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Abstract:    Cross-media analysis and reasoning is an active research area in computer science, and a promising direction for 
artificial intelligence. However, to the best of our knowledge, no existing work has summarized the state-of-the-art methods for 
cross-media analysis and reasoning or presented advances, challenges, and future directions for the field. To address these issues, 
we provide an overview as follows: (1) theory and model for cross-media uniform representation; (2) cross-media correlation 
understanding and deep mining; (3) cross-media knowledge graph construction and learning methodologies; (4) cross-media 
knowledge evolution and reasoning; (5) cross-media description and generation; (6) cross-media intelligent engines; and (7) 
cross-media intelligent applications. By presenting approaches, advances, and future directions in cross-media analysis and rea-
soning, our goal is not only to draw more attention to the state-of-the-art advances in the field, but also to provide technical insights 
by discussing the challenges and research directions in these areas. 
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1  Introduction 
 

Along with the progress of human civilization 
and the development of science and technology, in-
formation acquisition, transmission, processing, and 
analysis have gradually changed from one form of 
media to multiple types of media such as text, image, 
video, audio, and stereo picture. Different media 
types on various platforms and modalities from social, 
cyber, and physical spaces are now mixed together to 

demonstrate rich natural and social properties. As a 
whole they represent comprehensive knowledge and 
reflect the behavior of individuals and groups. Con-
sequently, a new form of information is recognized, 
known as cross-media information. 

Over the past several decades, as the require-
ments for data management and utilization have in-
creased significantly, multimedia information pro-
cessing and analysis has been a research hotspot (Lew 
et al., 2006). However, previous studies were devoted 
mainly to scenarios involving a single media. Re-
search in cognitive science indicates that in the human 
brain, cognition of the environment is through the 
fusion of multiple sensory organs (McGurk and 
MacDonald, 1976). Although the representations of 
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different media types are heterogeneous, they may 
share the same semantics, and have rich latent corre-
lations. Consider the topic of ‘bird’ as an example. All 
of the texts, images, videos, audio clips, and stereo 
pictures about this topic describe the same semantic 
concept ‘bird’ from complementary aspects. As a 
result, due to limitations in information diversity, 
traditional single-media analysis methods have dif-
ficulty in achieving the goal of semantic extraction 
from multiple modalities, and cannot deal with the 
analysis of cross-media data. Meanwhile, traditional 
reasoning methods are mainly text-based and perform 
reasoning under fully defined premises. They cannot 
deal with cross-media scenarios with sophisticated 
compositions, different representations, and complex 
correlations. Therefore, a key problem in research and 
application has been how to simulate the human 
brain’s process of transforming environmental in-
formation to analytical models through vision, audi-
tion, language, and other sensory channels, and fur-
ther to realize cross-media analysis and reasoning. 

The topic of cross-media analysis and reasoning 
has attracted considerable research interest. With 
respect to cross-media analysis, existing studies focus 
mainly on modeling correlations and generating a 
uniform representation of two media types as in the 
popular correlation analysis method, called canonical 
correlation analysis (CCA) (Hotelling, 1936). Though 
there are limited studies on cross-media reasoning so 
far, it is an important future direction to extend tradi-
tional text-based reasoning methods to cross-media 
scenarios. There are also wide prospects for applica-
tions in cross-media analysis and reasoning. Effective 
yet efficient cross-media methods can provide more 
flexible and convenient ways to retrieve and manage 
multimedia big data. Users would like to adopt the 
cross-media intelligent engine for applications such 
as cross-media retrieval, and cross-media technology 
is also useful for important application scenarios, 
such as web content monitoring, web information 
trend analysis, and healthcare data fusion and rea-
soning. However, there still exist important chal-
lenges for cross-media intelligent applications. 

Cross-media analysis and reasoning has been an 
active research area in computer science, and an im-
portant future direction in artificial intelligence. As 
discussed in Pan (2016), cross-media intelligence 
plays the role of a cornerstone in artificial intelligence, 
through which the machines can recognize the ex-

ternal environment. Although considerable im-
provement has been made in the research of cross- 
media analysis and reasoning (Rasiwasia et al., 2010; 
Yang et al., 2012; Peng et al., 2016a; 2016b), there 
remain some important challenges and unclear points 
in future research directions. In this paper, we give a 
comprehensive overview of not only the advances 
achieved by existing studies, but also future directions 
for cross-media analysis and reasoning. The aim is to 
attract more researchers to the research field in 
cross-media analysis and reasoning, and thus we 
provide insights by discussing challenges and re-
search directions, to facilitate new studies and appli-
cations on this new and exciting research topic. 

