
SCIENCE CHINA
Information Sciences

March 2017, Vol. 60 038101:1–038101:3

doi: 10.1007/s11432-015-0792-1

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

. HIGHLIGHT .

Global fusion of generalized camera model for

efficient large-scale structure from motion

Hainan CUI1 , Shuhan SHEN1* & Zhanyi HU1,2

1National Laboratory of Pattern Recognition, Institute of Automation,

Chinese Academy of Sciences, Beijing 100190, China;
2University of Chinese Academy of Sciences, Beijing 100049, China

Received March 30, 2016; accepted July 8, 2016; published online November 9, 2016

Citation Cui H N, Shen S H, Hu Z Y. Global fusion of generalized camera model for efficient large-scale structure

from motion. Sci China Inf Sci, 2017, 60(3): 038101, doi: 10.1007/s11432-015-0792-1

Recently, interest has grown in building large-scale
3D city models [1] from images captured by multi-
camera systems, such as cameras mounted on a
car, e.g., Google Street View, or on an unmanned
aerial vehicle, e.g., oblique airborne photogram-
metry. From such images, structure-from-motion
(SfM) techniques can be used to reconstruct the
3D scene. However, as shown in Cui et al. [2],
many state-of-the-art SfM methods are incapable
of reconstructing the ordered street view images
because rigidly mounted cameras are considered
separately in the SfM problem solving, i.e., they
failed to enforce the inherent rigid transformations
of the cameras in the system. Thus, the “general-
ized camera” model, which is to consider multiple
cameras as a single one, is used to solve this prob-
lem.

Given accurate transformations among the cam-
eras in a multi-camera system, many state-of-
the-art SfM methods fuse the generalized camera
model in an incremental way [3–5], which aims
at consecutively estimating the relative transfor-
mation between two adjacent generalized cameras.
However, the scene drift cannot be avoided in in-
cremental method due to errors accumulation, and
time-consuming bundle adjustment must be re-
peatedly activated. To our knowledge, the gen-

eralized camera model has never been used in the
global SfM approaches.

In this article, we propose a global SfM method
under the generalized camera model for the recon-
structions of both street view images and oblique
airborne images. Contrary to incremental meth-
ods, our global method initializes all cameras si-
multaneously, makes error distribute on the epipo-
lar geometry graph, and has better potential in
efficiency and accuracy. In addition, instead of
calibrating rigid transformations in advance, we
integrate their estimations into our SfM pipeline.
Extensive experiments show that our method per-
forms better than two state-of-the-art SfM ap-
proaches: Bundler [6] and Cui et al. [2], in terms of
scene completeness, reconstruction efficiency and
scalability.

Generalized camera model. A generalized cam-
era consists of several rigidly mounted common
digital cameras. Let M be the number of the cam-
eras. Figure 1(a) is a graphical representation of
our generalized camera model withM = 4. For the
generalized camera, we choose one camera as the
reference camera and assign it with the index ‘1’.
Then, the other cameras are assigned a label from
index ‘2’ to ‘M ’. Let Ci1 be the reference camera
at instance i. The transformations are denoted as
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Figure 1 (Color online) (a) An example of the ith generalized camera, which includes four common cameras

Ci1, Ci2, Ci3, Ci4. {Rj
1
,T

j
1
,∆fj ,∆k1j ,∆k2j , j = 2, 3, 4} denote the camera transformation between cameras Ci1 and Cij .

(b) The reconstruction result comparison between Cui et al. [2] and our method, and cones show the calibrated camera
poses.

{Rj
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denotes the relative camera rotation between cam-
era Ci1 and Cij , T

j
1 denotes the camera Cij ’s lo-

cation in the camera Ci1’s coordinate system, ∆fj
denotes the difference of focal length between cam-
era Cij and Ci1, and ∆k1j,∆k2j denote the dif-
ferences of radial distortions between camera Cij

and Ci1. Thus, if we get the camera model of Ci1

and all the relative transformations, all the camera
models of Ci2, Ci3, Ci4 could be computed.

Our global SfM algorithm. Based on this gen-
eralized camera model, the input of our SfM prob-
lem consists of: (a) image sets captured by a M -
camera system; (b) noisy imaging information for
each reference camera, including geotags, compass
angle, and focal length. Our goal is to estimate:
(1) a 9 degree-of-freedom camera model for each
reference camera, including camera rotation ma-
trix Ri1, camera center T i1, and camera intrinsic
parameters f1, k11, k21; (2) the rigid transforma-
tions in the generalized camera model; (3) a 3D
position for each scene point.

Under the generalized camera model, the num-
ber of parameters in the bundle adjustment de-
creases dramatically. For conventional SfM meth-
ods where the cameras are considered separately,
the number of parameters in the bundle adjust-
ment is 9NM . However, for our global SfM
method under the generalized camera model, the
number of parameters is only 6N +9M − 6. Thus,
for large-scale scene reconstruction applications,
our method has better efficiency and scalability.

Our global SfM method consists of three main
steps. The first step is to build an epipolar ge-
ometry graph (EG), the second is to perform
rotation averaging on the generalized cameras,
and the third is for scene reconstruction. SIFT

points are extracted from each image, and then
matched using cascade hashing strategy. The
matching result is represented by an epipolar ge-
ometry graph, where vertices denote images and
edges link matched pairs. Let R = {Rij , i =
1, . . . , N, j = 1, . . . ,M} be the absolute camera
rotations, where Rij denotes the rotation of the

jth camera in the ith generalized camera; {Rj
1} be

the camera rotation transformation between refer-
ence camera Ci1 and camera Cij . For the camera
Cij , the corresponding rotation Rij is calculated

by Rij = R
j
1Ri1.

