabie and Lewis [50] used a model-free
algorithm to find its solution. Another research study of the
same problem was presented in [51]. As for nonlinear ZSG,
[52] developed an online off-policy RL algorithm to learn
the H∞ tracking controller for unknown CT systems. The
off-policy IRL Bellman equation could iteratively solve the
tracking HJI equation. A sequence of control and disturbance
policies and values were obtained, and proved to converge to
the optimal solutions. When implementing, values, controllers
and disturbers were approximated by NNs. Their weights were
determined by the least-squares (LS) method. The convergence
property of NN approximation was not discussed in their work,
which motivated our research.

In this paper, a continuous-time unknown nonlinear zero-
sum game is considered and an iterative ADP algorithm is
designed to learn the H∞ controller without system dynamics.
Policy iteration and integral reinforcement learning techniques
are used to iteratively solve the HJI equation. Three NNs are
used to approximate the control and disturbance policies and
the value. Their weights are determined by the least-squares
method with online data. It is proved that NN weights are con-
vergent uniformly to the optimal solutions. Two examples are
used to test the algorithm performance. The measurement time
is significantly reduced when compared with other algorithms.

The rest of this paper is organized as follows: Section II
briefly introduces the nonlinear ZSG and the iterative approach
for solving the HJI equation. Section III describes a model-
free algorithm. Section IV is convergence analysis. Section
V is a summary of the algorithm implementation. Section VI
gives out simulation results to illustrate the effectiveness of
this algorithm. Section VII presents final conclusions.

II. INTRODUCTION TO NONLINEAR ZSG AND ITERATIVE
APPROACH FOR SOLVING THE HJI EQUATION

A. Continuous-time nonlinear zero-sum game

Consider the following continuous-time nonlinear system

ẋ = f(x) + g(x)u+ k(x)ω

z = h(x)
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
signal, ω(t) ∈ Rq is the external disturbance satisfying ω(t) ∈
L2[0,∞), z ∈ Rp is the fictitious output, and f(x), g(x), k(x)
are the system dynamics vector and matrices with appropriate
dimensions. Assume that f(x), g(x), and k(x) are Lipschitz
continuous and f(0) = 0. Thus, x = 0 is the equilibrium of
the system.

H∞ control is to find a controller that renders the perfor-
mance index

J(x(0), u, ω) =

∫ ∞

0

(
hT (x)h(x) + uTRu− γ2ωTω

)
dτ

nonpositive for all ω ∈ L2[0,∞) with x(0) = 0, where R > 0,
γ ≥ γ∗ ≥ 0. If such a controller exists, it is said that the
system has L2-gain ≤ γ. γ∗ represents the smallest value for
which the problem is still solvable.

In this paper, we only concentrate on feedback policies with
complete state information. Given a control policy u(t) ≡
u(x(t)) and a disturbance policy ω(t) ≡ ω(x(t)), their value
is defined as

V (x(0)) =

∫ ∞

0

(
hTh+ uTRu− γ2ωTω

)
dτ

≡
∫ ∞

0

r(x(t), u, ω)dτ

A differential equivalent of the above definition is a Lyapunov
equation

r(x, u, ω) +∇V T (f + gu+ kω) = 0, V (0) = 0 (2)

where ∇ denotes the partial derivative operator, i.e. ∇V =
∂V/∂x. Hamiltonian function is defined as

H(x,∇V, u, ω) ≡ r(x, u, ω) +∇V T (f + gu+ kω)

Based on the game theory, finding the H∞ controller
is equivalent to solving a two-player zero-sum game. The
control signal is to maximize the performance index while
the disturbance signal is to minimize it. The continuous-time
nonlinear ZSG is to find the feedback control and disturbance
policies with the optimal value

V ∗(x) ≡ min
u

max
ω

J(x, u, ω)

If the following Nash condition is satisfied

min
u

max
ω

J(x, u, ω) = max
ω

min
u

J(x, u, ω)

ZSG has a unique solution which is termed as the saddle point
(u∗, ω∗), and u∗ is an H∞ controller for (1). Furthermore,
according to the stationary condition, u∗ and ω∗ are

u∗ = −1

2
R−1gT∇V ∗

ω∗ =
1

2
γ−2kT∇V ∗

After substituting u∗ and ω∗ into the Lyapunov equation (2),
we obtain the Hamilton-Jacobi-Isaacs equation

∇V ∗T f + hTh− 1

4
∇V ∗T gR−1gT∇V ∗

+
1

4
γ−2∇V ∗T kkT∇V ∗ = 0, V ∗(0) = 0 (3)

Assumption 1: [24] Select γ > 0. System (1) is zero-state
observable. There exists a control policy u(x) for which the
system has L2-gain ≤ γ on a set Ω ∈ Rn and is asymptotically
stable. There exists a smooth solution for the HJI equation (3)
on Ω.
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B. Iterative approach for solving the HJI equation

For nonlinear systems, the HJI equation is a nonlinear partial
differential equation (PDE) which has no global analytic solu-
tion. Policy iteration is widely used to approximately solve the
equation. In [26], Wu and Luo proposed a simultaneous policy
update algorithm (SPUA). It only included 1-loop iteration that
is computationally efficient compared to the inner-outer-loop
policy iteration in [20], [21]. The next paragraph is a simplified
SPUA algorithm.

