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Abstract 

Combined with the 3D model of aerial refueling drogue target, this paper proposes a method for 

measuring the position and orientation based on monocular vision. The shape of the drogue’s inner dark 

part is circular and its image is a circle or an ellipse in the image space. The contour points of the dark part 

are extracted in the image space and the adaptive elliptical parameter extraction algorithm based on 

RANSAC is adopted to get the parameters of the ellipse in the image space. Based on the principle of 

pinhole imaging and the dimension of the drogue’s dark part, a visual cone is established and the position 

and orientation of the drogue’s inner dark part can be deduced by using the geometric relationships. The 

experiments for measuring the drogue’s position and orientation are carried on in a platform composed of 

two KUKA robots, and the experiment results verify the effectiveness of the proposed method. 
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Aerial refueling is used to add fuel to in-flight aircraft and it is very important for improving the aircraft's 

endurance and extending cruising mileage. As shown in Fig.1, the aerial refueling system is mainly 

composed of a drogue dragged by the front refueling aircraft (the tanker) and a probe on another aircraft 

(the receiver) in the rear of the tanker. The key of aerial refueling is the accurate docking of the probe and 

drogue in the air. At present, most aircraft refueling process is completed by the manual operation, and the 

operation is difficult. As the urgent demand for the aerial refueling of UAVs [1-8], how to achieve 

automatic aerial refueling become very important. Visual measurement method is widely used in 

automatic aerial refueling [9-12]. John Valasek et al. designed vision-based sensors and navigation 

systems [9]. The device comprises two parts, one is a sensor installed in the receiver aircraft for sensing 

location information, the other is LED beacons installed in the refueling drogue. The disadvantage of this 

method is the need to modify the structure of the drogue and adding auxiliary devices. Fravolini et al. [10] 

achieved the position and orientation measurement of the drogue by combining GPS information and 

visual information. The GPS information is used to measure the relative position between the receiver 

aircraft and the tanker. The visual information is used to measure the relative position and orientation 

between the camera and drogue. Carol Martinez et al. [11] used monocular vision to achieve the detection, 

tracking and measuring drogue targets. The circumscribed rectangle of the drogue target is detected and 

tracked to realize the drogue center position measurement in the camera coordinate system based on P4P 

(Perspective-4-point) approach. However, this method cannot correctly measure the drogue’s orientation 

and it will produce large measurement error when the angle between drogue plane and optical axis of the 

camera is large because the circumscribed rectangle’s four corner points in the image space cannot always 

match the same group of four specified points in Cartesian space.  
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Figure 1. Aerial refueling system 

     By aid of the drogue’s model information, this paper proposes a method for measuring the drogue’s 

position and orientation based on monocular vision [12]. The perspective projection model shows that, 

when the drogue target is perpendicular to the optical axis of the camera, its image is a circle on the image 

plane. However, in most cases the image is an ellipse because the drogue target is not perpendicular to the 

optical axis of the camera. In previous work [13], we propose a detection and tracking method based on 

the shape of the drogue and it can effectively locate the position of contour points of the drogue’s inner 

dark part in the image space. This paper uses self-adaptive least squares method based on RANSAC to fit 

the ellipse’s parameters from the contour points set detected by [13] and then adopts parameter clustering 

to find the optimal estimation model to improve the adaptability of the algorithm. Our approach refers the 

visual measurement model in [14-18] to construct position and orientation measurement model based on 

the model of drogue target. A virtual camera coordinate system in the visual cone of the visual 

measurement model is set up, and the drogue position and orientation is deduced in the virtual camera 

coordinate system. By using the coordinates conversion relation between real and virtual camera 

coordinate system, the real position and orientation of drogue target can be deduced. The experiments for 

measuring the drogue’s position and orientation are carried on in a platform composed of two KUKA 

robots, and the experiment results verify the effectiveness of our proposed method. 

