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A B S T R A C T

Recently, pedestrian attributes like gender, age, clothing etc., have been used as soft biometric traits for
recognizing people. Unlike existing methods that assume the independence of attributes during their pre-
diction, we propose a multi-label convolutional neural network (MLCNN) to predict multiple attributes
together in a unified framework. Firstly, a pedestrian image is roughly divided into multiple overlapping
body parts, which are simultaneously integrated in the multi-label convolutional neural network. Secondly,
these parts are filtered independently and aggregated in the cost layer. The cost function is a combina-
tion of multiple binary attribute classification cost functions. Experiments show that the proposed method
significantly outperforms the SVM based method on the PETA database.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Pedestrian attributes, such as gender, dark hair, and skirt, have
been used as soft biometric traits in the surveillance field, and
recently have attracted a lot of attention. For example, pedestrian
attributes can be used as useful clues for person retrieval [2,3],
person recognition [4,5] (also known as subject identification [6]
and human identification [7–9]), face verification [10] and person
re-identification [11]. In many real-world surveillance scenarios,
cameras are usually installed at a far distance to cover wide areas,
therefore pedestrians are captured with low resolutions. As a result,
high-quality face images are hardly attainable. However, in such sce-
narios pedestrian attributes still have a high application potential,
because pedestrian attributes have been shown to provide sev-
eral advantages beyond traditional biometrics, such as invariance to
illumination and contrast [6].

There are three main challenges in pedestrian attribute classi-
fication. First, there are large intra-class variations, due to diverse
clothing appearances, various background conditions and different
camera views. As shown in Fig. 1, the backpack annotated samples in
the PETA [1] database captured with different cameras have drastic
appearance variations. Second, pedestrian attributes have complex
localizing characteristics, which means that some attributes can only
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be recognized in some certain or uncertain local body areas. For
example, long hair is most relevant with the head and shoulders
areas; messenger bag (see Fig. 1) may appear in either left of right
side of the image, with uncertain heights. As a result, the pedes-
trian attribute feature extraction is very difficult. Third, pedestrian
attribute classification is a multi-label classification problem instead
of a multi-class classification problem, because pedestrian attributes
are not completely mutually exclusive. Therefore, most of the exist-
ing multi-class classification algorithms are not applicable, and the
multi-label classification problem has its own challenge.

The most popular approach for attribute prediction is the one
using hand-crafted features and SVM based independent attribute
classifier [1,6,11-13], which cannot solve the above-mentioned chal-
lenges successfully because hand-crafted features have limited rep-
resentation ability for large intra-class variations, and independent
SVM classifiers cannot investigate interactions between different
attributes.

In this paper, we present a comprehensive study on pedestrian
attribute classification. We propose a multi-label convolutional neu-
ral network (MLCNN) to solve the multi-attribute classification
problem. The multi-label convolutional neural network is trained
from raw pixels rather than hand-crafted features and is able
to simultaneously recognize multiple attributes, which achieves
higher accuracies than the SVM-based attribute classifiers proposed
in [11–13]. The paper is built upon our preliminary work [14], which
is improved from three aspects. The first one is that we train a deeper
MLCNN and evaluate its performance on the PETA [1] database,
which is the largest attribute pedestrian database to the best of our
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Fig. 1. Annotated sample images from the PETA [1] databases.

knowledge. The PETA database includes 19,000 pedestrian images,
each of which is annotated with 65 attributes. The second one is that
we do not connect each attribute with the corresponding pre-defined
body parts as priors to help the network learning, since the PETA
database holds a larger database size to drive the MLCNN to auto-
matically learn discriminative features for attributes. The third one
is that we propose a comprehensive evaluation protocol for pedes-
trian attribute classification, which not only reports classification
accuracies, but also reports recall rates and areas under ROC curves
(AUC).

2. Related work

2.1. Attribute pedestrian database

There are several public attribute pedestrian databases for
surveillance applications, such as VIPeR [15], PRID [16], GRID [17],
APiS [18], and PETA [1]. From the perspective of the number of
attributes, VIPER is firstly annotated with 15 attributes by Layne et
al. [11]. They annotated VIPER, PRID and GRID with 21 attributes
in their further work [12]. The APiS database is annotated with 15
attributes by Zhu et al. [18]. PETA is the newest database, includ-
ing 65 attribute annotations. From the perspective of the number
of images, both VIPER, PRID and GRID are small databases and each
one is less than 1500 images. The APiS and PETA databases include
3661 and 19,000 images, respectively. We can find that more and
more databases are released, and the numbers of image and attribute
annotation are increased. This situation illustrates that the study
on pedestrian attribute classification is receiving more and more
interests and attentions.