Given an appropriate initial value V0, a sequence of {Vi}∞i=0

is produced by iterating on the following Lyapunov equation
with Vi(0) = 0

∇V T
i (f + gui + kωi) + hTh+ uT

i Rui − γ2ωT
i ωi = 0 (4)

and the policy update laws

ui+1 = −1

2
R−1gT∇Vi, ωi+1 =

1

2
γ−2kT∇Vi (5)

Theorem 1: Suppose Assumption 1 holds and the conver-
gence conditions of Kantorovtich’s Theorem [53], [54] are
satisfied consistently. Iterating on (4) and (5) is equivalent
to a Newton method for solving the HJI equation (3), and
the sequence {Vi}∞i=0 converges to the optimal value V ∗ as
i → ∞.

Proof: Following similar logic of [26], this can be proved.

Remark 1: The Lyapunov equation (4) is a linear PDE with
respect to Vi. Iterating on (4) is more feasible than solving the
HJI equation directly. Note that the iteration formulas require
complete knowledge of the dynamics. Some algorithms like
[26], [27], [28] use integral reinforcement learning to remove
the dependence on f , but the other dynamics or identification
of dynamics are still necessary.

III. A NEURAL-NETWORK BASED ITERATIVE ADP
ALGORITHM

Now suppose two arbitrary policies u and ω are executed,
and they stabilize the system (1) in a compact region. Denote
ui and ωi as the results of (4) and (5) at the i-th iteration.
They are assumed to be known at the (i + 1)-th iteration
and are further used to compute Vi, ui+1, and ωi+1. Along
the dynamics solutions, the time derivative of Vi equals
V̇i = ∇V T

i (f + gu+ kω). Subtract (4) from V̇i and substitute
(5)

V̇i = −2uT
i+1R(u− ui) + 2γ2ωT

i+1(ω − ωi)− r(x, ui, ωi)

Based on the idea of integral reinforcement learning, integrate
both sides between t and t′ (t′ > t) and we have

0 = Vi(x(t
′))− Vi(x(t)) +

∫ t′

t

2uT
i+1R(u− ui)dτ

−
∫ t′

t

2γ2ωT
i+1(ω − ωi)dτ +

∫ t′

t

r(x, ui, ωi)dτ (6)

Remark 2: Compared to (4) and (5) that are formulated
using system dynamics, (6) is completely model-free. To
solve (6) for Vi, ui+1, and ωi+1, three NNs (actor, disturber,

and critic) are constructed to approximate the control and
disturbance policies and the value.

According to the Weirstrass high-order approximation the-
orem [55], [56], a smooth function can be uniformly approx-
imated on a compact set by neural networks. On the compact
set Ω, we let1

Vi(x) = cT1,i+1ϕ1(x) + ε1,i+1(x)

ui+1(x) = cT2,i+1ϕ2(x) + ε2,i+1(x)

ωi+1(x) = cT3,i+1ϕ3(x) + ε3,i+1(x)

and
ui(x) = cT2,iϕ2(x) + ε2,i(x)

ωi(x) = cT3,iϕ3(x) + ε3,i(x)

where ϕ1 : Rn → RK1 , ϕ2 : Rn → RK2 , ϕ3 : Rn → RK3

denote linearly independent basis functions, c1,• ∈ RK1 ,
c2,• ∈ RK2×m, c3,• ∈ RK3×q are the coefficient vector
and matrices, ε1,•, ε2,•, ε3,• are reconstruction errors with
appropriate dimensions. K1, K2, and K3 indicate the numbers
of hidden-layer neurons. Assume basis functions, coefficients
and reconstruction errors are all bounded on Ω. Furthermore,
when K1 → ∞,K2 → ∞,K3 → ∞, we have ε1,• →
0, ε2,• → 0, ε3,• → 0.

After substituting the above NNs into (6), we obtain

εL =
(
ϕ1(x(t

′))− ϕ1(x(t))
)T

c1,i+1

+

∫ t′

t

2ϕT
2 c2,i+1R(u− cT2,iϕ2)dτ

−
∫ t′

t

2γ2ϕT
3 c3,i+1(ω − cT3,iϕ3)dτ

+

∫ t′

t

r(x, cT2,iϕ2, c
T
3,iϕ3)dτ

where εL is the Lyapunov error due to NN reconstruction
errors, denoted by

εL ≡− ε1,i+1(x(t
′)) + ε1,i+1(x(t))

−
∫ t′

t

2
(
(u− cT2,iϕ2)

TRε2,i+1 − ϕT
2 c2,i+1Rε2,i

−εT2,i+1Rε2,i
)
dτ

+

∫ t′

t

2γ2
(
(ω − cT3,iϕ3)