 

2. Adaptive Elliptical Parameter Extraction Algorithm Based on RANSAC 
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2.1 The least squares fitting ellipse 

In the two-dimensional plane coordinate system, the general form of the equation for an ellipse is:  

2 2 0e e e e e eA x B xy C y D x E y F                                 (1) 

The optimization goal of the ellipse fitting is to minimize the sum of squared distances from the sample 

point to the ellipse to get the minimum value of the objective function fo :  

2 2 2
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where n is the number of sample points. The constraint A+C=1 is added to avoid zero solution and 

multiple solutions [19]. A system of linear equations can be obtained by setting the objective function’s 

partial derivatives with respect to parameters Ae, Be, Ce, De, Ee and Fe, and the parameters of general 

elliptic equation can be obtained by solving the system of linear equations. If the results satisfy 

Be
2-4AeCe<0, then an ellipse is obtained; Otherwise, discard the results. To describe the geometric 

characteristics of the ellipse, it is necessary to know the geometry parameters of the ellipse, which are the 

center coordinates of ellipse (xe, ye), major axis ae, minor axis be and rotation angle θe. The geometrical 

parameters of ellipse can be obtained by equation (3)-(7):  
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2.2 RANSAC algorithm and clustering algorithm 

The core idea of RANSAC algorithm is to find the optimal model in the random sampling process. A small 

amount of points are utilized to estimate the model, and the surplus sample points are used to verify the 

estimation model. As a result, all of the sample points, corresponding to the estimation model, are added 

into the agree set. When the number of samples in the agree set of an estimation model is greater than the 

threshold NT, The final parameters of ellipse model are obtained by the least squares fitting of the data in 

the agree set. The adaptability of the threshold is poor when the data are subjected to noise interference, so 

we use clustering method to analyze the ellipse parameters set to achieve an adaptive threshold selection. 

The ellipses are fitted with the random sampling points. Then, the clustering analysis on parameters of 

ellipse is executed. The cluster center which contains the most sample points and owns the highest density 

is regarded as the parameters of correct estimation model.  

     In order to obtain the correct estimation of ellipse, agglomerate hierarchical clustering algorithm is 

used to analyze the ellipse parameters set. Here are two groups of elliptical parameter vectors 

Vi=(xei,yei,ai,bi,θi), Vj=(xej,yej,aj,bj,θj), the distance between them is defined as: 

2 2 2
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                       (8) 

Agglomerate hierarchical clustering algorithm is used in the ellipse parameter space containing N groups 

of parameters. Firstly, each parameter is denoted as a category ni, the number of samples contained in ni is 

denoted as mi, cluster centers is denoted as Pi, then the between-class distance matrix can be initialized as 

the product of distance matrix between each category and distance matrix between cluster centers: 

[ ( , )] [ ( , )]

1 ,1

d d i j N N d i j N ND d n n d P P

i N j N

  

   
                         (9) 



6 
 

The classes ni and nj whose between-class distance is minimum are merged into a new class ninew, and the 

new cluster center is: 

( )i i j j

inew

i j

P m P m
P

m m

  



                              (10) 

Then the jth row and jth column of the between-class distance matrix are deleted and the value of the ith 

row and ith column of the between-class distance matrix are updated according to the new cluster center 

Pinew. The clustering continues until the minimum of between-class distance is greater than the threshold T. 

The center of clustering of every class and the number of samples corresponding to the class are obtained 

by the agglomerate hierarchical clustering algorithm. The cluster center, have maximum number of 

samples, is regarded as the correct parameters estimation of ellipse. 

2.3 Adaptive elliptical parameter extraction algorithm 

The integral process of RANSAC-based adaptive elliptical parameter extraction is presented in Algorithm 

1. The sample set P and the geometrical parameters of ellipse are regarded as the input and output of 

Algorithm 1, respectively.  

Algorithm 1: RANSAC-based adaptive elliptical parameter 

extraction 

Input: the sample set P 

Output: fitted elliptical parameter xe,ye,ae,be,θe 

1 for k = 1 to N do 

2    Randomly select n sample points and add in  sub-sample set Ps 

3    Least squares fitting get xek,yek,aek,bek,θek 

4    xek,yek,aek,bek,θek add in the ellipse parameters set S 

5 end 
6 Compute the distance between two elliptical parameter vectors 
dd(Vi,Vj) using equation (8) 