2.2. Pedestrian attribute classification

The most popular pedestrian attribute classification method is
training each attribute classifier independently on hand-crafted fea-
tures. In [6,11-13], each attribute classifier is trained by using a
support vector machine (SVM). In [18], the gentle AdaBoost [19]
algorithm is applied to train attribute classifier independently. These
straightforward methods can train independently classifiers easily,
if the number of attributes is small. However, when the number of
attributes is huge, for example there are hundreds of attributes, the
one by one training progress is too tedious for human. Moreover,
these methods still have a room for improvement, because these
methods ignore the interaction between different attributes.

There are some methods learning interaction models between
different attributes to improve the performance of the pedes-
trian attribute classification. Chen et al. [20] explored the mutual
dependencies between attributes by applying a conditional random
field (CRF) with the SVM margins from the independently trained
attribute classifiers. Deng et al. [1] exploited the context of neigh-
boring images by an undirect graph based Markov random field
(MRF), where each node represents a random variable and each edge
represents the relation between the two connected nodes. Bourdev
et al. [21] used the SVM algorithm to explore interactions between

different attributes. Specially, they used the SVM algorithm learning
on the prediction scores of all independently trained attribute clas-
sifiers to capture interactions between different attributes. In other
words, the final decision score of an attribute is obtained by linearly
combining all decision scores that come from independently trained
attribute classifiers and the linear coefficients are learned by a SVM.
However, since an attribute is most relevant to itself, the final deci-
sion score of an attribute in this interaction model will heavily rely
on the decision score of its own attribute classifier, resulting in the
role of other attributes is ignorable. In order to solve this disadvan-
tage, Zhu et al. [22] improved the pedestrian attribute classification
by weighted interactions from other attributes. In this method, the
prediction of one attribute is achieved by a weighted combination of
the independent decision score and the interaction score from other
attributes. It is able to keep the balance of the independent deci-
sion score and interaction of other attributes to yield more robust
classification results.

2.3. Convolutional neural network

The above-mentioned methods train attribute classiers on hand-
crafted features. However, hand-crafted features have limited rep-
resentation ability for large intra-class variations. Therefore, using
machine learning based features is a potential improvement method.
Convolutional neural networks (CNNs) [23–27] are very popular
feature learning algorithms, which have been used in many image-
related applications and exhibited good performances. The most
relevant work is the multi-label deep convolutional ranking net pro-
posed by Gong et. al [28] to address the multi-label annotation
problem. Gong et. al [28] adopted the architecture proposed in [25]
as basic framework and redesigned a multi-label ranking cost layer
for multi-label prediction tasks.

3. Pedestrian attribute classifier training

3.1. Body part division

Because of body movements, commonly used holistic feature rep-
resentation methods suffer from pose misalignments. Besides that,
some attributes have local characteristic. For example, long hair is
most relevant to head and shoulder areas; backpack is most likely
to appear in upper torso regions; jeans appears in lower body parts.
Considering these factors, in [20,29], a body part detection method
is first applied to locate body regions and the corresponding fea-
tures are produced by fusing all low-level features extracted from the
detected regions. However, the body part detection itself, is a chal-
lenging problem, due to the geometric variation such as articulation
and viewpoint changes as well as the appearance variation of the
body parts arisen from versatile clothing types.

Since pedestrians are upright walking mostly, we do not use a
body part detector to locate body parts accurately, but roughly divide
a pedestrian image into multiple body parts with a sliding window
strategy. As shown in Fig. 2, each pedestrian image is scaled into
128 × 48 pixels firstly. Then, a sliding window strategy is applied
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Fig. 2. One person is divided into 15 overlapping body parts.
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Fig. 3. The structure of the multi-label convolutional neural network (MLCNN).

to divide the scaled image into multiple equal sized body parts. In
the sliding window strategy, the window size is 32 × 32 pixels, and
the horizontal and vertical sliding steps are 8 pixels and 24 pixels,
respectively. As a result, for a scaled pedestrian image, there are
totally 15 overlapping body parts with 32 × 32 pixels, which are the
inputs for the proposed MLCNN.