Given pairwise relative rotation estimate R
pq
ij ,

we perform the rotation averaging in an Iterative
Reweighed Least Square manner. In the lth itera-
tion, the goal is to find a set of reference camera ro-
tations and rotation transformations to minimize
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M∑
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and the weighting factor wpq

ij is an indicator func-

tion. w
pq
ij

(l)
= 0 when ǫ

pq
ij

(l)
> τ1, and otherwise

set to 1. τ1 = max{0.5, 1.2 × maxmst}, where
maxmst is the largest residual among the edges in
the minimum spanning tree (MST) of EG. When
the threshold τ1 is not changed between two con-
secutive iterations, the rotation averaging termi-
nates. As a result, all the camera rotations {Rij}
are obtained.

Let T = {T ij , i = 1, . . . , N, j = 1, . . . ,M}

be the absolute camera centers, and T
j
1 be the

centers transformation in the generalized camera.
Given the reference camera centers T i1 (initial-
ized by geotags) and rough centers transforma-
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tion T
j
1, the locations of cameras Cij is computed

by T ij = R
T
i1T

j
1 + T i1. Given the intrinsic pa-

rameters of the reference camera, including fo-
cal length f1, and two radial distortion parame-
ters k11, k21, the intrinsic parameters of the other
cameras are computed as fj = f1 + ∆fj ; k1j =
k11 + ∆k1j ; k2j = k21 + ∆k2j . Thus, given the
camera rotations R and initial intrinsic parame-
ters, we get the initial projection matrix of each
common camera P = {P ij}.

Then, the triangulation is performed and gross
outliers are initially ignored. Let X = {X h, h =
1, . . . , H} be the predicted 3D points, x = {x ijh}
be the measured 2D image point locations. Our
bundle adjustment is formulated as

N∑

i=1

M∑

j=1

H∑

h=1

δijh × (γ (P ij ,X h)− x ijh)huber. (2)

γ (P ij ,X h) is the reprojection function which
projects the predicted 3D point to its visible im-
ages; δijh = 1 if X h is visible to the jth common
camera in the ith generalized camera, otherwise
set to 0. In this work, since the initial camera mod-
els are noisy, the triangulation and bundle adjust-
ment are carried out iteratively to make more real
track inliers into the bundle adjustment. For the
efficiency concern, the bundle adjustment is ter-
minated when the number of track inliers between
two consecutive iterations is unchanged. We find
that iteration times is always less than 5, hence
the time-cost of bundle adjustment is acceptable
for our method.

Experiments. We perform our SfM method
on two typical kinds of images: (1) street view
images, including datasets SV1(1504 images),
SV2(3270 images) and SV3(2468 images); (2)
oblique airborne images OBL(3720 images), which
has ground-truth camera centers transformations.
We compare our method with both a state-of-the-
art incremental SfM approach, Bundler [6], and a
recent representative global SfM approach, Cui et
al. [2]. For our datasets, the ratio of the number
of the parameters in our method to those in the
other two methods is respectively 16.9%, 11.3%,
16.8% and 13.5%. As a result, our global method
has a better potential in efficiency and scalability.

For our datasets, we find that there are always
some uncalibrated images left by Bundler [6], and
our method is about three times faster than the
global SfM method Cui et al. [2] on SV1 and SV3,
while about four times faster on SV2 and OBL. For

the calibration accuracy, our result on OBL has a
median error of 0.061 m, which is much smaller
than 5.20 m in Bundler [6] and 4.16 m in Cui et
al. [2].

Figure 1(b) shows an example of reconstructed
results on SV3 produced by Cui et al. [2] and our
method. For the area marked by squares, our cal-
ibrated camera poses and reconstructed scene are
apparently more reasonable. More scene recon-
struction and comparison results on SV1, SV2 and
OBL are showed in the supplementary file.

Conclusion. In this article, we fuse the gen-
eralized camera model into a global calibration
pipeline. In particular, the global rotation averag-
ing problem for the generalized camera is solved
in an iterative way, and the scene reconstruc-
tion problem for the generalized camera is tackled
by a few alternations of triangulation and bun-
dle adjustment. Extensive experiments demon-
strated our SfM system are more efficient, accu-
rate and scalable than the two state-of-the-art SfM
approaches, especially in the large-scale scene re-
construction applications.

Acknowledgements This work was supported by

National Natural Science Foundation of China (Grant

Nos. 61333015, 61473292).

Supporting information The supporting infor-

mation is available online at info.scichina.com and link.

springer.com. The supporting materials are published

as submitted, without typesetting or editing. The re-

sponsibility for scientific accuracy and content remains

entirely with the authors.

References

1 Yin C T, Zhang X, Hui C, et al. A literature survey
on smart cities. Sci China Inf Sci, 2015, 58: 100102

2 Cui H N, Shen S H, Gao W, et al. Efficient large-
scale structure from motion by fusing auxiliary imag-
ing information. IEEE Trans Image Process, 2015, 22:
3561–3573

3 Klingner B, Martin D, Roseborough J. Street view
motion–from–structure–from–motion. In: Proceed-
ings of IEEE International Conference on Computer
Vision (ICCV), Sydeney, 2013. 953–960

4 Sweeney C, Fragoso V, Höllerer T, et al. gDLS: a scal-
able solution to the generalized pose and scale prob-
lem. In: Proceedings of European Conference on Com-
puter Vision (ECCV). Berlin: Springer, 2014. 16–31

5 Torii A, Havlena M, Pajdla T. From google street view
to 3D city models. In: Proceedings of IEEE 12th Inter-
national Conference on Computer Vision Workshops
(ICCV Workshops), 2009. 2188–2195

6 Noah S, Steven S M, Richard S. Modeling the world
from Internet photo collections. Int J Comput Vision,
2008, 80: 189–210

info.scichina.com
link.springer.com
link.springer.com