T ε3,i+1 − ϕT
3 c3,i+1ε3,i

−εT3,i+1ε3,i
)
dτ

−
∫ t′

t

(2ϕT
2 c2,iRε2,i + εT2,iRε2,i)dτ

+

∫ t′

t

γ2(2ϕT
3 c3,iε3,i + εT3,iε3,i)dτ

To identify the ideal coefficients, we use W1,i+1, W2,i+1,
and W3,i+1 to estimate c1,i+1, c2,i+1, and c3,i+1. The NN
approximators are parameterized as

V̂i(x) = WT
1,i+1ϕ1(x)

ûi+1(x) = WT
2,i+1ϕ2(x)

1To denote consistently, the NN coefficients of Vi use subscript (i + 1).
The rest values below follow the same notation.
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ω̂i+1(x) = WT
3,i+1ϕ3(x)

Assume the NN weights W2,i and W3,i, with respect to
the given policies ui and ωi, are already known. With the
system data, W1,i+1,W2,i+1,W3,i+1 can be solved by the
least-squares (LS) method. Given a strictly increasing time
sequence {tk}lk=0, for each interval, define the residual error
ek as

ek =
(
ϕ1(x(tk+1))− ϕ1(x(tk))

)T
W1,i+1

+

∫ tk+1

tk

2ϕT
2 W2,i+1R(u−WT

2,iϕ2)dτ

−
∫ tk+1

tk

2γ2ϕT
3 W3,i+1(ω −WT

3,iϕ3)dτ

+

∫ tk+1

tk

r(x,WT
2,iϕ2,W

T
3,iϕ3)dτ (7)

By the Kronecker product ⊗, we have

ϕT
2 W2,i+1R(u−WT

2,iϕ2) =(
(u−WT

2,iϕ2)
TR⊗ ϕT

2

)
v(W2,i+1)

ϕT
3 W3,i+1(ω −WT

3,iϕ3) =
(
(ω −WT

3,iϕ3)
T⊗ϕT

3

)
v(W3,i+1)

where v(·) is a vector operator which transforms a matrix into
a vector by stacking its columns. Then, (7) can be rewritten
as

ek = θTk (W̄i)W̄i+1 + ξ(W̄i)

where W1,i+1,W2,i+1,W3,i+1 are integrated into the vector
W̄i+1 = [WT

1,i+1,v(W2,i+1)
T ,v(W3,i+1)

T ]T ∈ RK̄ and K̄ =
K1 +mK2 + qK3. W̄i is defined in the same way by W1,i,
W2,i, and W3,i. θk and ξk are defined as

θk(W̄i) =

 ϕ1(x(tk+1))− ϕ1(x(tk))∫ tk+1

tk
2R(u−WT

2,iϕ2)⊗ ϕ2dτ

−
∫ tk+1

tk
2γ2(ω −WT

3,iϕ3)⊗ ϕ3dτ

 ∈ RK̄

ξk(W̄i) =

∫ tk+1

tk

r(x,WT
2,iϕ2,W

T
3,iϕ3)dτ ∈ R

The goal is to find a group of weights that minimize residual
errors in the LS sense

min
W̄i+1

l−1∑
k=0

e2k

Assumption 2 (Persistency of excitation (PE)): For each
i ≥ 0, there exist l0 > 0 and δ > 0 such that for all l ≥ l0,

1

l

l−1∑
k=0

θk(W̄i)θ
T
k (W̄i) ≥ δIK̄

where IK̄ is the identity matrix with a given size.
According to the definition of θk(W̄i), to guarantee the PE

condition, u and ω need to be sufficiently different from ûi+1

and ω̂i+1, and states need to be persistently excited. So, u and
ω are designed to be probing and exploratory. The LS solution
has

W̄i+1 = −
(
ΘT (W̄i)Θ(W̄i)

)−1
ΘT (W̄i)Ξ(W̄i) (8)

where

Θ(W̄i) = [θ0(W̄i), . . . , θl−1(W̄i)]
T (9)

Ξ(W̄i) = [ξ0(W̄i), . . . , ξl−1(W̄i)]
T (10)

Once a new W̄i+1 is calculated, it replaces W̄i and start the
next iteration.

We propose a NNs-based iterative ADP algorithm for solv-
ing the unknown nonlinear ZSG. With initial policy weights
given, the critic, actor and disturber NN weights are updated by
iterating on (8). Under the PE condition, the algorithm doesn’t
need dynamics. It is interesting to note that the critic weights
W1,i play an intermediate role in the learning process. Even
though they determine the LS solution, they are not needed
afterward.

In our algorithm, the control and disturbance policies and
values are approximated by NNs and weights are solved by
the LS method. So the original convergence conclusion needs
to be reconsidered.

