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Abstract—Regression approaches have been recently shown to
achieve state-of-the-art performance for face alignment. As a
general optimization problem, face alignment is approximately
solved by learning a series of mapping functions from local
appearance to the coordinates increment of the pixels to detect.
There have been extensive studies and continuous improvements
have been made in recent years. However, most of the existing
methods only rely on the current facial texture in every iteration.
It is unreliable to only rely on local appearance information
when facial landmarks are partially occluded in unconstrained
scenarios. In this paper, a modified supervised descent method is
proposed to settle the issue, utilizing both appearance and shape
information in learning regression functions. Hence, we call it
asSDM. The major contribution of our proposed method is to
jointly capture shape and local appearance in cascade regression
framework. We evaluate the performance of the proposed method
on different data sets and the experimental results on benchmark
databases demonstrate that our proposed method outperforms
previous work for facial landmark detection.

I. INTRODUCTION

In the field of computer vision, face alignment is among
the most popular and well-studied problem. The purpose of
face alignment is to detect facial key points on the facial
images with large variations on face expression, head pose,
illumination, and partial occlusions. The annotation models of
each data set may consist of different number of facial key
points. The information of the key points is essential for tasks
like face recognition, head pose estimation, facial expression
analysis and 3D face modeling. Over the past few decades,
there have been extensive improvements of the face alignment
algorithms. However, when it comes to the applications that
require high precision and stability in unconstrained environ-
ments, face alignment is still a challenging task for current
approaches.

Many existing methods for face alignment pose the problem
as an optimization one. Alignment is achieved by finding the
parameters that minimize the error function. A well-defined
alignment error function can lead to a fast convergence rate
and good performance of the method. In most of previous
researches, the error function only considers about the ap-
pearance information. For example, the Active Appearance
Model (AAM) [1] searches by using the texture residual
between the model and the target image to predict improved
model parameters to obtain the best possible match. And the
Supervised Descent Method (SDM) [2]learns a sequence of
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Fig. 1: Images are from the Helen database with 68 manually
labeled landmarks.

regression functions that iteratively map images appearance to
the target output.

In unconstraint conditions, however, the appearance features
have limited expressive power to capture complex and subtle
face image variations in pose, expression, illumination and
occlusion. Specifically, the eyes may be occluded by glasses,
sunglasses, or hair. And part of the face may be occluded
by a hat, cigarette or hand. Besides, there may be heavy
shadowing and the face may be made up theatrically. We
notice that eye centers, eye corners and mouth corner are
salient landmarks with special texture characteristics. However,
points along face contour are significantly different from these
salient landmarks, which need location information of other
key points. To settle these issues, an elegant method combining
appearance information and shape constraint is proposed in this
work.

The rest of the paper is organized as follows. In section II,
we review the related work. In section III, the proposed method
is introduced. In section IV, we describe the data sets used in
the experiment. And performance of the proposed method are
shown. And the conclusions of the paper are given in section
V.

II. RELATED WORK

In the early research, AAM [3], first proposed in [4] , and the
closely related concepts of Morphable Model and Active Blob
represent the non-linear, generative, and parametric models.
These models are direct optimization approaches that match
shape and texture simultaneously, by learning correlation be-
tween errors in model parameters and the resulting residual



texture errors. They use pattern of intensities or colors across
an image patch as appearance features.

In the Constrained Local Method (CLM) [5] [6] [7] [8] [9],
the joint model of shape and texture appearance has the same
form as the AAM. However, the CLM appearance model takes
the form of rectangular regions around each feature, instead of
trying to approximate the image pixels directly. CLM is more
robust and more accurate than the original AAM method, by
using a different search algorithm.

Recently, regression approaches [10] [11] [2] have been
shown to achieve significant better performance than AAM
and CLM frameworks. Typically, regression-based methods
wish to learn a function that maps the textual features to the
landmark locations. They predict either the absolute landmark
coordinates directly or the parameter update iteratively based
on the current appearance information. In SDM, cascade
regression models are used to learn a sequence of mapping
functions from local appearance around the current landmark
locations to the shape updates. It outperforms state-of-the-
art approaches in facial key points detection and tracking in
challenging databases.

