
Multi-operator Based Signal Separation Approach
Baokui Guo, Silong Peng, Xiyuan Hu

Institute of Automation
Chinese Academy of Sciences

Beijing 100190, China
{guobaokui2014, silong.peng, xiyuan.hu}@ia.ac.cn

Pengcheng Xu
Academy of Mathematics and Systems Science

Chinese Academy of Sciences
Beijing 100190, China

xupc@amss.ac.cn

Abstract—The null space pursuit (NSP) algorithm is an
operator-based signal separation approach which separates a
signal into a set of additive subcomponents using adaptively
estimated operators. In this paper, we introduce a multi-operator
based strategy and propose multi-operator based null space
pursuit (MONSP) algorithm for signal separation. On the one
hand, the proposed approach is a generalized formulation of the
original work in some sense. On the other hand, compared with
the NSP, the proposed approach has its intrinsic advantages:
1), the proposed approach avoids the mode-mixing problems
which is often meet in NSP algorithm; 2), the multi-operator
based formulation could theoretically reach the ideal separation
resolution for the noise-free signal separation; 3), the MONSP
algorithm does not need to initialize parameters in each iteration.
We perform several experiments on synthetic and real-life signal
separation by MONSP and compare some results with the state-
of-the-art methods to demonstrate the efficiency and robustness
of the proposed method.

Index Terms—Signal separation, null space pursuit, multi-
operator based approach, empirical mode decomposition,
amplitude-modulated and frequency-modulated signal.

I. INTRODUCTION

In recent years, many approaches have been proposed to
separate a signal into a set of additive subcomponents [1]-[11].
The separation methods are categorized as three groups: 1) the
time-frequency analysis methods, e.g. short-time Fourier trans-
form, wavelet transform, time-frequency reassignment [1], [2],
Synchrosqueezing wavelet transform (SWT) [3], [4] etc; 2)
data-driven adaptive method, e.g. empirical mode decompo-
sition [5], ensemble empirical mode decomposition (EEMD)
[6] etc; 3) optimization-based method, e.g. sparsity based
method [7], [8], operator-based method [9], [10], [11] etc. The
operator-based signal separation (OSS) approach proposed by
Peng et al. [9] separates a signal S into subcomponent U and a
residual signal R so that S = U+R and U is in the null space
of an operator TS . The operator TS is usually characterized
by some parameters that can be estimated from S adaptively.
The objective of OSS is to solve the following optimization
problem:

min
U
{‖TSU‖2 + λ‖H(S − U)‖2}, (1)

where S − U is the residual signal and H is an identical
or differential operator that regularizes S − U . Minimizing
‖TSU‖2 indicates that the extracted signal U is in the null
space of an adaptive operator TS . The optimal solution of (1)

is:
Û(t) = (T ∗S TS + λH∗H)−1λH∗HS(t), (2)

where (·)∗ is the conjugation of operators. The separation
result by OSS approach is sensitive to λ since different value
of λ results in different solution (2).

In order to improve the robustness and effectiveness of OSS
approach, Peng and Hwang [10] introduced a leakage term
and proposed the null space pursuit (NSP) algorithm. It is to
optimize the following problem:

min
U,T
{‖T (U)‖22 + λ(‖(S − U)‖22 + γ‖U‖22) + F(TU )}. (3)

The first term and second term correspond to the two terms in
(1); the third term called leakage term determines the amount
of U to be retained in the null space of T , which makes
the optimization less greedy and more robust; and the last
term F(TU ) is a Lagrange term for regularizing the operator
parameter. The NSP algorithm optimizes T and signal U in (3)
alternatively, and based on some assumptions, the parameters
λ and γ are updated in each iteration [10], [12].

The most widely used operator in OSS approach and NSP
is the differential operator [10]:

T =
d2

dt2
+ α(t), (4)

where parameter α(t) is a second-order continuously differ-
entiable function. For a signal U(t) = A(t) cos(φ(t)), if
α(t) = φ′2(t), thenT (U(t)) ≈ 0 if A(t) and φ′(t) are slow-
varying functions.