Table 1
The details of the proposed MLCNN.

Layer Type Output size Neuron Filter/Stride

C1 Convolution 32 × 32 × 16 ReLU 3 × 3/1
S1 Max pooling 16 × 16 × 16 – 3 × 3/2
C2 Convolution 16 × 16 × 32 ReLU 3 × 3/1
S2 Max pooling 8 × 8 × 32 – 3 × 3/2
C3 Convolution 8 × 8 × 48 ReLU 3 × 3/1
S3 Max pooling 4 × 4 × 48 – 3 × 3/2
C4 Convolution 4 × 4 × 64 ReLU 3 × 3/1
S4 Max pooling 2 × 2 × 64 – 3 × 3/2
F1 Full connection 256 ReLU –

3.2. Multi-label convolutional neural network

After the body part division, multiple parts are integrated to a
multi-label convolutional neural network (MLCNN) at the same time,
as shown in Fig. 3. Each body part is filtered independently. The filter
sizes of C1, C2, C3 and C4 layers are 3×3. The stride used in S1, S2, S3
and S4 are 2 pixels. All body parts are fully connected to the F1 layer
to construct a feature representation. The ReLU neuron [25] is used
as activation function for the convolution and full connection layers.
The details of the proposed MLCNN are listed in Table 1.

3.3. Cost function and learning

Since attributes are not completely mutually exclusive, the pre-
diction of multi-attribute is a multi-label classification problem
essentially. The last layer of the proposed MLCNN structure is differ-
ent from the CNN used for a single-label classification problem which
usually only includes one cost function. In order to make our MLCNN
to predict all attribute classifiers together, we sum all attribute clas-
sification cost functions together. Similar with [28,30], we use the
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Fig. 4. The average ROC curve comparison between ikSVM [33] and our MLCNN on
the PETA database.

softmax function [31] for the prediction of each attribute. The cost
function of our multi-label convolutional neural network (MLCNN) is
defined as follows:

F =
K∑

k=1

kkGk (1)

where Gk is the cost of the k-th attribute; K is the total number of the
attributes; kk ≥ 0 is a parameter used to control the contribution of
the k-th attribute. In our experiments, we set kk = 1
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where Nk
m is number of samples holding m-th class label of k-th

attribute and it meets
∑Mk

m=1 Nk
m = Nk. Back propagation (BP) [23]

is used to learn the parameters of the MLCNN and there are many
public CNN learning tools, such as cudaconvnet [25] and Caffe [32].

4. Experiment and analysis

The newest challenging database PETA [1] is used to validate the
superiority of our algorithm. The PETA database consists of 10 sub-
sets, such as VIPER, PRID, GRID, and CAVIAR4REID, thus the PETA
database is a complex database which includes different conditions,
such as camera views, illuminations, resolutions and scenes. The
PETA database includes 19,000 images and each image is annotated

with 65 attributes, such as gender, age, hair length, and clothing color.
Some attribute annotated samples are shown in Fig. 1. The hardware
environment of following experiments is a notebook with i7-3720
QM CPU, NVIDIA Quadro K1000 M GPU and 16 GB memory.

4.1. Protocol

The evaluation protocol of [33] can be summarized as follows.
1) Each image in the PETA database is scaled into 128 × 48 pixels.
2) The PETA database is divided into non-overlapping training,
validation and testing subsets, which includes 9500, 1900, and
7600 images, respectively. 3) Using the classification accuracy as
the unique performance indicator of each attribute classification
problem.

The classification accuracy is insufficient to evaluate the classi-
fication performance of an imbalanced attribute. To illustrate this
shortcoming, an example is given. Suppose an imbalanced attribute
which has 5% positive samples and 95% negative samples. For this
attribute, even a naive classifier that determines all samples as
negative ones will have a very high classification accuracy (95%).
Therefore, besides of the classification accuracy, additional indica-
tors are needed to fully evaluate the classification performance of an
imbalanced attribute.