Global Supervised Descent Method (GSDM) [12] is an ex-
tension of the SDM that divides the search space into domains
of similar gradient direction. In SDM, a single generic descent
direction is learnt in each iteration during training. Different
with SDM, GSDM is a global optimization algorithm. It learns
a set of generic descent directions for different domains of
the objective function. Thus, GSDM is able to track the face
from profile to profile with a better performance. However,
partition strategies existing within the GSDM framework are
still need to be improved. Besides, building models on different
domains require larger amounts of training data, which leads
to expensive computation and long time training.

Current shape information is not considered when SDM
and GSDM learn the regression functions. Shape augmented
regression method (SARM) [13] utilize the shape information
by adding shape parameters in the regression function directly.
The distances among pairs of landmarks or the differences
of the coordinates are used as the shape features. Thus, the
regression functions can change according to the current face
shape.

The proposed method differs from the SARM by using the
shape information in a more effective way. We use absolute
locations of the facial key points as shape features instead of
the distances or the differences. Thus, our method is better
than SARM in terms of complexity, time consumption and
model size. Moreover, we propose a new well-defined error
function to build better regression functions. Different with
the error functions used in the previous methods which ignore
the shape restraint, the proposed error function utilize both
appearance and shape information in optimization. With the
additional shape parameters, the performance of the regression
method is obviously improved in experiment. The result of
comparison is given in section IV.
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III. SUPERVISED DESCENT METHOD BASED ON

APPEARANCE AND SHAPE

Face alignment can be solved as a nonlinear optimization
problem. As a major optimization tool, the Newton’s method
can apply to many computer vision problems. Given an initial
estimate xo € ]"* !, Newton’s method can minimize f(x) by
computing a sequence of updates as,

Xiy1 = X; — Hfl(Xi)Jf(Xi)

where Hy(x;) € R™*" and J¢(x;) € R™*! are the Hessian
matrix and Jacobian matrix evaluated at x;.

Under conditions that the initial estimate is sufficiently close
to the minimum, it is guaranteed to converge and the converge
rate is quadratic. However, the Newton’s method requires the
function to be twice differentiable. Most image operators in
computer vision applications do not meet the requirement.
For instance, SIFT features extracted from patches are not
differentiable. By learning a linear regression between the
shape updates and the appearance information, SDM estimates
the descent direction directly. Therefore, this method is not
limit to the functions that second derivatives are available. And
it is able to avoid expensive computation of the Jacobian matrix
and Hessian matrix.

When applying SDM in face alignment, a main problem
arise: it only uses appearance information to estimate the
landmark locations, ignoring the shape information. However,
in unconstraint conditions, the appearance information may
become unstable with large difference in illumination and
occlusion. To overcome the drawback of the original method,
we modify the error function.

Suppose we are given an input image I that we wish to
align. In particular, assuming the facial mark coordinates are
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where N represents the number of landmarks. The face shape
consisting of facial landmarks is defined as

S(X) = [$1>y17"'a$N7yN}

We will assume that the correct N landmarks, denoted as
x*, are known. The goal of the face alignment is to estimate a
shape S(x) that is as close as possible to the true shape S(x*),

minimizing
Fx) =118(x) = Sx")I[3

The function is used to evaluate the performance of different
methods. As S(x*) is unknown during testing, it can not be
used as error function directly. In previous methods, the error
function is defined as follow,

1 *
1A(x, 1) — A", D13

f(X)—§

where A(x,I) represents the appearance features around the
landmark locations x for image I. The feature extraction
function can be SIFT or HOG.