 
 

2  Cross-media analysis and reasoning 
 

The advances and directions in cross-media 
analysis and reasoning can be summarized as seven 
parts: (1) theory and model for cross-media uniform 
representation; (2) cross-media correlation under-
standing and deep mining; (3) cross-media 
knowledge graph construction and learning method-
ologies; (4) cross-media knowledge evolution and 
reasoning; (5) cross-media description and generation; 
(6) cross-media intelligent engines; (7) cross-media 
intelligent applications. In this section, we will pro-
vide descriptions of these seven parts, so as to present 
a comprehensive overview of cross-media analysis 
and reasoning. 

2.1  Theory and model for cross-media uniform 
representation 

Cross-media data naturally carries different 
kinds of information, which needs to be integrated to 
obtain comprehensive results in real-world applica-
tions. A fundamental research problem is how to learn 
uniform representation for cross-media data. Gener-
ally, this approach tries to build a commonly shared 
space where similarities between heterogeneous data 
objects can be computed directly using common dis-
tance metrics like Euclidean and cosine distances 
after mapping data into this space (Fig. 1). In this way, 
the heterogeneous gap among data from different 
modalities is reduced. To this end, two issues should 
be addressed: (1) how to build the shared space; (2) 
how to project data into it. To deal with these issues, 
learning schemes based on different models have 
been proposed recently. 
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To the best of our knowledge, the first well- 

known cross-media model is based on CCA (Rasi-
wasia et al., 2010). It learns a commonly shared space 
by maximizing the correlation between pairwise 
co-occurring heterogeneous data and performs pro-
jection by linear functions. Although the scheme is 
simple, it has inspired subsequent studies. CCA has 
many variants (Andrew et al., 2013; Gong et al., 2014; 
Rasiwasia et al., 2014). For example, Andrew et al. 
(2013) extended this method using a deep learning 
technique to learn the correlations more comprehen-
sively than those using CCA and kernel CCA. These 
methods can, for the most part, model only the cor-
relations of two media types. To overcome this limi-
tation, researchers have also attempted to develop 
datasets and methods for scenarios with more media 
types. For example, the newly constructed XMedia 
dataset (http://www.icst.pku.edu.cn/mipl/XMedia) is 
the first dataset containing five media types (text, 
image, video, audio, and 3D model), and methods 
such as those proposed by Zhai et al. (2014) and Peng 
et al. (2016b) can jointly model the correlations and 
semantic information in a unified framework with 
graph regularization for the five media types on the 
XMedia dataset. Yang et al. (2008) introduced an-
other model called the multimedia document (MMD)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
to represent data, where each MMD is a set of media 
objects of different modalities but carrying the same 
semantics. The distances between MMDs are related 
to each modality, and in this way we can perform 
cross-media retrieval. Daras et al. (2012) employed a 
radial basis function (RBF) network to address the 
problem of missing modalities. However, the main 
problem with the MMD is that it only handles data 
from different modalities together, which is not flex-
ible in many applications. Most cross-media repre-
sentation learning models still belong to subspace 
learning techniques. 

The topic model is another frequently used 
technique in cross-media uniform representation 
learning tasks, assuming that heterogeneous data 
containing the same semantics shares some latent 
topics. For example, Roller and Schulte im Walde 
(2013) integrated visual features into latent Dirichlet 
allocation (LDA) and proposed a multimodal LDA 
model to learn representations for textual and visual 
data. Wang Y et al. (2014) proposed a scheme called 
the multimodal mutual topic reinforce model (M3R), 
which seeks to discover mutually consistent semantic 
topics via appropriate interactions between model 
factors. These schemes represent data as topic dis-
tributions, and similarities are measured by the  

Fig. 1  An example of uniform representation methods for multimodal data (considering the images and texts as 
examples) 

Image space

Text space

Commonly shared space
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likelihood of observed data in terms of latent topics. 
Metric learning is usually performed if we know 
which data pairs are similar and which are dissimilar 
from heterogeneous modalities. An appropriate dis-
tance metric is designed to measure heterogeneous 
similarity, and learned using the given labeled data 
pairs to achieve the best performance. When the 
learned metric is decomposed into modality-specific 
projection functions (Wu et al., 2010), data can be 
explicitly projected into a uniform representation as 
CCA does. Apart from the above-mentioned models, 
Mao et al. (2013) proposed a manifold-based model 
called parallel field alignment retrieval (PFAR), 
which considers cross-media retrieval as a manifold 
alignment problem using parallel fields. 

