
  

  

Abstract—In this paper we analyze characteristics of the 
ground reaction force (GRF) experienced by the legs of the 
quadruped robot during stance phase in walk gait, in particular, 
when the height of center of gravity (COG) of the quadruped 
robot is changeable. We also build the dynamics model of the 
quadruped robot. Two dynamics equations during swing phase 
and stance phase are established, respectively. Additionally, we 
design a controller to adjust the height of COG of the 
quadruped robot. The controller uses the central pattern 
generator (CPG) model to generate basic rhythmic motion, and 
utilizes the discrete tracking differentiator (TD) to implement 
the transition between two different rhythmic medium values of 
the CPG. The combination of the CPG model and the discrete 
TD enables the quadruped robot to adjust the height of COG 
according to the environment. The ground reaction peak force 
and the joint torque of the quadruped robot increase with the 
reduction of the height of COG. Finally, we give a simulation 
example and the results, including an analysis of the vertical 
reaction force and the joint torque of the quadruped robot. 

I. INTRODUCTION 

uadruped robots are expected to be employed for a 

variety of dangerous and dirty tasks in fields like search 

and rescue in the future because of their superior mobility in 

rough and unstructured terrain. Therefore, significant effort 

has been made in enhancing the adaptivity of quadruped 

robots to nature environment. A modular controller which 

consists of a CPG model, stumbling correction reflex and 

virtual model is presented to utilize quadruped locomotion 

over unperceived rough terrain [1]. A reactive controller 

framework which comprises two main modules: one related 

to the generation of elliptic trajectories for the feet and the 

other for control of the stability of the whole robot, is 

designed to cope with terrain irregularities, trajectory 

tracking errors and poor state estimation [2]. A new approach 

for creating a continuously adjustable, smooth COG 

trajectory is proposed for quadruped robots to successfully 

traverse rough terrain [3]. 

In order to enable the quadruped robot to adapt to rough 

terrain, we are motivated to investigate the GRF experienced 

by the quadruped legs and joint torque of the quadruped robot 

during locomotion with changeable height of its COG. Lots 

of investigations have been done focusing on dynamics of 

legged robots. Michael Mistry et al. implement the inverse 
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dynamics control of the floating-base systems which relates 

the world coordinate system to the global environment [4]. 

Bin Li et al. propose a novel dynamics model which supposes 

two different models according to the leg’s state [5]. Wei 

Wang et al. investigate the mediolateral reaction forces 

during straight walking and turning [6]. 

While there is a lot of work addressing locomotion in rough 

terrain, research about some nature environment, for 

example, tight space, the ice surface, is relatively rare. In 

these situations, a quadruped robot should lower the height of 

its COG to guarantee maneuverability and stability.  

The main thrust of this paper is to build the dynamics 

model of a quadruped robot and analyze the dynamics 

characteristics of the GRF and joint torque for investigating 

walking with different height of COG using a simulated 

model, but with biologically-based assumptions. 

To achieve this goal, the first objective of this work is to 

develop a controller that can be used to adjust the height of 

COG. The controller utilizes the CPG model to generate the 

rhythmic motion and the discrete TD to implement the 

transition between two different rhythmic medium values of 

the CPG, so as to adjust the height of COG of the quadruped 

robot. 

CPG observed in animals has been a major source of 

inspiration for trajectory generation in quadruped robots. 

Tekken2 [7] can walk with medium forward speed on 

irregular terrains in outdoor environments using a neural 

system model consisting of a CPG, responses and reflexes. 

Simulated robots iCub, Aibo and Ghostdog [8] show that 

adding sensory feedback in the CPG allows for more robust 

locomotion.  

In this contribution, we reveal the characteristics of the 

GRF and create the dynamics model of a quadruped robot. A 

controller, based on the CPG model and the discrete TD, is 

designed to realize the rhythmic motion and the adjustment of 

the height of COG. In addition, we analyze and compare the 

simulation results including the GRF and joint torque of a 

quadruped robot.  

In the remainder of the paper, we firstly analyze the GRF 

and build the dynamics model. Following this, the controller 

which combines the CPG model and the discrete TD is 

presented. Then, the quadruped model and setup are 

introduced. Finally, simulation results are analyzed and 

contrasted. 