7 initialize the between-class distance matrix Dd 

8 for k = 1 to N-1 do 

9    for k = 1 to N do 

10        Compute Dd between ni and nj 

11    end 

12    Merge ni and nj whose min(Dd) to form a new class ninew 

13    Get the new cluster center Pinew 
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13    Update Dd 

14    if minimum(dd(Vi,Vj)) < threshold T then 

15        Get the correct estimation of ellipse M* and Stop loop circle 

16    end 

17 end 

18 Compute deviation bs between M* and the sample in P to find the 

effective edge points set P* 

19 Using least squares fitting on P* to get xe,ye,ae,be,θe 

20 Return xe,ye,ae,be,θe 

 

     The steps for adaptive elliptical parameter extraction algorithm based on RANSAC and clustering 

analysis of parameter space are as follows. Firstly, the sampling number is set to N, a sub-sample set Ps 

containing n sample points is randomly selected in the sample set P and n  5, which is the minimum 

quantity of points for fitting ellipse. The method of least squares fitting is used to get the parameters of 

ellipse. Then the process of random selection of sample subsets and fitting ellipse parameters extraction is 

repeated to get the ellipse parameters set S. Then cluster analysis was performed on the ellipse parameters 

set in the parameter space and the clustering center contains the most sample categories is the correct 

parameters estimation of ellipse M*. Finally, the deviation estimation method is used to get the effective 

edge points set P*, and calculate the deviation b between the samples in sample set P and the correct 

estimation of ellipse M*. All sample points whose deviations are less than the threshold compose the 

effective edge points set P*. The final ellipse can be obtained by using least squares fitting on P*. 

     The multi-group parameters are calculated by the multi-times random sampling in extensive 

experiments, and the result of these experiments expresses the phenomenon which is the parameters 

assembled around the parameters of correct estimation model. Therefor the cluster center which contains 

the most sample points and owns the highest density is regarded as the parameters of correct estimation 

model. In the meantime, the convergence of the proposed algorithm is decided by the clustering algorithm. 

Since the agglomerate hierarchical clustering algorithm itself possess high convergence, can be found in 

[20], and the convergence of the proposed Algorithm 1 can be guaranteed similarly.  
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3. Position and Orientation Measurement for Drogue Target  

3.1 Visual measurement principle 

The projection of the inner circular dark part of drogue target in a different position and orientation is an 

ellipse in the image plane. The visual measurement principle from the drogue target to the image plane is 

shown in Fig.2.  

 

Figure 2. Visual measurement principle 

     In Fig.2, the camera optical center O and the axes X, Y, Z stand for real camera coordinate system. The 

image of the inner circular dark part (represented as ABCD in Fig.2) of drogue target in the image plane is 

the ellipse Ee, that is fitted by the effective edge points set P*. By the inverse perspective projection, the 

image plane can be reflected in the positive direction of Z axis of the camera coordinate system and the 

ellipse E in the reflected image plane corresponds to the ellipse Ee in the image plane. A visual cone 

structure is composed of the camera optical center O, ellipse E and inner circular dark part of drogue target 

ABCD. The angle ∠AOB is the maximum angle, which is constructed by point O and any two points on 

ellipse E. These two points on the ellipse E are defined as a and b. The extension lines of Oa and Ob on 

visual cone intersect the ellipse internal circular dark part at points A and B. There is the angular bisector 
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of ∠AOB, which intersects chord AB at point M. Then the plane COD which contains the line OM and is 

perpendicular to plane AOB is constructed. The plane COD intersects circular dark part of drogue at points 

C, D and the ellipse E at points c, d. Besides, a virtual camera coordinate system is established and OM is 

the z-axis of the virtual camera coordinate system. The z-axis is presented as Z’ in Fig.2 and can be 

expressed as the unit vector 'z : 

' ( ) /z uOA uOB uOA uOB                             (11) 

where uOA  and uOB  are unit vectors. The virtual y-axis is defined as Y’ and is perpendicular to the plane 

AOB, which can be expressed as the unit vector 'y : 

' ( ) /y uOA uOB uOA uOB                             (12) 

The virtual x-axis is defined as 'X  and is perpendicular to the plane composed of 'y  and 'z , which can be 

expressed as the unit vector 'x : 

' ' 'x z y                                   (13) 

Thus, a virtual camera coordinate system X’Y’Z’ can be constructed and the geometric relations are 

established in the virtual camera coordinate system. In the coordinate system X’Y’Z’, a virtual image plane 

which is perpendicular to the Z’-axis is constructed. The distance along the Z’-axis between the virtual 

image plane and the camera optical center O is the focal length f, and this virtual image plane can be 

intercepted by a visual cone to a virtual ellipse E’. This virtual ellipse E’ intersects lines OA, OB, OC and 

OD at points a’, b’, c’ and d’ respectively on the visual cone. Accordingly, the geometric relationships 

between inner circular dark part ABCD of drogue, ellipse E and virtual ellipse E’ in the visual cone is 

established. 