IV. THEORETICAL ANALYSIS

A. Convergence of the iterative ADP algorithm

By iterating on (8), a sequence of NN weights is obtained.
Since there exists a solution to the HJI equation, let the optimal
value and saddle point policies be represented by NNs in the
form

V ∗(x) = cT1,∗ϕ1(x) + ε1,∗(x) (11)

u∗(x) = cT2,∗ϕ2(x) + ε2,∗(x) (12)

ω∗(x) = cT3,∗ϕ3(x) + ε3,∗(x) (13)

Now consider V ∗, u∗, ω∗ and use the IRL technique. A sim-
ilar equation is derived as (6) after making some manipulations

0 = V ∗(x(t′))− V ∗(x(t)) +

∫ t′

t

u∗TR(2u− u∗)dτ

−
∫ t′

t

γ2ω∗T (2ω − ω∗)dτ +

∫ t′

t

hThdτ

After substituting (11)–(13), it becomes

εHJI =
(
ϕ1(x(t

′))− ϕ1(x(t))
)T

c1,∗

+

∫ t′

t

ϕT
2 c2,∗R(2u− cT2,∗ϕ2)dτ

−
∫ t′

t

γ2ϕT
3 c3,∗(2ω − cT3,∗ϕ3)dτ +

∫ t′

t

hThdτ

where εHJI is the HJI error with

εHJI ≡− ε1,∗(x(t
′)) + ε1,∗(x(t))

−
∫ t′

t

(
2(u− cT2,∗ϕ2)

TRε2,∗ − εT2,∗Rε2,∗
)
dτ

+

∫ t′

t

γ2
(
2(ω − cT3,∗ϕ3)

T ε3,∗ − εT3,∗ε3,∗
)
dτ

When the ideal values of c1,∗, c2,∗, and c3,∗ are deter-
mined, the approximate optimal value and saddle point are
acquired. Denote W1,∗,W2,∗,W3,∗ as their estimations. Along
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the dynamics solutions between the time series {tk}lk=0, the
estimated weights define a group of residual errors

dk =
(
ϕ1(x(tk+1))− ϕ1(x(tk))

)T
W1,∗

+

∫ tk+1

tk

ϕT
2 W2,∗R(2u−WT

2,∗ϕ2)dτ

−
∫ tk+1

tk

γ2ϕT
3 W3,∗(2ω −WT

3,∗ϕ3)dτ +

∫ tk+1

tk

hThdτ

Now, the problem becomes a nonlinear least-squares problem
(NLSP). The optimal weights correspond to parameters that
minimize the square error

min
W̄∗

DT (W̄∗)D(W̄∗) (14)

where W̄∗ = [WT
1,∗,v(W2,∗)

T ,v(W3,∗)
T ]T ∈ RK̄ ,

and D(W̄∗) is the residual error vector D(W̄∗) =
[d0, . . . , dl−1]

T ∈ Rl. It has been demonstrated that Gauss-
Newton method can solve this optimization problem. Next,
lemmas will reveal the connection between Gauss-Newton
method and our iterative ADP algorithm.

Lemma 1: The Jacobian matrix J ∈ Rl∗K̄ of NLSP with
respect to (14) is defined as

(J(W̄∗))ij =
∂(D(W̄∗))i
∂(W̄∗)j

When substituting W̄∗ into (9), we have J(W̄∗) = Θ(W̄∗).
Proof: The partial derivatives of dk toward the NN

weights are

∂dk
∂W1,∗

= ϕ1(x(tk+1))− ϕ1(x(tk))

∂dk
∂W2,∗

=

∫ tk+1

tk

2(ϕ2u
TR− ϕ2ϕ

T
2 W2,∗R)dτ

∂dk
∂W3,∗

= −
∫ tk+1

tk

2γ2(ϕ3ω
T − ϕ3ϕ

T
3 W3,∗)dτ

According to the Kronecker product representation, it is con-
cluded that ∂dk/∂W̄∗ = θk(W̄∗). Hence J(W̄∗) = Θ(W̄∗).

Lemma 2: Given a parametric vector W̄i ∈ RK̄ , if Assump-
tion 2 is continually satisfied, the calculation of W̄i+1 based
on (8) is equivalent to the Gauss-Newton equation

W̄i+1 = W̄i −
(
JT (W̄i)J(W̄i)

)−1
JT (W̄i)D(W̄i) (15)

Proof: From Lemma 1 and the definitions of Θ and Ξ,

J(W̄i)W̄i −D(W̄i) = −Ξ(W̄i)

After substituting into (8), it is deduced that

W̄i+1 =
(
JT (W̄i)J(W̄i)

)−1
JT (W̄i)

(
J(W̄i)W̄i −D(W̄i)

)
=W̄i −

(
JT (W̄i)J(W̄i)

)−1
JT (W̄i)D(W̄i)

According to the above analysis, our algorithm is actually
a Gauss-Newton method for solving the optimization problem
(14). The convergence theorem is presented.