The residual signal S − U can be iteratively separated by
NSP algorithm and by separating residuals iteratively for K
times, the input signal can be separated into K subcomponents
plus a residual signal as

S =
K∑
i=1

Ui +R, (5)

where Ui is the i-th extracted subcomponent signal, each of
which is in the null space of an adaptive operator, and R is
the ultimate residual signal.

In this paper, we utilize a multi-operator based strategy
for signal separation and propose a multi-operator based
null space pursuit algorithm (MONSP). This approach is an
one-shot method which extracts all components at the same
time instead of extracting components sequentially. Compared
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with the single-operator form (1) and (3), the multi-operator
based method 1) avoids mode-mixing problems; 2) could
theoretically reach the ideal separation resolution if the input
signal is noise free; 3) does not need to reset initial values of
the parameters λ and γ in (3). We present this approach in
section II and demonstrate the performance of the proposed
approach by some separation experiments on synthetic and
real-life signals in section III.

II. MULTI-OPERATOR BASED SIGNAL SEPARATION

The objective of multi-operator based signal separation
(MOSS) approach is to separate a multi-component signal into
sum of several mono-component signals and a residual noise
by using multiple operators. In this section, we first give the
signal model and then derive the MOSS approach, and lastly
propose the multi-operator based null space pursuit (MONSP)
algorithm for discrete signal separation.

A. Signal Model

In this paper, a mono-component signal is defined as an
amplitude-modulated and frequency-modulated (AM-FM) sig-
nal:

U(t) = A(t) cos(φ(t)), (6)

where A(t) and φ(t) represent the instantaneous amplitude
(IA) and the instantaneous phase (IF), respectively. Generally,
both the IA A(t) and instantaneous frequency (IF) φ′(t)
are slow-varying functions. A multi-component signal can be
represented as

S(t) =
K∑
i=1

Ai(t) cos(φi(t)) +R(t), (7)

where K is the number of mono-components and R(t) is
noise, e.g. Gaussian noise.

B. Multi-operator Based Approach

For a multi-component signal S(t) =
∑K
i=1 Ui(t)+R(t) =∑K

i=1Ai(t) cos(φi(t)) + R(t), if Ti = d2/dt2 + φ′2i (t)
(i = 1, 2, ...,K), then each subcomponent Ai(t) cos(φi(t)) is
approximately in the null space Ti since TiUi(t) ≈ 0.

Denote D as the second differential operator, i.e. DS(t) =
S′′(t). Then given a component number K, the multi-operator
based approach for separating multi-component signal S(t) is
to optimizing the following problem:

Ûi, T̂i(i = 1, 2, ...,K) = argmin
Ui,Ti(i=1,...,K)

{
K∑
i=1

‖Ti(Ui)‖2+

λ‖S −
K∑
i=1

Ui‖2 + F(T1, · · · , TK)},

(8)
where Ui (i = 1, 2, ..., k) is the subcomponents to be ex-
tracted and Ti = D + αi(t) is the associated operator. The
parameter αi(t) in Ti is unknown and needs to be opti-
mized. The last term F(T1, · · · , TK) is a regularization term
which regulates these operators. Generally, F(T1, · · · , TK) =

γ
∑K
i=1 ‖Dαi(t)‖2, which ensures the smoothness of each

parameter αi(t). With the optimal solution Ûi and T̂i (T̂i =
D + α̂i(t)) of (8), the multi-component signal S(t) can be
represented as a sum of subcomponents and a residual signal
as (7), that is S(t) =

∑K
i=1 Ûi(t) + R(t). Each component

Ûi(t) is in the null space of T̂i, whose parameter α̂i(t) is
equal to the square of IF of Ûi(t). We will derive an algorithm
termed multi-operator based null space pursuit (MONSP) to
solve (8) in section II-C.