3.2 Position and orientation measurement model 

As shown in Fig.3, the ellipse E’ is projected onto the plane X’OY’ in the virtual camera coordinate 
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system X’Y’Z’. 

 

Figure 3. Virtual ellipse E’ 

m’ shown in Fig.3 is the intersection of Z’-axis and ellipse E’ and it is also the ellipse center, so a’b’ and 

c’d’ are the long axis and short axis of the ellipse respectively. Therefore, a’=(la’,0,f ), b’=(-lb’,0,f ), 

c’=( 0, lc’,f ) and d’=(0,-ld’,f ) can be deduced within the cone constituted by camera optical center O and 

the ellipse E’. la’, lb’, lc’ and ld’ can be obtained by equations (14) and (15). 

' ' tan( ' '/ 2)a bl l f a Ob                                 (14) 

' ' tan( ' '/ 2)c dl l f c Od                                 (15) 

la’ and lb’ are the length of virtual elliptical semi-major axis, lc’ and ld’ are the length of virtual elliptical 

semi-minor axis. The representation A, B, C, D can be obtained by the geometric properties of visual cone: 

'' ( ,0, )aA a l f                                    (16) 

'' ( ,0, )bB b l f                                    (17) 

'' (0, , )cC c l f                                    (18) 

'' (0, , )cD d l f                                    (19) 

Where γ is the proportion coefficient between a’ and A, b’ and B, α is the proportion coefficient between c’ 

and C, β is the proportion coefficient between d’ and D. The virtual center of inner circular dark part of 

drogue F’ is:  

'' ( ) / 2 (0, ( ) / 2,( ) / 2)cF C D l f                            (20) 

Where r is set to real radius of inner circular dark part of drogue. The equation (21) is obtained by the 
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properties of the circle and the geometric equivalent relations. 
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                             (21) 

In the virtual camera coordinate system X’Y’Z’, the solution of the proportion coefficient α, β and γ are 

calculated by the equation (21), and the expression of α, β and γ are deduced as: 
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                          (22) 

From above equations, the center coordinate F’ and normal vector 'n  can be represented as equation (23) 

and (24), respectively. 

2 2 2 2

' ' ' '

2 2 2 2

' ' ' '

' (0, , )c a c a

a c a c

rl l l l frf
F

l l f l l f

 
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 
                            (23) 
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l l f l f lAB CD
n

AB CD l l f l f l

  
 

   

                        (24) 

F and n  are set to, respectively, the center coordinate and normal vector of the inner circular dark part of 

drogue in a real camera coordinate system. The rotation matrix between coordinate system Z’ and 

coordinate system Z can be derived by conversion relations shown in Fig.4. F’ and 'n  are converted to F 

and n  by equations (25), (26) and (27). 
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Figure 4. Coordinate system conversion 

' ' ' '[ , , ] [ ', ', ']Z Z Z Z

Z Z Z ZR x y z x y z                             (25) 

'

' 'Z Z Z

ZF R F                                   (26) 

'

'

Z Z
Z

Zn R n                                    (27) 

Where 
'

Z

Z R  represents the rotation matrix from Z’ coordinate system to Z coordinate system. 

 

4. Experimental Results 

The experiment was divided into two parts. The first part was the ellipse fitting experiment. 

RANSAC-based adaptive ellipse fitting method proposed was compared with random ellipse detection 

based on Hough transform [21] and fixed threshold ellipse parameters fitting based on RANSAC [22]. The 

second part was the experiment of the drogue target’s position and orientation measurement. We collected 

10 data of drogue target in different positions and orientation. The proposed method was compared with 

the method proposed by Carol Martinez et al. [11]. 