In recent years, since deep learning has shown 
superiority in image classification (Krizhevsky et al., 
2012) and image content representation (Babenko et 
al., 2014), it has also been widely used in cross-media 
research to learn uniform representations. Ngiam et al. 
(2011) proposed an autoencoder model to learn uni-
form representations for speech audios coupled with 
videos of the lip movements. Srivastava and Sala-
khutdinov (2012) introduced a deep restricted 
Boltzmann machine to learn joint representations for 
multimodal data. Andrew et al. (2013) proposed a 
deep CCA method which is a deep extension of the 
traditional CCA method. Socher et al. (2014) intro-
duced dependency tree recursive neural networks 
(DT-RNNs), employing dependency trees to embed 
sentences into a vector space in order to retrieve  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

images described by those sentences. Feng et al. 
(2014) and Wang W et al. (2014) applied auto-  
encoders to perform cross-modality retrieval. More 
recently, Wang et al. (2015) proposed a multimodal 
deep learning scheme to learn accurate and compact 
multimodal representations for multimodal data  
(Fig. 2). This method facilitates efficient similarity 
search and other related applications on multimodal 
data. Zhang et al. (2014a) presented an attribute dis-
covery approach, named the independent component 
multimodal autoencoder (ICMAE), which can learn 
shared high-level representation to identify attributes 
from a set of image and text pairs. Zhang et al. (2016) 
further proposed to learn image-text uniform repre-
sentation from web social multimedia content, which 
is noisy, sparse, and diverse under weak supervision. 
Wei et al. (2017) proposed a deep semantic matching 
(deep-SM) method that uses the convolutional neural 
network and fully connected network to map images 
and texts into their label vectors, achieving state-of- 
the-art accuracy. The cross-media multiple deep 
network (CMDN) (Peng et al., 2016a) is a hierar-
chical structure with multiple deep networks, and can 
simultaneously preserve intra-media and inter-media 
information to further improve the retrieval accuracy. 

Although there are significant research efforts on 
uniform representation learning for cross-media 
analysis tasks, a large gap still exists between these 
methods and user expectations. This is caused by the 
fact that existing schemes still have not achieved a 
satisfactory performance; i.e., their accuracies are far  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  The framework for compact multimodal representation learning, where (a) represents the pretraining stage and 
(b) represents the fine-tuning stage 
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from acceptable. Therefore, we still need to investi-
gate better uniform representation methods for cross- 
media research. 

2.2  Cross-media correlation understanding and 
deep mining 

Cross-media correlations describe specific types 
of statistical dependencies among homogeneous and 
heterogeneous data objects. For example, if two im-
ages are taken from the same location, they may be 
intrinsically correlated from content, attribute, and 
topic perspectives, and thus they may share certain 
levels of intrinsic semantic consistency. The content 
in the paragraphs and social comments on a video 
webpage is semantically related to the content of the 
video itself. The aim of cross-media correlation 
learning is to construct metrics on heterogeneous data 
representation to measure how they are semantically 
relevant. 

Existing cross-media correlation mining meth-
ods focus mainly on finding the common subspace 
where different modalities of data have semantic 
correlations. Researchers from the multimedia com-
munity have conducted extensive studies along this 
line. For example, in Feng et al. (2014), the corre-
spondence autoencoder deep network was proposed to 
be trained on the raw features of different modalities, 
and then the combined multimodal deep feature was 
extracted for cross-media relevance measurement 
(Fig. 3). Zhang et al. (2014b) measured the correla-
tions between visual and acoustic modalities by ex-
amining the visual-acoustic statistical relevance. 
However, cross-media correlation mining goes far 
beyond subspace learning. In many scenarios, the 
representation of cross-media data objects cannot be 
directly obtained. For example, there is no given 
feature representation for a structured cross-media 
object such as a set of hyperlinked multimedia doc-
uments or points-of-interest (POI). In such cases, the 
correlations can be inferred directly from the 
cross-media data objects by constructing appropriate 
information averaging mechanisms in a matrix com-
pletion framework to predict or complete the missing 
values in the object correlation description (Zhang et 
al., 2015). 