Theorem 2: Suppose the following assumptions hold
1) Assumption 2 holds continually;

2) there exist W̄∗ ∈ RK̄ such that JT (W̄∗)D(W̄∗) = 0;
3) the Jacobian matrix J(W̄∗) at W̄∗ has full rank K̄;
4) ρ

((
JT (W̄∗)J(W̄∗)

)−1(∑l
i=1 Di(W̄∗)∇2Di(W̄∗)

))
<

1, where ρ(A) indicates the spectral radius of a square
matrix A and ∇2 is the Hessian matrix.

Under the above assumptions, there exists ε > 0 such that
the sequence {W̄i} generated by (8) converges to W̄∗ for all
W̄0 ∈ D ≡ {W̄ |∥W̄ − W̄∗∥ < ε} 2.

Proof: According to [57], [58], if the assumptions in
the theorem are satisfied, the Gauss-Newton method (15)
converges to W̄∗. Combined with Lemma 2, the proof is
complete.

Remark 3: The first requirement in Theorem 2 reveals the
importance of the PE condition. One approach to guarantee
the PE condition is to add probing noise to control inputs. In
the simulations, we let u = u′ + eu and ω = ω′ + eω. u′ and
ω′ are policies for which (f + gu′ + kω′) is stable, and eu
and eω are probing noise.

Remark 4: From the viewpoint of RL, the PE condition
is equivalent to the infinitely-often-visited condition required
by the famous Q-learning algorithm [34], [59]. Both of them
suggest system observations shall contain as much dynamical
information as possible, not just performing the current learned
policies.

Remark 5: Another sufficient condition for Theorem 2 em-
phasizes that the initial W̄0 shall be within the region D.
In PI-based ADP algorithms, such initial condition is widely
considered. In [20], [21], the inner loop was started from a
disturbance ω0 = 0 and the outer loop was initialized to a
stabilizing controller u0. In [26], a requirement for the initial
value is imposed. In this paper, we initialize W2,0 and W3,0

of the actor and disturber NNs to values such that û0 is a
stabilizing control policy and ω̂0 = 0. As for W1,0 of the
critic, since it is not needed in the calculation of (8), it is
neglected in the initialization.

B. Uniform convergence to the HJI solution

In this part, we will prove that the approximators with the
LS solutions uniformly approximate Vi, ui, ωi as defined by
(4) and (5). Then, we will conclude that the HJI solution is
uniformly convergent.

Lemma 3: Under Assumption 2, for each i ≥ 0

lim
K1,K2,K3→∞

V̂i(x) = Vi(x)

lim
K1,K2,K3→∞

ûi+1(x) = ui+1(x)

lim
K1,K2,K3→∞

ω̂i+1(x) = ωi+1(x)

Proof: See the Appendix.
Theorem 3: Under Assumptions 1 and 2, for arbitrary ϵ >

0, there exist i∗ > 0, K∗
1 > 0, K∗

2 > 0, K∗
3 > 0, such that for

all x ∈ Ω ∣∣V̂i(x)− V ∗(x)
∣∣ ≤ ϵ∥∥ûi+1(x)− u∗(x)
∥∥ ≤ ϵ

2Throughout this paper, we use | · | as the magnitude of a scalar, ∥ · ∥ as
the vector norm of a vector, and ∥ · ∥2 as the induced matrix 2-norm.
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∥∥ω̂i+1(x)− ω∗(x)
∥∥ ≤ ϵ

if i > i∗, K1 > K∗
1 , K2 > K∗

2 , K3 > K∗
3 .

Proof: The theorem is proved by Theorem 1 and Lemma
3.

Remark 6: From Theorems 2 and 3, when applying the
NN-based iterative ADP algorithm to the nonlinear ZSG, the
results not only converge, but also converge uniformly to the
optimal value and saddle point.

V. ALGORITHM IMPLEMENTATION

This section is how to implement the iterative ADP algo-
rithm to solve the unknown nonlinear ZSG with only online
data. Before implementation, we need to transform the main
equation (8) into another form. According to the Kronecker
product representation, Θ(W̄i) and Ξ(W̄i) are defined by (9)
and (10), and can be rewritten as

Θ(W̄i) =
[
δ1, 2δ2(R⊗ IK2)−2δ3(W2,iR⊗ IK2),

−2γ2δ4 + 2γ2δ5(W3,i ⊗ IK3)
]

Ξ(W̄i) =
[
δ6 + δ3v(W2,iRWT

2,i)− γ2δ5v(W3,iW
T
3,i)

]
where

δ1 =
[
ϕ1(x(t1))− ϕ1(x(t0)), . . . , ϕ1(x(tl))− ϕ1(x(tl−1))

]T
δ2 =

[ ∫ t1

t0

u⊗ ϕ2dτ, . . . ,

∫ tl

tl−1

u⊗ ϕ2dτ
]T

δ3 =
[ ∫ t1

t0

ϕ2 ⊗ ϕ2dτ, . . . ,

∫ tl

tl−1

ϕ2 ⊗ ϕ2dτ
]T

δ4 =
[ ∫ t1

t0

ω ⊗ ϕ3dτ, . . . ,

∫ tl

tl−1

ω ⊗ ϕ3dτ
]T

δ5 =
[ ∫ t1

t0

ϕ3 ⊗ ϕ3dτ, . . . ,

∫ tl

tl−1

ϕ3 ⊗ ϕ3dτ
]T

δ6 =
[ ∫ t1

t0

hThdτ, . . . ,

∫ tl

tl−1

hThdτ
]T

The above matrices depend on system input data u and ω.
These matrices can be used repeatedly to update Θ and Ξ at
each iteration with new NN weights, which help to reduce the
online interaction with the system.