4.1 Experimental Platform and KUKA Robot Group Measurement Process 

As shown in Fig.5, the experimental platform was composed of two KUKA robots, drogue, probe and 

camera. The camera was Basler acA1300 30gm/gc, the focal length of this camera is 5 mm and the 

resolution of each image acquisition is 1280×960 pixels.  
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Figure 5. Actual picture of KUKA experiment platform 

 

 

Figure 6. Schematic diagram of KUKA experiment platform 

     Schematic diagram of experimental platform is shown in Fig.6, drogue target was installed on the end 

of the robot 1, the probe and the camera was installed on the end of the robot 2 to simulate receiver aircraft. 

Four coordinate systems {t1}, {t2}, {b1} and {b2} were built in the two robots in Fig.6. Among them, {t1} 

and {t2} coordinate systems were the tool coordinate systems of robot 1 and robot 2 respectively, {b1} and 

{b2} coordinate systems were the base coordinate systems of robot 1 and robot 2. The conversion relations 

between {t1} and {b1}, {t2} and {b2} were established through the transformation matrix. Then the 

Flange calibration method was used for determination of the conversion relationship between {b1} and 

{b2}. 

1 1 1

1 2

b1

4

...
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1 1 ... 1

b b b

n

n

p p p
P



 
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                              (28) 
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 
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                             (29) 

2 2
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4 4
0 1

b b

b b b

b

R p
T



 
  
 

                                (30) 

where Pb1 and Pb2 are matrixes which consist of point coordinates in coordinates system {b1} and {b2} 

coordinates respectively. b2Tb1 is the transformation matrix from coordinates {b1} to coordinates {b2}, 
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b2Rb1 is the orientation rotation matrix from coordinates {b1} to coordinates {b2} and b2Pb1 is the position 

vector from coordinates {b1} to coordinates {b2}. 

11

2

2 bb

b

b PTP                                     (31) 

2 1

1 2 1 1 1( )b T T

b b b b bT P P P P                                (32) 

As shown in the equation (32), the least squares fitting method was used to get the coordinate 

transformation matrix b2Tb1 and the conversion relationship between the coordinate system {b1} and {b2}. 

When b2Tb1 was obtained, the equation (31) was used to get the coordinate representation of any point on 

the edge of the drogue inner circular dark part of robot 1 in robot 2’s camera coordinate system. As the 

actual radius of inner circular dark part of drogue was known, we represented the center coordinates of the 

drogue inner circular dark part and the coordinates of edge points in robot 2’s camera coordinate system by 

using conversion relations between the coordinate systems. Normal vector was fitted with edge points, 

thus the position and orientation were used to compare with the results which were obtained by visual 

method. 

4.2 Ellipse Fitting Experiment 

The result of ellipse fitting experiment as shown in Fig.7, (a) is a physical image, (b), (c), (d) are the results 

of ellipse fitting by using three methods respectively. Among them, (b) is the method used in this paper, (c) 

is random ellipse detection method and (d) is fixed threshold ellipse parameters fitting based on RANSAC 

method. 

 

Figure 7. Experiment result of ellipse fitting  
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     Three ellipse fitting methods above were used to get 10 images of arbitrary position and orientation of 

drogue target under the same conditions of continuous motion as shown in Fig.8. After 10 groups of 

experiments, we got the center coordinates of ellipse fitting, semi-major axis, semi-minor axis and rotation 

angle, and their average errors between the actual ellipse five parameters were represented as 
exe , 

eye , 
ae , 

be  and e  as shown in Table 1. It can be seen that our ellipse fitting method was better than others. 

 

Figure 8. Different position and orientation of the drogue target 

Table 1 
Average error of ellipse fitting 

 
exe  (pixel) 

eye  (pixel) ae  (pixel) 
be  (pixel) e  (deg) 

The proposed method in this paper 1.2 1.3 1.4 1.3 3.4 

Random ellipse detection method [21] 6.2 5.9 5.7 6.2 8.5 

Fixed threshold based RANSAC method [22] 2.7 2.7 2.5 2.2 6.7 

 

4.3 Experiment Result of Position and Orientation Measurement of Drogue Target 

The position and orientation, were measured by KUKA robots group, of the first experiment were 

considered as benchmark (as shown in Fig.8). Then the measured offsets from the benchmark to the 

measurement values of the second to tenth experiments with the proposed method and the method in [11] 

were computed. They were compared with the actual offsets obtained by KUKA robot. In the position 

measurement, the point coordinate of the drogue internal circle in 3D space was used as the position, the 

offset was defined as the distance between two points in the x, y, z-axis and expressed as Δx, Δy and Δz. In 
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the orientation measurement, normal vector of the drogue inner circular dark park was used as the 

orientation, the offset was defined as the angle between two normal vectors and expressed as deviation 

angle  . Position measurement results are shown in Table 2, orientation measurement results are shown 

in Table 3. 