Following another line of research, researchers 
from the database community have investigated the 
correlations and fusion among unstructured, semi- 

structured, and structured data. However, most of 
these studies are based on low-level features and 
formats. Few studies are focusing on multimodal 
content and high-level correlations, e.g., generating a 
description for the entities by fusing semi-structured 
Wiki data and unstructured web data. Moreover, 
cross-media data is not only from different modalities 
and structures, but also from different sources. The 
study of associating and fusing cross-media data from 
different sources remains in its infancy, e.g., objective 
data and subjective user-generated content (UGC), 
user data from different online social networks 
(OSNs), and cross-space data from cyber and physical 
spaces. 

 
 
 
 
 
 
 
 
 
 

In cross-media deep mining, the knowledge base 
is manually and professionally edited by experts in 
traditional expert systems. Currently, many studies 
are focusing on extracting and learning knowledge 
from data automatically, e.g., Google Knowledge 
Vault (Dong et al., 2014). However, similar to data, 
knowledge is essentially cross-media. Recently we 
have seen a rapid development of different types of 
intelligent perceptions, e.g., vision-based environ-
mental perception in Visual SLAM (Fuentes-Pacheco 
et al., 2015) and multimodal based human-computer 
interaction in gesture and action recognition (Rau-
taray and Agrawal, 2015). Moreover, ubiquitous 
perception has received increasing attention these 
days (Adib et al., 2015). Development in the above 
areas provides opportunities to research the problem 
of cross-media knowledge mining. While critical 
challenges exist in constructing the cross-media 
knowledge base, it is of great theoretical and technical 
significance to combine perceptions from different 
modalities to supplement and improve the current 
text-based knowledge base. 

Despite the achievements in cross-media corre-
lation understanding, there is still a long way to go in 

Fig. 3  Correspondence full-modal autoencoder (Feng  
et al., 2014)  
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this research direction. Basically, existing studies 
construct correlation learning on cross-media data 
with representation learning, metric learning, and 
matrix factorization, which are usually performed in a 
batch learning fashion and can capture only the 
first-order correlations among data objects. How to 
develop more effective learning mechanisms to cap-
ture the high-order correlations and adapt to the 
evolution that naturally exists among heterogeneous 
entities and heterogeneous relations, is the key re-
search issue for future studies in cross-media corre-
lation understanding. 

2.3  Cross-media knowledge graph construction 
and learning methodologies 

The aim of cross-media knowledge graph con-
struction is to represent framed rules, values, expe-
riences, contexts, instincts, and insights with entities 
and relations from general to specific domains 
(Davenport and Prusak, 1998). In cross-media re-
search, the entities and relations are defined and ex-
tracted from not only the textual data corpus, but also 
numerous loosely correlated data modalities includ-
ing texts, images, videos, and other related infor-
mation sources. Cross-media knowledge graphs pro-
vide essential computable knowledge representation 
structures for semantic correlation analysis and cog-
nition-level reasoning in cross-media context, facili-
tating theoretical and technical development in 
cross-media intelligence and a diversified range of 
applications. 

In recent decades, research efforts on knowledge 
graphs have been devoted to two aspects. First, 
knowledge graphs are used to represent general or 
domain-specific knowledge. Two primary elements in 
knowledge graphs are entities (a.k.a. ontologies) and 
relations. The set of entities for knowledge graph 
construction is defined by either domain expertise or 
existing entity sets, e.g., WordNet (Fellbaum and 
Miller, 1998), Wikipedia, and FreeBase. The relations, 
represented as edges with real values between the 
entities, are employed to reflect structural or statisti-
cal entity dependency in certain domain contexts. 
Most existing knowledge graphs are constructed on a 
textual data corpus using natural language processing 
(Carlson et al., 2010) and co-occurrence statistics 
(Cilibrasi and Vitanyi, 2007). In visual modalities, 
significant efforts have been devoted to constructing 