The flowchart of the iterative ADP algorithm is given in Fig.
1. The process includes two phases. In the first measurement
phase, it executes probing control and disturbance inputs on
the system and collects online data. After a sufficient time, the
algorithm is switched to the learning phase. The critic, actor,
and disturber NN weights are trained offline iteratively until
reaching the convergence. If the process does not converge, it
will go back to the first phase and collect more data. In the
end, the converged actor provides an H∞ controller for the
system.

..Start.

Initialization
Inputs u = u′ + eu, ω = ω′ + eω
NN weights W2,0, W3,0

Length T
Threshold ε

.

Dynamics
ẋ = f + gu+ kω

.

Measurement phase
{δ1, δ2, δ3, δ4, δ5, δ6}

.

t ≥ T

.

t

.

Learning phase
W̄i+1 = −

(
ΘT (W̄i)Θ(W̄i)

)−1
ΘT (W̄i)Ξ(W̄i)

.

∥∥W̄i+1 − W̄i

∥∥ < ε

.

i = i+ 1

.

Output results

.

Stop

.

yes

.

no

.

yes

.

no

Fig. 1. The flowchart of the iterative ADP algorithm.

VI. SIMULATION STUDY

A. Example 1

First, we use the converse optimal control method [60] to
design a nonlinear system with

f(x) =

[
−x1 + x2

−x3
1 − x3

2 +
1
4 (x1 + x2)

2x2 − 1
4γ2x

2
1x2

]
g(x) =

[
0

x1 + x2

]
, k(x) =

[
0
x1

]
Select h(x) = [x2

1, x
2
2]

T , R = 1, and γ = 4. The optimal value
function has

V ∗(x) =
1

4
x4
1 +

1

2
x2
2
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Fig. 2. NN weights of the critic in the learning phase of Example 1.

and the saddle point has

u∗(x) = −1

2
x1x2 −

1

2
x2
2, ω∗(x) =

1

32
x1x2

The basis function vectors for the critic, actor, and disturber
NNs select

ϕ1(x) = [x2
1, x

2
2, x

2
1x

2
2, x

4
1, x

4
2]

T

ϕ2(x) = [x2
1, x1x2, x

2
2]

T

ϕ3(x) = [x2
1, x1x2, x

2
2]

T

So the ideal coefficients are c1 = [0, 0.5, 0, 0.25, 0]T , c2 =
[0,−0.5,−0.5]T , and c3 = [0, 0.03125, 0]T .

Since the system is self-stable, we choose probing control
inputs u = 10 ∗

(
sin(10t) + sin(9.3t) + sin(5.2t) + 3.02

)
and

ω = 10 ∗
(
sin(11t)+ sin(7.8t)+ sin(9.5t)− 5.78

)
. We let the

system start from x(0) = [1,−1]T with an integral time of
0.1s. After 3s, the algorithm will terminate the measurement
phase and switch to the learning phase. The initial weights
for the actor and disturber NNs are W2,0 = [0, 0, 0]T ,
W3,0 = [0, 0, 0]T . The convergence threshold is 10−6. The
iterative ADP algorithm converges at the 4th iteration with
outputs W1,4 = [−0.0000, 0.5000, 0.0000, 0.2500, 0.0000]T ,
W2,4 = [−0.0000,−0.5000,−0.5000]T , W3,4 =
[0.0000, 0.03215, 0.0000]T . The NN weights are depicted in
Figs. 2–4. After 3s, the converged actor and disturber replace
the probing control inputs. The whole state and control
trajectories are shown in Figs. 5 and 6.

B. Example 2

The second experiment uses a nonlinear system from [28].
Two online ADP algorithms, CRLA and SPIA, have solved
the nonlinear ZSG problem. The dynamics is

ẋ =

[
−x1 + x2

−0.5 ∗ (x1 + x2) + 0.5x2 sin(x1)
2

]
+

[
0

sin(x1)

]
u+

[
0

cos(x1)

]
ω

We select h(x) = [x1, x2]
T , R = 1, and γ = 2. Note that

there is no analytic solution to the problem. We select up to
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Fig. 3. NN weights of the actor in the learning phase of Example 1.
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Fig. 4. NN weights of the disturber in the learning phase of Example 1.
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Fig. 5. Trajectories of state variables in Example 1.
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Fig. 7. Some weights of the critic in the learning phase of Example 2.

fourth order polynomials to define the basis functions of the
critic, actor, and disturber NNs, i.e.