II. THE GROUND REACTION FORCE AND DYNAMICS MODEL 

A. Ground Reaction Force 
Like the biological locomotion [9], when the toe of a 
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quadruped robot contacts with the ground, the quadruped 

robot applies forces to the ground through that toe for 

supporting and moving its body on the ground. The toe then 

experiences the GRF which is equal in magnitude and 

opposite in direction to the force exerted by the toe. The GRF, 

a necessary force for the quadruped robot for locomotion, is 

the vector sum of the vertical (V) force, fore-aft (FA) force, 

and mediolateral (ML) force, and produces bending moments 

along the leg, as shown in Fig. 1. The three components of the 

GRF have the following characteristics [10]: 

1) The V force and FA force are main components 

compared to ML force in magnitude and V peak force 

occasionally exceeds FA peak force.  

2) The FA force is a braking force when it is opposite in 

direction to the movement, on the contrary a propulsive 

force.  

3) Compared to the V and FA components, the ML 

component of the GRF is trivial in magnitude yet it 

contributes requisite for the turning maneuver [6].   

 
Fig. 1.  GRF of the right-fore toe in a quadruped robot. V, ML, and FA forces, 
three components of the GRF, represent the vertical reaction force, the 
mediolateral force and the fore-aft force, respectively.  

B. The Inverse Dynamics 
The inverse dynamics is the calculation of the forces or 

torques required at a robot's joints to deliver a required 

motion trajectory which encompasses a set of joint positions, 

velocities and accelerations. In trajectory planning, we can 

use the inverse dynamics to check and ensure that a designed 

trajectory can be achieved within the actuators' limits.   

The quadruped robot is a floating-base system whose base 

is not fixed to the environment but free to move. In recent 

literature [11], the inverse dynamics control adds a fixed base 

to the system which is attached to the quadruped robot via 6 

virtual DOFs. The computational complexity of this approach 

is high because of extra computation on the virtual DOFs and 

consequently, we consider building a dynamics model 

without need to calculate the extra virtual DOFs. 

Each leg of the quadruped robot is regarded as a separated 

and serial manipulator, consisting of a virtual body and a leg 

of the quadruped robot [5], as shown in Fig. 2. A stride cycle 

is defined as two stages: the swing phase and the stance 

phase. 

 
Fig. 2.  One leg is regarded as a serial manipulator with definition of variables 
for the inverse dynamics model. 

We build the inverse dynamics model apart in stance phase 

and swing phase because of their different constraint 

conditions. This modeling approach is convenient because 

there is no need to calculate the extra virtual joints. We will 

demonstrate the inverse dynamics model of one leg. 

B.1) Dynamics Equations for Swing Phase 
When the leg is in swing phase which means the toe has no 

contact with the ground, we assume the virtual body is not 

move and suppose it as the base. The base frame is 

established at the hip joint, as shown in Fig. 2.  

To  derive  the  dynamics  equations  of  motion  of  a  serial 

manipulator in swing phase following  the Lagrangian  

approach [12],  we  first  write  the  Lagrangian 

 K PL E E= −  (1) 

where EK is the kinetic energy and EP is the potential energy 

of the serial manipulator. Velocities of the thigh and shank 

can be obtained by the following equations 
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where the definition of 1θ and 2θ are shown in Fig. 2. 

h= 1 2θ θ+ . 1l is the length of the thigh. tl and cl are the 

distance from the hip joint to  the COG of the thigh and the 

distance from the knee joint to the COG of the shank, 
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respectively. tr , cr  are positions of the COG of the thigh and 

shank, respectively. tv , cv  are velocities of the COG of the 

thigh and shank, respectively. 

                       

The kinetic energy of the serial manipulator is computed by 

using the equation 

 

2 2
1 2

2 2 2 2 2
1 1 2 1 1 1 2 2

2 1 1 2 2 1 2

1 1

2 2

1 1
( ) ( ) (

2 2

) ( ) cos

K kt kc t c

t zz c

zz c

E E E m v m v

m l m l I m l

I m l l

θ θ θ

θ θ θ θ

= + = +

= + + + +

+ + +

  (6)  

Here ,K ktE E and kcE are the kinetic energy of the serial 

manipulator, the thigh and the shank, respectively. 1m and 

2m are the mass of the thigh and the shank, respectively. The 

position of COG of thigh and shank are shown in Fig. 2. 