It is notable that the facial texture features may be unreliable
due to variations of illumination or occlusion in unconstraint



conditions. However, the topology relationship of the facial
landmarks remains unchanged. We redefined the error function
as follows,

F) =

Then, face alignment is achieved by minimizing the error
function

1
1A, 1) = AKX, DI + 5 [1S() = SO (1)

X = argmin f(x)

(@)

Assuming an initial face shape xo, we apply a second order
Taylor expansion on the objective function. The function can
be approximated as,

f(x) = f(x0 + Ax)
~ f(x0) + Js(x0)TAx + %AXTHf(XO)AX 3)

where J¢(xo) and Hj(xo) are the Jacobian and Hessian
matrices of the function f evaluated at the current shape xg.
In Equation 3, take the derivation of f(x) with respect to Ax
and set it to zero. We get the update for x,

Ax = —Hy(x0) "' J 5 (x0)
= —Hj(x0) ' [Ja(x0)(A(x0, I) — A(x*, 1))

+ Js(x0)(S(x0) — S(x7))]
—H;(x0) ' Ja(x0)A(x0, 1) — Hy(x0) " Js(x0) S (x0)
+H(x0) " (Ja(x0) AKX, T) + Js(%0)S(x7)) 4)

To estimate the Ax in Equation 4, the Jacobian and Hessian
matrices need to be recomputed for each iteration, which
is computationally expensive. Another issue is that during

testing, x* is unknown but fixed. To solve these issues, some
parameters are used in the optimization procedure.

R = —H/(x0) "Ja(xo) ®)
Q= —H;(x0) 'Js(xo) (6)
b =Hy(xo) "' (Ja(x0)AX*, I) + Js(x0)S(x*))  (7)

By introducing these regression parameters, we can rewrite the
Equation 4 as follows,

Ax =RA(x0,1) + QS(x0) +b (3)

During training, the true shape updates of kth image in ith
iteration Axf* = x} — x¥ can be computed directly. Then, in
each gradient iteration, parameter estimation can be solved by
minimizing

Riaéi7bi

. k,*
=arg min g |AXT — RGA(XE_, T7) — Q;S(xF_,) — by||2
i, 04 e

&)

Minimizing the Equation 9 can be formulated as a least
square problem. And the parameters can be obtained using a
ridge-regression. When the regression parameters are learned,
the face shape updates can be estimated. Adding the shape
updates Ax;_; to the current key points locations x;_1, we
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can get the new shape x;, which will be used in the next
iteration.

X; = X;—1 + A%
=x;1 +RA(X;_1, 1)+ Q;S(x;-1) +b;

The shape updates monotonically decrease as a function of
the number of regressors added. Thus, the succession of x;
converges to x* gradually.

The overall framework of training and testing is summarized
in Algorithm 1 and Algorithm 2 respectively.

(10)

Algorithm 1 Supervised descent method based on appearance
and shape:Training

1: Normalize the images and landmark locations in training
set

2: Calculate the mean face using ground truth

3: generate multiple initial face shapes for each training
image by randomly re-scaling,rotating,and shifting the
mean face

4: for i =1,2,...,N do

5. Extract feature descriptor

6:  Estimate regression parameters R;, Q;,b; using Equa-

tion 9

7. update the landmark location using Equation 10

8: end for

9: Output the regression parameters R, Q, b

Algorithm 2 Supervised descent method based on appearance
and shape:Testing

1: Initialize the landmark locations X using the mean face
2: fori=1,2,...,Ndo

3 Extract feature descriptor

4:  update the landmark location using Equation 10

5: end for

6: Output the estimated landmark location xy

IV. EXPERIMENTS

The past decades many research communities have collected
a number of facial databases. We briefly introduce the data sets
which are used in the experiments, namely Labeled Face Part
in the Wild (LFPW) [14], Helen [15], Annotated Face in the
wild (AFW) [9] and iBug [16].

LFPW was proposed by Belhumeur et al. in 2011. Different
with Helen data set, they did not intentionally filtered out faces
due to poor image quality. The images of human faces in
LFPW are taken under a variety of acquisition conditions, used
to test the face alignment methods in unconstraint conditions.
Some images are no longer valid and we only download 811
of the 1,100 training images and 224 of the 300 testing images.