ϕ1(x) = ϕ2(x) = ϕ3(x) = [x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2,

x1x
2
2, x

3
2, x

4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2]

T

The total number of parameters is K̄ = 42. The experiment is
simulated using the same setup as Example 1. We set Initial
weights W2,0 and W3,0 to be 0. The measurement phase lasts
20s. After that the learning phase starts training the NNs.
After 4 iterations, the algorithm reaches convergence. Figs.
7–9 show some weights in the critic, actor and disturber NNs.
The final actor is formulated as

û4(x) =
[
0.0230, 0.0109, 0.1931,−0.8625, 0.0019,−0.0786,

− 0.0498, 0.0082,−0.0025,−0.0447, 0.0831,

− 0.0118, 0.0054,−0.0013
]
ϕ2(x)

After the learning phase, the converged actor and disturber
replace the probing control inputs. Figs. 10 and 11 show the
whole trajectories of the system.

Our algorithm only requires a online measurement time
of 20s, as compared to 270s of CRLA and more than 800s
of SPIA. In addition, implementation of CRLA and SPIA
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Fig. 8. Some weights of the actor in the learning phase of Example 2.
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Fig. 9. Some weights of the disturber in the learning phase of Example 2.
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Fig. 11. Trajectories of control variables in Example 2.
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Fig. 12. Trajectories of x1 for iterative ADP algorithm (IADP), concurrent
reinforcement learning algorithm (CRLA), and synchronous policy iteration
algorithm (SPIA).

relies on partial system dynamics, while implementation of
our algorithm doesn’t need any dynamics.

Next, our converged actor is compared with the results of
CRLA and SPIA [28] in the same finite-energy run. The sys-
tem is initially at rest, and disturbance ω(t) = 8 cos(t) exp−t

is applied. Figs. 12–14 show trajectories of the state and con-
trol when executing three controllers separately. Fig. 15 shows
the disturbance attenuation

∫ t

0
(hTh+ uTRu)dτ/

∫ t

0
ωTωdτ

of the three runs. From these plots, performance differences
of these three controllers are barely noticeable, except that
CRLA has the best attenuation effect. Our controller performs
similar to CRLA while SPIA performs the worst.

VII. CONCLUSION

In this paper, The continuous-time unknown nonlinear zero-
sum game is approximately solved by an iterative ADP algo-
rithm using online data. Data containing complete dynamical
information of the system are utilized properly to learn the
NN parameters of the control and disturbance policies and the
value. The same data are used repeatedly at each iteration,
which significantly reduces the measurement time.
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Fig. 13. Trajectories of x2 for iterative ADP algorithm (IADP), concurrent
reinforcement learning algorithm (CRLA), and synchronous policy iteration
algorithm (SPIA).
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Fig. 14. Trajectories of u for iterative ADP algorithm (IADP), concurrent
reinforcement learning algorithm (CRLA), and synchronous policy iteration
algorithm (SPIA).
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Fig. 15. Disturbance attenuation for iterative ADP algorithm (IADP),
concurrent reinforcement learning algorithm (CRLA), and synchronous policy
iteration algorithm (SPIA).
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In the future, we will focus on applying this algorithm to
more complex and realistic systems. It requires the appropriate
selection of basis functions for neural networks and the
delicate design of the learning process. Currently, our basis
functions are selected manually. Motivated by literatures like
[61], [62], we will further research on methods to automati-
cally learn basis functions.

APPENDIX

Before proving Lemma 3, an auxiliary lemma is presented.
Given ûi and ω̂i, let Ṽi be the solution of the Lyapunov
equation

0 = r(x, ûi, ω̂i) +∇Ṽ T
i (f + gûi + kω̂i) , Ṽi(0) = 0

Define

ũi+1 =− 1

2
R−1gT∇Ṽi

ω̃i+1 =
1

2
γ−2kT∇Ṽi

Lemma 4: Under the PE condition, for any x ∈ Ω we have

lim
K1,K2,K3→∞

V̂i(x) = Ṽi(x)

lim
K1,K2,K3→∞

ûi+1(x) = ũi+1(x)

lim
K1,K2,K3→∞

ω̂i+1(x) = ω̃i+1(x)

Proof: Following the derivation of (6), a similar formula
is obtained for Ṽi, ũi+1, ω̃i+1 with the time sequence {tk}lk=0

0 =Ṽi(x(tk+1))− Ṽi(x(tk)) +

∫ tk+1

tk

2ũT
i+1R(u− ûi)dτ

−
∫ tk+1

tk

2γ2ω̃T
i+1(ω − ω̂i)dτ +

∫ tk+1

tk

r(x, ûi, ω̂i)dτ

(16)

Suppose Ṽi(x) = c̃T1,i+1ϕ1(x) + ε̃1,i+1(x), ũi+1(x) =
c̃T2,i+1ϕ2(x) + ε̃2,i+1(x), and ω̃i+1(x) = c̃T3,i+1ϕ3(x) +
ε̃3,i+1(x). Subtract (16) from (7)

ek = θTk ∆+ ηk

where

∆ =

 W1,i+1 − c̃1,i+1

v(W2,i+1 − c̃2,i+1)
v(W3,i+1 − c̃3,i+1)


and

ηk =− ε̃1,i+1(x(tk+1)) + ε̃1,i+1(x(tk))