1zzI and 2zzI represent principal moment of inertia 

perpendicular to the z-axial direction of the thigh and shank 

link, respectively. 

The potential energy of the serial manipulator is equal to 

the work required to transport the COG of each link from a 

reference plane to a given position. This can be written as 

 1 1cospt tE gm l θ= −   (7) 

 2 1 1( cos cos )pc cE gm l l hθ= − +   (8) 

 1 1 2 1 1cos ( cos cos )p pt pc t cE E E gm l gm l l hθ θ= + = − − +   (9) 

where ,p ptE E and pcE are the potential energy of the serial 

manipulator, the thigh and the shank, respectively. g is the 
gravitational acceleration. 

Thus, using these expressions for the kinetic and potential 

energies, we can substitute the Lagrangian L into the 

Euler-Lagrange equation 
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which is expanded by symbolic differentiation to give the 

generalized torques iτ , for i=1,2, in terms of the generalized 

joint positions, velocities and accelerations. 

The equation can be put into a closed form compact 

vector-matrix notation as 
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Here 1( )tτ and 2 ( )tτ are torques of the hip joint and the knee 

joint, respectively. The ( )B θ is the generalized inertia matrix 

of the serial manipulator, ( , )C θ θ  is a matrix which contains 

the Coriolis and centrifugal forces, and ( )D θ is the gravity 

force vector. 

B.2) Dynamics Equations for Stance Phase 
When the leg is in stance phase, the leg pushes down the 

ground and receives reactive force, which we call GRF, as 

shown in Fig. 2. We utilize GRF to build the inverse 

dynamics model in stance phase. The origin of the reference 

frame is located at the hip joint, as shown in Fig. 2. The 

position of the toe in the reference frame is represented as 

follows: 
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where fr represents the position of the toe. 2l is the length of 

the shank. 3l , shown in Fig. 2, is approximately the radius of 

the toe.  

We use the chain rule to calculate partial derivates, then 

divide both sides by the differential time element, and get: 

 1,2f ir J iθ= ⋅ =   (13) 
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where J is the Jacobian. According to Jacobian in the force 

domain [12], the inverse dynamics model of the serial 

manipulator in stance phase is given by 
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Here GroundF is the GRF, as shown in Fig. 2. xF and yF are 

components of the GRF in the x-axial direction and the 
y-axial direction, respectively. 

III. HOPF OSCILLATOR AND THE DISCRETE 

TRACKING-DIFFERENTIATOR 

To enable the quadruped robot to traverse through tight 

space and keep stability, we propose a controller to adjust the 

height of COG of the quadruped robot. The controller 

combines the rhythmic locomotion and the rhythmic medium 

value adjustment by adding adjustment trajectory to rhythmic 

signals. The rhythmic locomotion and adjustment trajectory 

are generated by the CPG model and the discrete TD, 

respectively. 
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A. The CPG Model 
The CPG is employed to generate the fundamental 

rhythmic motion in locomotion without sensory feedback and 

without any inputs. The Hopf oscillator, as a model of CPG, is 

adopted to generate control signals for locomotion. The Hopf 

oscillator is a kind of nonlinear oscillator with high stability 

and strong phase locking feature so as to be stable against 

perturbation. The amplitude and frequency can be modulated 

by simple parameter change. The Hopf oscillator is 

represented by the following equations [8]:  

 
2( )n r n oα μ ω= − −   (15) 

 
2( )o r o nα μ ω= − +   (16) 

 
swing stance

1 1bo boe e

ω ωω −= +
+ +

  (17) 

where 2 2r n o= + and n  and o are state variables. μ  is 

the amplitude of the oscillations (for 0).μ >  

1( ),w rad s−⋅ determined by swingω and stanceω which control 

the frequency of swing and stance phase, is the frequency of 

the oscillation. We can independently control the frequencies 

of the ascending and descending phases of the oscillation by 

modifying swingω  and stance ,ω  respectively. α is a positive 

constant that controls the speed of convergence which 

becomes large with the increase of  .α  

We utilize four Hopf oscillators to generate control signals 

for hip joints. The four Hopf oscillators are mutually 

entrained by connecting the CPG of each leg with coupling 

coefficients to generate desired gait. The coupled CPG 

oscillates in the same period with a fixed phase difference, 

which results in a gait, such as walk gait, trot gait, etc. We use 

the coupled Hopf oscillators to generate the walk gait, shown 

as the following [8]: 