In order to overcome the shortcoming of the classification accu-
racy, we propose our evaluation protocol based on the aforemen-
tioned protocol as follows. Firstly, all multi-class attributes are
transformed into binary class attributes. Secondly, each attribute’s
classification accuracy, recall rate when false positive rate (FPR) is set
at 10% and area under the ROC curve (AUC) are reported. Finally, the
average AUC of all attributes is also reported.

4.2. Setup

For the PETA database, a binary attribute is considered extreme
imbalanced if the number of the corresponding positive sample is
less than 500. We discard those extreme imbalanced attributes and
obtain 45 binary attributes, as shown in Table 3. Both for train-
ing baseline ikSVM and our MLCNN models, the PETA database is
augmented by the mirroring operation.

There are two baseline pedestrian attribute classification meth-
ods on the PETA database proposed in [33]. The first baseline method
ikSVM is a SVM-based method. The features used for training ikSVM
classifiers are the same with [12], which have 2784 dimensions,
including 8 color channels such as RGB, HSV, and YCbCr, and 21 tex-
ture channels obtained by using the Gabor and Schmid filters on the
luminance channel. The second baseline method MRFr2 [33] exploits
the context of neighboring images by a Markov random field (MRF)
to improve performance. The MRF is an undirect graph, where each
node represents a random variable and each edge represents the
relation between two connected nodes. The unary energy item is the
probability predicted by ikSVM, while the pairwise energy item is
similarly between neighboring images which learned by the random
forest (RF) method. Table 2 lists the differences among the proposed
MLCNN and the two baseline methods.

Since the experiments in [33] only report the classification accu-
racy of each attribute, we need to re-implement a baseline method

Table 2
Comparison of the proposed MLCNN and the two baseline methods [33].

Method Feature type Joint learning
of all attributes

Using context
modeling

MLCNN CNN learning based Yes No
ikSVM [33] Hand-crafted No No
MRFr2 [33] Hand-crafted No Yes
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Table 3
The performance comparison between ikSVM [33] and MLCNN on the PETA database. Bold font denotes the better case.

Attribute Accuracy rate (%) Recall rate (%) @ FPR=10% AUC(%)

ikSVM MLCNN ikSVM MLCNN ikSVM MLCNN

accessoryHat 92.04 96.05 81.37 86.06 91.27 92.62
accessoryMuffler 94.84 97.17 90.68 88.42 95.09 94.47
accessoryNothing 78.87 86.11 35.37 52.57 81.79 86.09
carryingBackpack 76.39 84.30 46.19 58.40 84.52 85.19
carryingMessengerBag 74.51 79.58 50.22 58.30 78.44 82.01
carryingNothing 75.84 80.14 49.36 55.15 81.60 83.08
carryingOther 76.18 80.91 38.57 46.90 74.11 77.68
carryingPlasticBags 86.86 93.45 70.57 67.30 87.69 86.01
footwearBlack 74.29 75.97 50.37 57.24 81.42 84.07
footwearBrown 82.38 92.14 63.19 65.77 84.67 85.26
footwearGrey 79.34 87.07 48.78 50.80 80.93 80.92
footwearLeatherShoes 81.89 85.26 66.58 72.28 87.33 89.84
footwearShoes 72.34 75.78 46.91 52.80 79.16 81.63
footwearSneakers 78.01 81.78 45.51 52.04 83.32 83.19
footwearWhite 78.99 85.89 52.34 62.72 83.84 86.16
hairBlack 84.76 87.83 75.54 81.03 91.88 93.61
hairBrown 84.24 89.58 72.24 77.36 89.77 91.33
hairGrey 92.18 95.25 71.05 74.91 87.82 89.42
hairLong 79.26 88.12 55.99 76.49 84.18 90.55
hairShort 77.64 86.93 52.48 69.68 82.90 89.84
lowerBodyBlack 84.54 83.86 75.56 71.21 91.77 90.84
lowerBodyBlue 85.64 88.64 72.42 77.26 90.15 90.81
lowerBodyCasual 85.47 90.54 53.66 56.23 85.60 87.49
lowerBodyFormal 84.63 90.86 65.42 72.52 85.99 87.79
lowerBodyGrey 78.66 82.07 54.48 53.43 84.11 82.77
lowerBodyJeans 78.58 83.13 57.22 67.59 84.97 87.71
lowerBodyTrousers 73.41 76.26 49.66 56.19 80.65 84.16
personalLarger60 96.08 97.58 89.09 90.71 95.34 94.94
personalLess30 79.34 81.05 61.27 63.75 86.73 88.50
personalLess45 76.09 79.87 51.14 59.42 82.11 84.62
personalLess60 79.71 92.84 64.69 70.22 84.94 87.66
personalMale 78.45 84.34 54.05 74.80 85.79 91.74
upperBodyBlack 85.80 86.21 81.35 80.11 93.23 93.06
upperBodyBlue 92.75 94.53 80.61 76.19 92.95 90.92
upperBodyBrown 89.41 93.25 72.06 68.60 88.94 87.58
upperBodyCasual 81.83 89.25 47.11 62.14 83.71 87.17
upperBodyFormal 87.11 91.12 62.42 70.48 85.22 87.57
upperBodyGrey 82.43 84.39 60.38 55.33 85.61 82.99
upperBodyJacket 88.75 92.34 53.93 53.37 83.33 80.98
upperBodyLongSleeve 84.80 87.88 76.50 74.29 90.92 89.97
upperBodyOther 79.67 81.97 70.09 73.19 87.05 88.50
upperBodyRed 95.61 96.33 90.86 86.77 96.58 94.69
upperBodyShortSleeve 83.05 88.09 68.20 69.22 89.91 89.21
upperBodyTshirt 84.13 90.59 63.81 63.51 89.31 88.73
upperBodyWhite 87.00 88.84 76.18 75.25 92.29 91.24
Average 82.75 87.23 62.57 67.29 86.42 87.66