knowledge bases to describe relations between visual 
objects, scenes, and attributes (Deng et al., 2009; 
Chen X et al., 2013; Prabhu and Babu, 2015). For 
example, NEIL (Chen X et al., 2013) presents a  
never-ending learning system for visual ontology 
construction from image search engines, which iter-
ates between concept relationship extraction, image 
instance recognition, and concept classifier/detector 
learning. Fang et al. (2016) proposed a multimodal 
ontology construction solution by considering both 
textual and visual information in extracting entity 
relationships. Zhu et al. (2015) proposed a scalable 
multimodal knowledge base construction system, and 
defined three types of relations: image-label, intra- 
correlations, and inter-correlations. Sadeghi et al. 
(2015) developed the visual knowledge extraction 
system (VisKE), which can extract some general 
relationships like ‘eat’ and ‘ride’ from the context of 
image and text. Hua et al. (2014) went beyond on-
tology co-occurrences (Cilibrasi and Vitanyi, 2007) in 
most of the existing visual knowledge bases, and 
proposed to measure the ontology similarity by com-
bining visual, textual, and semantics cues. By design-
ing human-expert-powered, semi-automatic, and fully 
automatic procedures, diverse types of knowledge 
graphs have been constructed and released for real 
applications, containing more than 60 billion ontolo-
gies and trillions of facts/relations, and covering a 
wide range of domains from geography to life science 
(Fig. 4). Unfortunately, none of them are specifically 
designed to represent knowledge in cross-media data. 

The second area of focus on knowledge graphs is 
how to deploy knowledge graphs to enhance the 
performance and user experience in information re-
trieval and web applications, especially in the era of 
big data. As a pioneering work, Garfield (2004)  
developed the HistCite software to generate 
knowledge graphs in academic literature, which led to 
the birth of the academic search engine CiteSeer. The 
Knowledge Graph released by Google in 2012 
(Singhal, 2012) provided a next-generation infor-
mation retrieval service with ontology-based intelli-
gent search based on free-style user queries. Similar 
techniques, e.g., Safari, were developed based on 
achievements in entity-centric search (Lin et al., 
2012). However, existing entity-based search engines 
cannot perform fully automatic content parsing on 
heterogeneous modalities, and thus they cannot  
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provide entity-based information retrieval for cross- 
media content. 

To transform the web of data into a web of know- 
ledge (Suchanek and Weikum, 2014), several issues 
should be considered in research on cross-media 
knowledge graphs. First of all, effective and efficient 
techniques for entity extraction and relation con-
struction from heterogeneous cross-media infor-
mation sources should be studied. Second, infor-
mation search and retrieval based on cross-media 
knowledge graphs should be investigated to provide 
more effective knowledge harvesting and information 
seeking mechanisms for more diverse application 
contexts. Third, mining and reasoning in cross-media 
knowledge graphs should be developed to facilitate 
knowledge acquisition and high-level reasoning for 
real applications. Finally, knowledge-driven cross- 
media learning models will be required in the near 
future to achieve more generalization and learning 
capabilities, resulting in more advanced cross-media 
intelligence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.4  Cross-media knowledge evolution and rea-
soning 

Early artificial intelligence systems mostly de-
pend on texts to perform reasoning using predicates, 
propositions, and rules, under fully defined premises. 
Judea Pearl, as a National Academy of Engineering 
(NAE) member and Turing Award winner, was one of 
the pioneers in probabilistic and causal reasoning in 
artificial intelligence (Pearl, 2000). Radinsky et al. 
(2012) proposed a methodology for modeling and 
predicting future events by generalizing examples of 
causality pairs to infer a causality predictor. Some 
research institutions, such as Illinois State University 
and Michigan State University, attempted to estimate 
county health statistics (Culotta, 2014) and the un-
employment rate (Antenucci et al., 2013) by analyz-
ing social media content. Google Flu Trends (Gins-
berg et al., 2009) analyzes search patterns on the web 
search engine to help predict the spread of influenza 
(Fig. 5). 

Fig. 4  An illustration of existing knowledge graphs 
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In addition, it has been shown that some learning 

mechanisms, such as reinforcement learning and 
transfer learning, can be helpful for constructing more 
complex intelligent reasoning systems (Lazaric, 
2012). Furthermore, lifelong learning (Lazer et al., 
2014) is the key capability of advanced intelligence 
systems. For example, Google DeepMind has con-
structed a machine intelligence system based on a 
reinforcement learning algorithm (Gibney, 2015), 
which beat humans at classic video games. Recently, 
AlphaGo, developed by Google DeepMind, has been 
the first computer Go program that can beat a top 
professional human Go player. It even beat the world 
champion Lee Sedol in a five-game match. We have 
witnessed increasing numbers of intelligence systems 
winning human-machine competitions.  