 
2( )i i i i in r n oα μ ω= − −   (18) 

 
2( )i i i i i ij jo r o n k oα μ ω= − + +   (19) 

Here i and j denote the ith and jth oscillators, respectively. kij, 

the coupling coefficient, which determines the type of gait, is 

specified by the coupling matrices. The other parameters are 

defined as before. 

B. The Discrete Tracking-differentiator 
To change the height of COG of the quadruped robot, we 

are required to realize smooth transition between two 

different rhythmic medium values for walking stability. The 

discrete TD is then typically used to track dynamic 

characteristics of the input as soon as possible, and in the 

meantime, generate approximate differential signal. We 

devote to utilize the discrete TD to realize smooth transition 

between two different rhythmic medium values. The discrete 

TD is shown as follows [13], [14]: 

 

 1 1 2( 1) ( ) ( )v k v k hv k+ = +   (20) 

 2 2( 1) ( )v k v k hfh+ = +   (21) 

 1 2( , , , )fh fhan v v v r h= −   (22) 

where 1v  is the desired trajectory and 2v  is its derivative. v  

and h are the input and the step size, respectively. 

r determines the speed of the transition which becomes faster 

as the parameter r  increases, and 1 2( , , , )fhan v v r h  is defined 

as [13], [14] . 

Fig. 3 (blue, dashed line) depicts the adjustment trajectory 

which realizes smooth transition between two different 

rhythmic medium values. The red line shows the input 

discrete rhythmic medium values v. the output v1 can track the 

set value v arbitrarily fast as long as r is chosen arbitrarily 

large without any overshoot. 

 

Fig. 3.  The red line shows the input discrete rhythmic medium values, and 
the blue dashed line depicts that the output signal v1 tracks the set value v 
smoothly. 

IV. THE QUADRUPED MODEL AND SIMULATION SETUP 

The quadruped model used in our simulation consists of a 

body and four legs, as shown in Fig. 1. Each leg connects to 

the body by the hip pitch joint, and includes the thigh link and 

the shank link which are connected together by the knee pitch 

joint. The quadruped model is 1.05m in length and 0.69m in 

width. The total weight of the robot is 50.0Kg. The initial 

value of hip joint 0θ  and knee joint 0α are 30 degrees and 60 

degrees, respectively. The corresponding parameters, labeled 

in Fig. 1 and Fig. 2, are listed in Table I. 
TABLE I 

PARAMETERS FOR THE QUADRUPED MODEL 

Symbol Quantity Symbol Quantity 

lb 1.05m wb 0.69m 

l1 0.35m l2 0.35m 

l3 0.09m lt 0.175m 

lc 0.175m m1 3.5kg 

m2 2.0kg I1zz 2738.792kg·mm2 

I2zz 401.731 kg·mm2   

The simulation is performed in MSC.ADAMS simulation 

platform. The rationality of parameters setting plays an 

important role in the control of the quadruped model. To 

compute the impact force and the friction force between toes 

of the quadruped robot and the ground, we set impact force 

parameters and friction parameters, shown in Table II. 
TABLE II 

IMPACT FORCE PARAMETERS AND FRICTION PARAMETERS 

impact force parameters friction parameters 

Symbol Quantity Symbol Quantity 

Stiffness ( N/m) 1.0E+008 Mu Static 1.0 

Damping ( Ns/m) 1.0E+004 Mu Dynamic 0.5 

Exponent 2.2 Stiction Transition 

Velocity ( m/s) 
0.1  

  Friction Transition 

Velocity ( m/s) 
1.0 
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The controller is implemented in MATLAB/Simulink, and 

controls the quadruped model in MSC.ADAMS by using the 

dynamic-link library in MATLAB/Simulink. The sample time 

is 1e-3 s. We simulate two scenarios: the quadruped robot 

walks with a COG height of 0.606 m and with a COG height 

of 0.577 m. The control signals for hip joints and knee joints 

in two scenarios described in section III are shown in Fig. 4 

and Fig. 5. The abbreviations LF, LH, RF and RH represent 

left fore, left hind, right fore, and right hind, respectively. 