for evaluation of the new performance measure. As shown in [33],
the MRFr2 is only slightly better than the ikSVM algorithm but
these is no open-source code of MRFr2 available, therefore, we
re-implement the ikSVM method based on the feature extraction
and ikSVM training codes released by the authors of [12] and [34],
respectively.

4.3. Attribute classification

Following the proposed evaluation protocol, we report the perfor-
mances of ikSVM [33] and our MLCNN methods, as shown in Table 3
and Fig. 4. Each attribute classifier is with the default threshold, that
is 0 for the ikSVM and 0.5 for the MLCNN, respectively. For clas-
sification accuracies, it can be found that our MLCNN offers higher
classification accuracies for 44 of 45 attributes. The average accu-
racy of MLCNN achieves 87.23% and it is 4.48% higher than that of
the ikSVM method [33]. For the recall rates at FPR=0.1, our MLCNN
model outperforms the ikSVM method for 34 of 45 attributes and
obtains 4.72% higher a average recall rate. For AUC performances,
our MLCNN method obtains larger AUCs for 31 of 45 attributes and
also achieves a larger average AUC. From Fig. 4, we can clearly find

that the average ROC of our MLCNN is better than that of the ikSVM
method proposed in [33].

These results illustrate that our MLCNN method achieves better
classification performances for most attributes, but it is beaten by the
ikSVM method for a few remaining attributes. The reason is that the
ikSVM and our MLCNN classifiers are trained under different prin-
ciples. The ikSVM classifiers are independently trained for different
attributes, which means that each ikSVM classifier is independently
optimized for the classification of the corresponding attribute. On the
contrary, the proposed MLCNN method learns all attribute classifiers
together, which is optimized for the overall classification perfor-
mance of all attributes. As a result, the proposed MLCNN method
is able to obtain a better overall classification performance of all
attributes, but loses superiorities for a few attributes.

5. Conclusion

In this paper, a multi-label convolutional neural network
(MLCNN) for the pedestrian attribute classification problem is pro-
posed. The multi-label convolutional neural network is trained from
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raw pixels rather than hand-crafted features and is able to simul-
taneously predict multiple attributes. Experimental results on the
PETA database have well demonstrated the superiority of the MLCNN
pedestrian attribute classification method.

The future work will be done in two directions. The first one is to
develop an effective method to adaptively adjust the weight of each
attribute in the multi-label cost function. This is to ensure that each
attribute receives enough attention, so as to avoid the situation that
the costs of some attributes are less addressed during the MLCNN
training process. The second one is to develop a novel method to
explore the interaction among different attributes to improve the
classification performance.
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