−
∫ tk+1

tk

2(u− ûi)
TRε̃2,i+1dτ

+

∫ tk+1

tk

2γ2(ω − ω̂i)
T ε̃3,i+1dτ

Since NN weights are determined in the LS sense, we have

l−1∑
k=0

e2k ≤
l−1∑
k=0

η2k

Furthermore,
l−1∑
k=0

∆T θkθ
T
k ∆ =

l−1∑
k=0

(ek − ηk)
2 ≤

l−1∑
k=0

2(e2k + η2k)

≤4l max
0≤k<l

η2k

Combined with the PE condition, ∆ is bounded by

∥∆∥2 ≤ 4

δ
max
0≤k<l

η2k

According to the Weierstrass higher-order approximation
theorem, as the numbers of hidden-layer neurons K1 → ∞,
K2 → ∞, K3 → ∞, the approximation errors ε̃1,i+1 → 0,
ε̃2,i+1 → 0, ε̃3,i+1 → 0, and ηk → 0 on Ω. For arbitrary
ϵ > 0, there exist K∗

1 > 0, K∗
2 > 0, K∗

3 > 0, such that for
any x ∈ Ω

|V̂i(x)− Ṽi(x)| ≤∥W1,i+1 − W̃1,i+1∥∥ϕ1(x)∥+ |ε̃1,i+1|

≤ ϵ

2
+

ϵ

2
= ϵ

if K1 > K∗
1 , K2 > K∗

2 , K3 > K∗
3 . Similarly,

∥ûi+1(x)− ũi+1(x)∥ ≤ ϵ

∥ω̂i+1(x)− ω̃i+1(x)∥ ≤ ϵ

The proof is complete.
Proof of Lemma 3: Use the induction:

1) If i = 0, û0 = u0. So Ṽ0 = V0, ũ1 = u1, ω̃1 = ω1.
From Lemma 4, the conclusion is true.

2) Suppose for some i > 0, limK1,K2,K3→∞ V̂i−1(x) =
Vi−1(x), limK1,K2,K3→∞ ûi(x) = ui(x),
limK1,K2,K3→∞ ω̂i(x) = ωi(x). After subtracting
(16) from (6) and using the NNs, we yield

ε∆ =
(
ϕ1(x(tk+1))− ϕ1(x(t))

)T
(c1,i+1 − c̃1,i+1)

+

∫ tk+1

tk

2ϕT
2 (c2,i+1 − c̃2,i+1)R(u− ûi)dτ

−
∫ tk+1

tk

2γ2ϕT
3 (c3,i+1 − c̃3,i+1)(ω − ω̂i)dτ

where

ε∆ ≡−
∫ tk+1

tk

2uT
i+1R(ûi − ui)dτ (17)

+

∫ tk+1

tk

2γ2ωT
i+1(ω̂i − ωi)dτ (18)

−
∫ tk+1

tk

(uT
i Rui − ûT

i Rûi)dτ (19)

+

∫ tk+1

tk

γ2(ωT
i ωi − ω̂T

i ω̂i)dτ (20)

−
(
ε1,i+1(x(tk+1))− ε̃1,i+1(x(tk+1))

)
(21)

+
(
ε1,i+1(x(tk))− ε̃1,i+1(x(tk))

)
(22)

−
∫ tk+1

tk

2(u− ûi)
TR(ε2,i+1 − ε̃2,i+1)dτ (23)

+

∫ tk+1

tk

2γ2(ω − ω̂i)
T (ε3,i+1 − ε̃3,i+1)dτ (24)
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According to the hypotheses, (17)–(20) → 0. According
to the approximation property of NNs, (21)–(24) → 0 as
K1,K2,K3 → ∞. Under Assumption 2 and ε∆ → 0,
we conclude

lim
K1,K2,K3→∞

∥c1,i+1 − c̃1,i+1∥ = 0

lim
K1,K2,K3→∞

∥c2,i+1 − c̃2,i+1∥2 = 0

lim
K1,K2,K3→∞

∥c3,i+1 − c̃3,i+1∥2 = 0

In other words,

lim
K1,K2,K3→∞

Ṽi(x) = Vi(x)

lim
K1,K2,K3→∞

ũi+1(x) = ui+1(x)

lim
K1,K2,K3→∞

ω̃i+1(x) = ωi+1(x)

In the end∣∣V̂i(x)− Vi(x)
∣∣ ≤ ∣∣V̂i(x)− Ṽi(x)

∣∣+ ∣∣Ṽi(x)− Vi(x)
∣∣

According to Lemma 4, when K1,K2,K3 → ∞, we
have V̂i → Vi. Similarly, ûi+1 → ui+1, ω̂i+1 → ωi+1.

By induction, the proof is complete.
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