 

Fig. 4.  (a) The control signals of hip joints of the quadruped model with a 
COG height of 0.606 m. (b) The control signals of knee joints of the 
quadruped model with a COG height of 0.606 m. 

 

Fig. 5.  (a) The control signals of hip joints of the quadruped model with a 
COG height of 0.577 m. (b) The control signals of knee joints of the 
quadruped model with a COG height of 0.577 m. 

V. SIMULATION RESULTS AND DISCUSSION 

In order to contrast the V forces and joint torques of the 

quadruped robot walking with different height of COG, we 

show the simulation results in the period of 15 s to 20 s. 

 

Fig. 6. V forces of LF and RH legs of the quadruped model with a COG 
height of 0.606 m and with a COG height of 0.577 m, respectively. 

The V forces, shown in Fig. 6, take large responsibility for 

generating the pitch moments during stance phase. Some 

observations on characteristics of the V forces of the 

quadruped model with a COG height of 0.606 m and with a 

COG height of 0.577 m from our study are discussed as 

follows: 

1) During walking with a COG height of 0.606 m and with a 

COG height of 0.577 m, the two legs experience V forces 

during stance phase. There are V force pulses at the 

beginning of stance phase because the toe crashes with 

the ground. 

2) During walking with a COG height of 0.606 m, the V 

peak forces are within 600.0 N, or about 1.2 times the 

total weight, as listed in Table I. This force level agrees 

with the measurements of trotting HyQ, up to 1.2 times 

body weight exerted on each limb [15]. During walking 

with a COG height of 0.577 m, however, the LF and RH 

legs experience significantly larger V forces pulses up to 

1200.0 N and 2500.0 N, respectively, and the V force of 

the RH leg is much larger than that of the LF leg.  
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Fig. 7.  Torques for the hip axes of LF and RH legs of the quadruped model 
with a COG height of 0.606 m and with a COG height of 0.577 m, 
respectively. 

 

Fig. 8.  Torques for the knee axes of LF and RH legs of the quadruped model 
with a COG height of 0.606 m and with a COG height of 0.577 m, 
respectively. 

 As shown in Fig. 7, during walking with a COG height 

of 0.606 m, the amplitude of the hip torque is in the range of 

-250 Nm to 250 Nm. However, during walking with a COG 

height of 0.577 m, the amplitude of the hip torque is much 

larger in the range of -400 Nm to 500 Nm.  

The knee torques of the LF and RH legs of the quadruped 

model walking with a COG height of 0.606 m and a COG 

height of 0.577 m are shown in Fig. 8. Minimal torque is 

required to transfer the shank during swing phase because 

only the relatively small inertial load of the shank is seen. 

During stance, however, much larger torque is required, and 

V force is dominant as it has larger moment arm. During 

walking with a COG height of 0.606 m, the knee torque of the 

quadruped model is smaller than that during walking with a 

COG height of 0.577 m. 

VI. CONCLUSION 

This paper firstly analyzes the GRF and builds the inverse 

dynamics model of the quadruped robot in swing phase and 

stance phase respectively to simplify the computation. The 

inverse dynamics model facilitates to predict the torque 

needed to track the designed joint trajectory. Then we present 

the discrete TD which cooperates with the CPG model to 

fulfill the change of the height of COG in walk gait so that the 

quadruped robot can lower the height of COG to enhance 

stability and traverse through tight space. Finally, we carry 

out the controller on a simulated quadruped robot and analyze 

the simulation results. The analysis about GRF and joint 

torque are helpful to facilitate the mechanical design of 

quadruped robots.  

Future work will be aimed at utilizing the inverse dynamics 

model to control the quadruped robot, and improving the 

controller considering the experimental results, and 

evaluating the controller on a real quadruped robot.  
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