However, the knowledge and reasoning process 
in the real world usually involves collaboration 
among language, vision, and other types of media 
data. Most existing intelligent systems exploit only 
the information from a single media type, such as text, 
to perform reasoning processes. There have been 
some recent works involving reasoning on cross- 
media data. Visual question answering (VQA) can be 
regarded as a good example of cross-media reasoning 
(Antol et al., 2015). VQA aims to provide natural 
language answers for questions given in the form of 
combination of the image and natural language. 
Johnson et al. (2015) attempted to improve the ac-
curacy of image retrieval with the assistance of the 
scene graph, which also shows the idea of cross- 
media reasoning. A scene graph presents objects and 
their attributes and relationships, which can be used to 
guide image retrieval at the semantic level. However, 
it is still hard for these systems to make full use of the 
rich semantic information contained in complemen-
tary media types, and they cannot perform complex 
cross-media analysis and reasoning on multimedia 

big data. Therefore, the problem of performing cross- 
media reasoning based on multiple media types rather 
than on only text information, has become important 
in both research and application areas. Note that there 
is little research on cross-media knowledge evolution 
and reasoning, and many key problems need to be 
solved, which include, for instance, the acquisition, 
representation, mining, learning, and reasoning of 
cross-media knowledge, and the construction of 
large-scale cross-media knowledge bases. We still 
need to confront the significant challenges that are 
involved in constructing cross-media reasoning sys-
tems for real applications. 

To address the problems noted above, several 
issues should be studied further. First, it is important 
to study data-driven and knowledge-guided cross- 
media knowledge learning methods. Second, cross- 
media reasoning frameworks based on semantic un-
derstanding should be constructed with technologies 
such as cross-media deep learning and multi-instance 
learning. Third, never-ending knowledge acquisition, 
mining, and evolution processes should be compre-
hensively investigated in future work. 

2.5  Cross-media description and generation 
Cross-media description and generation aims to 

realize cross-translation among text, image, video, 
and audio information, and link the multimodal un-
derstanding with natural language descriptions, where 
visual content description is the most challenging task. 
Therefore, we will stress this challenge in the fol-
lowing discussion. Visual content description is a new 
research direction integrating natural language pro-
cessing and computer vision. It requires not only the 
recognition of visual objects and their semantic in-
teractions, but also the ability to capture visual-  
language interactions and learn how to translate the 
visual understanding into sensible sentence descrip-
tions. Fig. 6 shows some examples of visual content 
descriptions. 

Existing studies on visual content description 
can be divided into three groups. The first group, 
based on language generation, first understands  
images in terms of objects, attributes, scene types, and 
their correlations, and then connects these semantic 
understanding outputs to generate a sentence de-
scription using natural language generation tech-
niques, e.g., templates (Yang et al., 2011), n-grams 
(Kulkarni et al., 2011), and grammar rules  

Fig. 5  Google Flu Trends  
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(Kuznetsova et al., 2014). These methods are direct 
and intuitive, but the sentences generated are limited 
by their syntactic dependency and thus are inflexible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second group covers retrieval-based meth-

ods, retrieving content that is similar to a query and 
transferring the descriptions of the similar set to the 
query. According to the differences in the retrieval 
feature space, studies in this group include two types, 
i.e., retrieval in a uni-modal space (Ordonez et al., 
2011) and in a multimodal space (Hodosh et al., 2013). 
The former aims to search for similar images or vid-
eos in the visual feature space, and the latter projects 
images or videos and sentence features into a com-
mon multimodal space, and searches for similar 
content in the projected space. Sentences obtained 
with these methods are more natural and grammati-
cally correct, but they usually suffer with regard to 
generating variable-length and novel sentences.  