In fact, other operators, such as AM-FM operator d2/dt2+
P (t)d/dt+Q(t) [12], integral operator [11], etc., can also be
utilized in the proposed method. There will be similar results
in our approach with other formations of operator, thus we
will just use the differential operator (4) in the discussion.

C. Multi-operator Based Null Space Pursuit Algorithm

We use the upper and the bold lower case, e.g. T and s,
to represent a matrix and discrete signal respectively in the
following.

In discrete case, the parameter α in operator (4) is corre-
sponding to discrete signal α(n) and the differential operator
denoted as T , has the form:

T = D +Aα, (9)

where D is the second difference matrix, i.e. Ds(n) = s(n+
1) − 2s(n) + s(n − 1), and Aα is a diagonal matrix whose
diagonal elements are equal to α.

Denote

F (ui,αi : i = 1, ...,K) =
K∑
i=1

‖Ti(ui)‖2 + λ‖s−
K∑
i=1

ui‖2

+ γ

K∑
i=1

‖D(αi)‖2.

(10)
Then the discrete case of (8) is:

ûi, T̂i = argmin
ui,αi:i=1,...,K

F (ui,αi : i = 1, ...,K). (11)

The partial derivative to αi (i = 1, · · · ,K) is
∂F

∂αi
= 2ATui

(Auiαi +Dui) + 2γDTDαi, (12)

where (·)T is the transposition of a matrix. So the parameter
αi can be estimated by:

α̂i = −(ATui
Aui

+ γDTD)−1ATui
Dui. (13)

Similarly, for each subcomponent ui (i = 1, · · · ,K), the
estimation of ûi can be obtained by ∂F/∂ui = 0:

ûi = λ(Ti
TTi + λI)−1(s−

∑
j 6=i

uj). (14)

In fact, the third term of (10) ensures smoothness of operator
parameter. Thus we usually estimate the operator parameter
αi by least square method and then post-process αi with a
low-pass filter. That is:

α̃i = −(ATui
Aui

)−1ATui
Dui, (15)

40



α̂i = α̃i ? h, (16)

where (?) is convolution operator and h is a low-pass filter.
Given a multi-component signal s and the component

number K, optimization (11) can be solved with (14), (15),
(16) by alternating minimization [13]. The procedure denoted
as MONSP algorithm is depicted in algorithm 1.

The component number K and the initial value of pa-
rameters αi (i = 1, 2, ...,K) can be obtained by time-
frequency distribution (TFD) based ridge detection [14], i.e.,
the component number K is given by the ridge number of the
TFD while the initial αi is given by the square of each ridge.

Algorithm 1 MO-NSP
Input:

λ; Stopping threshold ε; Stopping iterations J ; j = 1;
The initial values of parameter α(0)

i (T (0)
i = D+A

α
(0)
i

),
i = 1, 2, · · · ,K;

Loop:
1: for i = 1 to K do:
u
(j)
i ← λ(Ti

(j−1)TT
(j−1)
i + λI)−1(s−

∑
k 6=i u

(j−1)
k )

end for;
2: for i = 1 to K do:
α

(j)
i ← −(ATu(j)

i

A
u

(j)
i
)−1AT

u
(j)
i

Du
(j)
i

α
(j)
i ← α

(j)
i ? h

end for;
3: for i = 1 to K do:
T

(j)
i ← D +A

α
(j)
i

end for;

4: Check if
∑K
i=1 ‖u

(j+1)
i −u(j)

i ‖2 < ε‖s‖2 or j > J . If so,
skip this loop, else j ← j + 1, execute continuously.

Return: ûi = u
(j)
i (i = 1, 2, · · · ,K).

D. Comparison with Original Work

When component number K is set to 1, the problem (8)
is identical to (1). Thus this approach is a generalized form
in some sense. However, there are still some advantages by
using the multi-operator approach for signal separation.