Helen was created by Le et al. in 2012 that consists of
2,000 training images and 330 test images. These high reso-
lution images are gathered from Internet under a broad range
of appearance variation, including pose, lighting, expression,
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occlusion, and individual differences. All the images are hand-
annotated to precisely locate the eyes, nose, mouth, eyebrows,
and jawline.

AFW is also considered as general ‘in-the-wild’ database,
and we use it for testing in the experiments. There are 337
images in AFW, which are more challenging.

iBug data set is the most challenging one with large shape
and appearance variation. The data set contains only 135
images and we use all images from Helen and AFW as training
set.

We compare the performance of our method with the similar
work based on regression framework: SDM and SARM. All
algorithms are implemented in Matlab and tested on Intel i-7
CPU with the same initialization and parameters.

In our experiment, the available landmark annotations of the
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300-W challenge are used as ground truth points for training
and evaluation. All facial images in the data sets are manually
labeled with 68 landmarks.

For initialization, the ground truth points are used to com-
pute the ground truth bounding box for each image. We
normalize the images and landmark locations, and the width of
the bounding box is 400 pixels. The mean face shape can be
calculated with the normalized ground truth. For each training
image, the facial landmark locations are estimated by the
bounding box and mean face shape. By randomly re-scaling,
rotating and shifting the mean face, we generate multiple initial
samples for each image. The error is measured as the average
Euclidean distance among the pairs of labeled and predicted
landmark locations. Then we estimate the central locations of
two eyes separately and the error is normalized by the distance



between two centers.

TABLE I: Comparison of facial landmark detection errors,
runtime (in FPS) and model size on LFPW database. The
average error is computed over 68 points.

algorithm SDM SARM asSDM
Error (x10°%)  7.08 6.63 6.17
FPS/Hz 20.3 19.6 20.2
Model size/MB ~ 26.0 29.8 26.4

The experimental results and their comparison with other
similar methods are shown in Figure 2. In Figure 3, we present
the fittings produced by our method on Helen data set. In
Figure 4, the first two rows show the worst images of iBug
data set measured by normalized mean error and the last four
rows show some faces with reliable results. Table I reports
the normalized errors, speeds (frames per second or FPS) and
model size of the compared methods on LFPW data sets. From
these results, there are some observations. First, AFW data
sets are more challenge than LFPW and Helen data set and
iBug data set is the most challenging. Our approach achieve
error reduction in different data sets with respect to SDM
and SARM. And it is the most robust one compared with the
others. We believe this is due to the better utilization of the
shape information. Second, as shown in Table I, the speed of
our approach is almost the same as the speed of SDM. We
can conclude that our approach outperforms SARM in both
accuracy and efficiency. Third, the model size of our method
is smaller than that of SARM, and just a little bit larger than the
model size of SDM. The distances among pairs of landmarks
are used as shape features in SARM, which has complexity
of O(N?). In our approach, we use the absolute coordinates
of landmarks as shape features without additional computation
and the complexity of this part is linear. Thus, SARM is more
time consuming than the proposed approach and the model
size is bigger.

V. CONCLUSION

This paper presents a cascaded regression approach based
on appearance and shape. The proposed method is able to
overcome the limitations of the previous method, which ignore
the shape constraint and utilize the appearance information
only. An important contribution of this work is to redefine the
error function by adding the shape information. The new error
function can be applied to any face alignment method solved
as an optimization problem. We conduct a large number of
experiments on the most popular databases and our method
outperforms the other similar methods. In future work, we
would apply our method to facial feature tracking and other
computer vision problem. Also, we will implement our method
in C/CUDA to make it realtime.
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Fig. 4: Example results from our method on iBug data set. The first four rows show some faces with reliable results. The last
two rows show the worst images measured by normalized mean error.
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