The third group is based on deep neural networks, 
employing the CNN-RNN codec framework, where 
the convolutional neural network (CNN) is used to 
extract features from images, and the recursive neural 
network (RNN) (Socher et al., 2011) or its variant, the 
long short-term memory network (LSTM) (Hochreiter 
and Schmidhuber, 1997), is used to encode and de-
code language models. These methods typically use 
neural networks for both image-text embedding and 
sentence generation (Karpathy and Li, 2015; Vinyals 
et al., 2015), and visual attention (Xu et al., 2015) or 
semantic guidance (Jia et al., 2015) is also integrated 
in the model learning to further improve the perfor-
mance. Compared with the other methods, the deep 
models benefit from a stronger feature expression 
ability from CNN and capture dynamic spatio- 

temporal information with RNN, and thus they re-
ceive more attention. However, it is still a preliminary 
exploration and there exist many problems regarding 
further research: (1) As the parameter size of deep 
neural network is huge, it demands large amounts of 
annotated data for training and is easy to overfit, 
which makes sentence generation depend heavily on 
the training set; (2) The global features from CNN 
have difficulty in representing local objects accurately, 
which results in incorrect or missing descriptions of 
local objects, especially their correlation in images. 

In conclusion, the current research is centered 
mainly on natural language descriptions of single- 
media content, and improvements are needed in the 
areas of training set collection and application, model 
building, and efficient learning and optimization 
modeling with human cognition. Furthermore, the 
cross-media descriptions of text, image, video, and 
audio are rarely involved, such as image generation 
from text and video generation from audio. Consid-
ering that human cognition is an integrated under-
standing procedure of different types of sensory in-
formation, it becomes a very challenging but valuable 
task to implement a comprehensive and accurate 
description of multimodal information with natural 
language processing. The connections with complex 
cognition, human emotion, and logical reasoning are 
also attractive areas for in-depth exploration. 

2.6  Cross-media intelligent engines 

The intelligent engine is a kind of intelligent 
analysis and reasoning system having specific pur-
poses and common knowledge. With the rapid de-
velopments in artificial intelligence, some interna-
tional companies and research institutions have im-
plemented text-based artificial intelligent systems 
with specific capabilities. Technology companies 
such as Google, Baidu, and Microsoft have proposed 
the concept of intelligent search and the framework 
for search techniques (Uyar and Aliyu, 2015). Based 
on the highly effective indexing of big data, intelli-
gent search attempts to realize intelligent and hu-
manized information services, allowing users to re-
trieve whatever they want with input in natural lan-
guage forms. It can provide more convenient and 
accurate search results than traditional search engines. 
In the field of medical treatment, researchers have 
also proposed the technological concept of the  

Fig. 6  Examples of visual content descriptions, where 
(a)–(c) represent image descriptions and (d) represents a 
video description 

(d) A girl is putting her finger into a plastic cup containing an egg

(a) A dog is wearing 
(a) a red sombrero

(b) Several cars and a motorcycle 
(b) are on a snow covered street

(c) Some people in chairs and a child
(c) watch someone playing a trumpet
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intelligent medical search engine (Luo and Tang, 
2008). 

In the late 1990s, Deep Blue and Deeper Blue, 
developed by IBM, were the first computer chess- 
playing systems that won a chess match against a 
reigning world champion (Hsu, 2002). Siri, an intel-
ligent personal assistant developed by Apple Inc. in 
2010, is powered by natural language understanding 
and driven by entity or ontology based technologies. 
Later in 2011, IBM’s DeepQA project developed a 
question answering computer system, named Watson 
as shown in Fig. 7 (Ferrucci et al., 2013), which was 
specifically designed to play on the quiz show Jeop-
ardy, and it won the first-place prize. It has been fur-
ther improved for the Q&A service in medical diag-
nosis. The chatbots Xiaobing and Tay on Twitter de-
veloped by Microsoft, can improve their own intel-
ligence level through communication with human 
users. DeepMind has proposed an artificial intelli-
gence system based on Q-learning and the convolu-
tional neural network (Mnih et al., 2015), which can 
adapt to different application requirements.  

 
 
 
 
 
 
 
 
 
 
 
 
 
However, cross-media big data is naturally  

multimodal and cross-domain, employing sophisti-
cated compositions, different representations, and 
complex correlations. Existing intelligent systems 
and frameworks depend heavily on the structured 
input and knowledge of specific domains. They 
cannot adapt to the characteristics of cross-media data, 
and cannot cope with the increasingly complex needs 
of general tasks (such as information retrieval) and 
specific tasks (such as content monitoring) in cross- 
media scenarios, which makes it very hard for them to 
realize cross-media intelligent analysis and reasoning. 
To address these problems, it is essential to develop 
an efficient cross-media intelligent engine with abili-

ties in autonomic learning and evolution. The effi-
cient intelligent engine would act as a bridge between 
technologies and applications, which could integrate 
cross-media uniform representation, correlation 
learning, knowledge evolution, reasoning, and so on. 
Such an engine would provide cross-media analysis 
and reasoning services, and be a computing platform 
for cross-media intelligent applications. 