Firstly, the multi-operator based approach solves the mode-
mixing problem encountered by single-operator based ap-
proach. For example, for a signal S(t) composed of two
component Si(t) = Ai(t) cos(fit) (i = 1, 2), the first extracted
signal Û(t) by (1) or (3) may be a mixture of S1(t) and
S2(t) such that Û(t) = S1(t) when A1(t) > A2(t) and
Û(t) = S2(t) when A1(t) < A2(t), since the residual signal
S − U in formulation (1) and (3) is constricted with 2-norm.
In contrast, when K = 2, the optimal solution of (8) is
Ûi(t) = Si(t) and Ti = D + f2i (i = 1, 2), which indicates
that S(t) is separated perfectly.

Secondly, the MOSS approach can reach the ideal separation
of a multi-component signal. For example, S(t) = U1(t) +
U2(t) = cos(f1t) + cos(f2t). Evidently, the ideal separation
resolution are U1(t) and U2(t). For the MOSS approach, Ui
and Ti = D+f2i (i = 1, 2) is the optimal solution of (8) since
TiUi = 0 and S − U1 − U2 = 0, while the optimal solution
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Fig. 1. (a1) signal S(t); (a2) the TFD of S(t); (b1,b2) the TFDs of
two extracted subcomponents by MONSP; (c1,c2) the TFDs of the extracted
subcomponent and the residual signal by NSP. The SNRs of the two extracted
signals by MONSP are 39.1 dB and 38.7 dB respectively. The NSP encounters
mode-mixing problem that in the interior of red rectangle, the extracted signal
UNSP is a mixture of U1 and U2; in the left UNSP is close to U1 and in the
right UNSP is close to U2.

of (1) or (3), which is determined by the parameters λ and γ,
would not be equal to either U1 or U2.

Lastly, since the original NSP algorithm extracts subcom-
ponent of a signal sequentially, parameters λ and γ need to be
initialized in each iteration which highly affects its robustness,
and that will not happen in the one-shot MONSP algorithm.

III. EXPERIMENTS

In this section, we evaluate the performance of proposed
approach through separating several synthetic and real-life sig-
nals. Some results are compared with state-of-the-art methods
NSP [10], SWT [3], [4] and EEMD [6]. We evaluate the
separation results by the signal to noise ratio (SNR) [dB],
defined as SNR = 10 log10(Ps/Pnoise), where Ps and Pnoise
are the energy of clean signal s and noise respectively. In the
following illustration, the short-time Fourier transform [15]
based time-frequency distribution (TFD) is used to represent
signals. In the following experiments, the parameters λ and
stopping threshold ε in MONSP are set to 1 × 10−3 and
1× 10−5 respectively.

In the first experiment, we consider in time interval [0,1]
a signal S(t) composed two mono-components U1(t) and
U2(t), where U1(t) = exp(−5(t − 0.3)2) cos(2π(160t +
3 cos(2π2t))), U2(t) = exp(−5(t − 0.7)2) cos(2π(185t +
3 cos(2π2t))). The IFs of these two components are vary close
as shown in Fig.1(a2) that makes separation much difficult.
It is interesting that S(t) is dominated by U1(t) in [0,0.5)
and by U2(t) in (0.5,1] since U1(t) is active around 0.3
while U2(t) is around 0.7. We use MONSP algorithm with
K = 2 to separate the discretized signal S(t) (Sampling rate
is 1024 Hz). The SNR of the two extracted signals Û1(t) and
Û2(t), corresponding U1(t) and U2(t) respectively as shown
in Fig.1(b1,b2), are 39.1 dB and 38.7 dB respectively, which
indicates that the signal S(t) is well separated. In contrast, the
separation result by NSP algorithm is highly affected by mode-
mixing problem that the extracted signal is close to U1(t) in
the former period and close to U2(t) in the latter period as
shown in Fig.1(c1,c2).
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Fig. 2. (a1) the signal Sδ(t) with δ = 0.6; (a2) the TFDs of Sδ(t); (b1,b2,b3)
the TFDs of three extracted signals from Sδ by MONSP. (b4) the TFDs of
the residual signal.