Table 2 
Experimental results of position measurement 

  1 2 3 4 5 6 7 8 9 

Actual 
value 

x (mm) 0.39 62.80 75.47 116.90 44.66 55.64 235.42 334.13 86.81 

y (mm) 92.78 188.04 131.88 18.43 146.07 215.99 108.61 11.23 62.13 

z (mm) 59.67 104.74 23.77 300.52 102.13 215.87 135.18 120.34 161.47 

Measured 
value with 

Our 
method 

x (mm) 5.09 64.48 80.96 117.91 37.69 60.64 243.19 326.21 81.98 

y (mm) 94.90 189.97 136.93 17.88 143.24 211.94 104.93 10.56 58.34 

z (mm) 53.73 112.82 18.04 308.65 108.54 222.76 144.14 127.61 156.98 

Measured 
value with 
the method 

in [11] 

x (mm) 15.61 69.48 61.05 115.71 40.73 45.31 252.51 344.48 75.43 

y (mm) 83.00 167.90 110.88 19.22 114.33 183.74 95.07 12.56 59.44 

z (mm) 46.74 118.39 31.09 310.60 110.50 194.08 143.59 108.65 145.03 

 

Table 3 
Experimental results of orientation measurement 

  1 2 3 4 5 6 7 8 9 

Actual value 
 (deg) 53.09 61.40 49.52 32.19 37.00 65.52 83.79 69.96 8.66 

Measured value 
with Our method 

 (deg) 54.16 61.15 46.31 31.36 36.14 63.94 85.22 68.79 9.00 

 
     The results of the first to ninth group in Table 2 and Table 3, respectively correspond to the second to 

tenth images in Fig.8. The results (shown in Table 2) of our method show that the offsets between 

measured position and benchmark position obtained by the method proposed in this paper were more close 

to the actual offsets than that of Carol Martinez’s method. In groups of 4, 8 and 9 experimental results (as 

shown in Table 2), the measured offsets were very close to the actual offsets and we can see from Fig.8 that 

the three images of drogue’s orientation were similar to facing the camera. In other experiments the 

drogue’s orientation changed a lot, so the method of Carol Martinez et al. had relatively large errors, and 

the errors would increase with increasing amplitude variations. Because of the position measurement 
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results carried by Carol Martinez et al. in the image space were depended on the drogue external rectangle 

and pinhole imaging model, the large measurement error was produced when the drogue orientation 

relative to the optical axis of the camera had a larger change. In the method proposed in this paper, the 

measurement results of the drogue in a different position and orientation had good stability. At the same 

time, the proposed method can also simultaneously measure the drogue orientation. We can conclude from 

Table 3 that the actual and measured deviation angles were very close. Therefore our method had good 

accuracy. 

 

5. Conclusion 

For aerial refueling tasks, we use monocular vision achieve 3-D space position and orientation 

measurement of the drogue targets. On the basis of accurately position the contour points of drogue’s inner 

circle dark part in the image space, the adaptive elliptical parameter extraction algorithm based on 

RANSAC is used to get the parameters of the ellipse in the image space and the elliptical parameter space 

cluster analysis method is adopted to find the optimal parameters of the ellipse. This method improves 

adaptability and robustness of the ellipse fitting. Visual measurement model is established from the image 

plane to the drogue target, and the center coordinates of the drogue inner circular dark part and normal 

vector is deduced in the camera coordinate system. The experimental platform of two KUKA robots is 

adopted and the offsets of each set of experiments are compared with the benchmark to verify the 

effectiveness of the proposed method. Experimental results show that the proposed method can accurately 

measure the drogue target in different positions and orientations. 
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