2.7  Cross-media intelligent applications 

The advent of the artificial intelligence era and 
the availability of huge amounts of cross-media data 
have been revolutionizing the landscape in all indus-
try sectors. Among these, cross-media web content 
monitoring, web information trend analysis, and 
healthcare data fusion and reasoning are three key 
applications, which if well addressed would present 
important models and demonstration significance to 
all other areas. We will briefly review the preliminary 
background, previous studies, as well as the existing 
challenges to be confronted. 

iMonitor: The Internet is recognized as one of 
the most influential factors for the stability of human 
society. Many countries have built intelligent systems 
to monitor the content propagating or streaming over 
the Internet, such as the PRISM system in the US, the 
Tempora system in the UK, and the SORM system in 
Russia. At the same time, China is developing a set of 
web content monitoring systems, such as the Golden 
Shield Project for the Ministry of Public Security of 
China. However, existing monitoring systems work 
mainly in the form of passive sampling-post hoc 
analysis, which limits the usefulness of existing sys-
tems, and raises three challenges in the intelligent 
systems community, namely (1) time lag, (2) insuffi-
cient coverage, and (3) high cost, especially consid-
ering the diversity of cross-media data. 

iTrend: Trend analysis of cross-media web in-
formation is the key to improve the stability of human 
society, by alleviating unnecessary social panic and 
understanding the evolution of public opinion. There 
are numerous existing studies on social media analy-
sis, sentiment analysis, and news verification. For 
example, the Xinhua News Agency explores verifi-
cation techniques on UGC data, and there is also the 
PHEME project in the EU, the Tian-Ji system de-
veloped by the Institute of Computing Technology, 
Chinese Academy of Sciences (ICT, CAS), and the 
TRS analysis system. However, existing systems for 

Fig. 7  The high-level architecture of IBM’s DeepQA used 
in Watson 
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cross-media trend analysis suffer from the following 
three main limitations: (1) They are unable to effi-
ciently collect cross-media data; (2) They have the 
disadvantage of under-utilization of cross-media data; 
(3) The sequential characteristics of public opinion 
are usually ignored in the analysis. To address these 
challenges, trend analysis systems must be carefully 
designed with three additional components, namely 
fusion, reasoning, and decision making. An advanced 
framework is shown in Fig. 8. 

iCare: Data-driven healthcare analytics (MIT 
Technology Review, 2014), based on the fusion of 
massive cross-media data, is reforming the experi-
ence diagnostics and evidence-based medicine 
(Brownson et al., 1999) toward the next stage, namely 
personalized and precision medicine (Aamodt and 
Plaza, 1994). Healthcare analytics is a key technique 
for a wide range of real-world applications (Fig. 9).  

Many IT giants have joined the healthcare ana-
lytics community; e.g., IBM released Watson Health- 
care (http://spectrum.ieee.org/computing/software/ibms- 
watson-goes-to-med-school), Google announced 
DeepMind (https://deepmind.com/health), and Baidu 
just released Baidu Medical Brain. In spite of their 
usefulness in certain areas, the applicability of exist-
ing models and algorithms (Kumar et al., 2012; 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chen Y et al., 2013; Yuan et al., 2014) is limited due 
to (1) inability to perform cross-media fusion and 
analysis (Chen et al., 2007), (2) lack of supervision 
from domain experts (Chen Y et al., 2013), and (3) 
poor adaptability toward different medical paradigms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  iTrend framework 
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3  Conclusions 
 

In this paper, we have presented an overview of 
cross-media analysis and reasoning. The advances 
achieved by existing studies, as well as the major 
challenges and open issues, have been shown in the 
overview. From the seven parts of this paper, it can be 
seen that cross-media analysis and reasoning has been 
a key problem of research, and has wide prospects for 
application. The introduction and discussion in this 
paper are expected to attract more research interest to 
this area, and provide insights for researchers on the 
relevant topics, so as to inspire future research in 
cross-media analysis and reasoning. 
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