In the second experiment, we try to separate signal Sδ(t)
= (1.5 + 0.3 cos(2π2t)) cos(2π200t + 4π cos(2π2t)) + (1 +
0.5 cos(2πt)) cos(2π240t+6π cos(2π2t))+0.6 cos(2π(280t+
12t2))+Rδ(t)

.
= V1(t)+V2(t)+V3(t)+Rδ(t), where Rδ(t)

is the Gaussian noise with variance being δ. Signal Sδ(t) is
contaminated by Rδ(t) when δ is big as is illustrated in Fig.2.
We use the EEMD, SWT and MONSP with K = 3 to separate
signal Sδ(t) with δ varying from 0.1 to 0.6. The TFDs of three
extracted components by MONSP when δ = 0.6 are shown in
Fig. 2(b1-b3). From Fig. 2(b1-b4), we can see that the three
components Vi (i = 1, 2, 3) are well separated out and the
residual signal is nearly contains any information of these three
components as its TFD is uniform in the time-frequency plane.
More results by MONSP, SWT, and EEMD methods with
different values of δ are shown in Table I (SNRi represents
the SNR of the extracted signals which are corresponding to
Vi (i = 1, 2, 3) ). We can observe that the MONSP algorithm
outperforms other methods since it yields higher SNRs on
these noisy signals.

Lastly, in the real-life application, we use the MONSP
to separate a bat echolocation call [16] which is available
at http://dsp.rice.edu/sites/dsp.rice.edu/files/software/ batsig-
nal.zip. There are 400 samples and the sampling period is 7

TABLE I
SNRS OF THREE EXTRACTED SUBCOMPONENTS BY DIFFERENT METHODS

FOR SEPARATING Sδ(t)

Methods\δ 0.1 0.2 0.3 0.4 0.5 0.6

MONSP
SNR1 29.9 27.9 25.7 23.9 22.2 20.8
SNR2 25.6 24.3 22.5 20.9 19.4 18.1
SNR3 27.9 22.7 19.4 16.9 15.0 13.4

SWT
SNR1 19.7 19.3 18.8 18.3 17.8 17.3
SNR2 5.71 8.52 8.52 8.48 8.25 6.71
SNR3 6.01 5.93 6.83 6.35 6.05 5.69

EEMD
SNR1 6.98 7.06 7.18 7.32 7.47 7.62
SNR2 5.02 5.03 5.04 5.05 5.08 5.11
SNR3 0.06 0.10 0.14 0.21 0.31 0.44
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Fig. 3. (a1) the bat signal; (a2) the TFD of the bat signal; (b1,c1,d1) three
extracted components from the bat signal by MONSP. (b2,c2,d2) associated
TFDs of the three extracted components.

µs. The TFD in Fig.3(a2) shows that the bat signal composes
three main components, all of which are nonlinear FM signals
and have varying amplitudes. By the MONSP algorithm,
the three components are well extracted as shown in Fig.
3(b1,b2,c1,c2,d1,d2).

IV. CONCLUSION

In this paper, we introduce the multi-operator based signal
separation (MOSS) strategy and propose the multi-operator
based null space pursuit (MONSP) algorithm for signal sep-
aration. The MONSP can separate a multi-component signal
into sum of several mono-components, each of which is in the
null space of an adaptive operator. The proposed approach is
in some sense a generalized form of operator-based separation
method which utilizes a single operator to separate signals.
But the proposed approach has its intrinsic advantages. 1) The
MOSS avoids mode-mixing problems when the amplitudes of
subcomponents in a multi-component signal are trading off
and taking turns; 2) the multi-operator based formulation (8)
could reach, whatever the value of λ is, the ideal separation
resolution theoretically if the input signal is noise free; 3) the
MONSP algorithm does not need to initialize the parameters λ
and γ iteratively. The experiments including synthetic and real-
life signal separation demonstrate that the proposed method is
efficient in multi-component signal separation and robust to
the noise.
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