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Abstract—Currently, the supervised trained deep neural net-
works (DNNs) have been successfully applied in several image
classification tasks. However, how to extract powerful data
representations and discover semantic concepts from unlabeled
data is a more practical issue. Unsupervised feature learning
methods aim at extracting abstract representations from unla-
beled data. Large amount of research works illustrate that these
representations can be directly used in the supervised tasks.
However, due to the high dimensionality of these representations,
it is difficult to discover the categorical concepts among them in
an unsupervised way. In this paper, we propose combining the
winner-take-all autoencoder with the bipartite graph partitioning
algorithm to cluster unlabeled image data. The winner-take-
all autoencoder can learn the additive sparse representations.
By the experiments, we present the properties of the sparse
representations. The bipartite graph partitioning can take full
advantage of them and generate semantic clusters. We discover
that the confident instances in each cluster are well discriminated.
Based on the initial clustering result, we further train a support
vector machine (SVM) to refine the clusters. Our method can
discover the categorical concepts rapidly and the experiment
shows that the clustering performance of our method is good.

I. INTRODUCTION

Currently, deep learning is the state of art method in the
computer vision field. Especially, the supervised trained DNNs
have achieved huge successes in several image classification
tasks. However, in many practical applications, it is much
easier to access large amount of unlabeled data. Hence, how
to extract powerful representations and discover semantic con-
cepts from unlabeled data have received extensive attentions.

Unsupervised feature learning is a key problem in the
deep learning. In the early researches, restricted Boltzmann
machines (RBM) [1]-[3], regularized autoencoders [4] et al
are proposed to capture the salient statistic factors in the
probability distribution. Through learning to reconstruct the
input signals, the neural networks extract sparse or distributed
representations. In those research works, some important the-
oretical results are obtained. However, in the field of computer
vision, the convolutional neural networks (CNNs) [5] may be
the most powerful tool. The convolutional architecture reduces
the number of parameters and extracts shift invariant features.

In order to improve the performance of DNNs further,
many researchers combine the pre-training methods with the
convolutional architecture. In [6], Makhzani et al propose the
convolutional winner-take-all autoencoder (CONV-WTA-AE).

It can extract deep sparse representations to reconstruct the
input signals. Compared with the previous sparsity regulariza-
tion methods [7], the CONV-WTA-AE does not need to infer
the sparse representations iteratively. Hence, it can be trained
more efficiently. Additionally, the representations extracted by
the CONV-WTA-AE can be directly used for the classification
task without the fine-tuning operation.

At present, researchers still know little about the properties
of the representations extracted by DNNG. In [8], the clustering
algorithms are used to analyze the properties of the deep
representations. Inspired by these works, we propose applying
the bipartite graph partitioning algorithm [9] to analyze the
sparsity of the winner-take-all representations. Actually, the in-
put signals are represented as the sparse additive combination
of the basis vectors of the decoder. By the clustering analysis,
we present two important properties of the extracted features.
(1) The components of the deep sparse representations have
clear semantic meanings. (2) The visual similar images share
a group of visual elements. Intuitively, these properties are
the natural results of the winner-take-all constraints. In our
work, the effectiveness of the bipartite graph partitioning
supports our notion. The co-clustering algorithm associates
the instances in different input regions with a private set
of parameters [10]. Generally, the spectral clustering can be
divided into two steps. The first step is to over-partition the
whole dataset and the second step is to merge the clusters
according to some criterions. In our experiments, we discover
that the similarity metric used by the co-clustering algorithm is
not very accurate. Only the confident instances in a cluster are
well discriminated. Hence, we propose using linear SVMs to
refine the clustering results. Detailedly, we use the confident
instances in each cluster as the initial data to train a linear
SVM. Then the SVM will provide a better discriminative
similarity. The assignments for each cluster will be updated. To
avoid overfitting, this process is iterated on many different data
batches. In the end, we merge the similar SVM classifiers. We
conduct the experiments on the MNIST dataset. The clustering
performance is good. In [11] and [12], the deep representations
are sparsified without decreasing the classification accuracy.
Hence, if only the sparsity assumption is satisfied, our method
can also be generalized to other deep architectures.

The rest part of this paper is organized as follows. In the
section 2, 3, and 4, we will describe the details of our method.
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Fig. 1. The architecture of the CONV-WTA-AE.

The experiment results are reported in the section 5. At last,
we conclude our works in the section 6.

II. CONVOLUTIONAL WINNER-TAKE-ALL AUTOENCODER

Unsupervised feature learning is an important research field
in the deep learning. Autoencoders may be the most widely
used feature extractors. In order to avoid the neural networks
learning the trivial representations, many regularization meth-
ods are proposed. Due to the successful applications in the
computer vision, CNNs are another important method in deep
learning. The convolutional architecture can reduce the redun-
dancy in image information. There are many variants which
combine the autoencoder with the convolutional architecture.
The CONV-WTA-AE is one of the most outstanding variants.
In [6], the representations extracted by the CONV-WTA-AE
are used for the classification task. In our work, it is extended
into the clustering task. In Fig. 1, We show the architecture of
the CONV-WTA-AE. Then we will analyze its features briefly.

A. The Non-Symmetric Autoencoder

The CONV-WTA-AE is a non-symmetric autoencoder. Its
encoder is stacked by several rectified linear unit (ReLU) lay-
ers and convolutional layers. Due to the lack of pooling layers,
the feature maps output by each layer have the same size as
the input image. The decoder is only a linear deconvolutional
layer. This architecture has two advantages.

1) The learning capacity of the multi-layer encoder is
much stronger than the single layer encoder: To extract more
expressive features, the regularization methods are becoming
more and more complicated. The single layer encoders are
too simple to satisfy this requirement. Owing to the stronger
nonlinearity, the multi-layer encoder is capable to learn more
complex and abstract representations. Hence, the multi-layer
architecture draws the attentions of researchers gradually.

2) The linear deconvolutional layer makes the components
of representations explainable: The representations can be
transformed back into the input space linearly. Hence, the
component of representation can be seen as the input signal’s
projection on the basis vector. Intuitively, the deconvolutional
kernels correspond to the visual elements which are statistic
significant. In addition, the ReLUs generate non-negative
representations. This is also an essential requirement for the
clustering part of our method.

B. The Sparsity Regularization

The convolutional architecture learns local features and
reduces the redundancy caused by similar feature appearing
at different positions. The local features’ degree of freedom
is much lower than the global features’. But when there are
too many adjustable convolutional filters, the convolutional
autoencoder is still easy to learn trivial convolutional kernels
(such as delta function). Hence, the regularization is indispens-
able.

The CONV-WTA-AE regularizes the pre-training process by
sparsifying the output representations of encoder. But in the
classification task, the representations are directly used without
any sparsification. The CONV-WTA-AE involves two sparsity
constraints: the spatial sparsity and the lifetime sparsity. The
spatial sparsity constraint suppresses the non-maximum values
in a feature map. The lifetime sparsity considers the statistics
of data batch. Given a feature map, we sort the spatial
maximum values of each image in a mini-batch data. Then we
reserve the top-k values and set others to zero. In other words,
these two sparsity constraints reserve the maximum value
along the data batch dimension and the spatial dimensions.
In the backward step, the gradient information is propagated
only through those reserved units.

Most of the sparsity regularization methods need to infer
the optimal sparse coding iteratively. Hence, their training
processes are very inefficient. For example, in [7], the single
layer neural network is trained to fit the mapping from the
input signals to their sparse codes. During each parameters
update, a coordinate descent algorithm should be executed
to infer the sparse code. However, it is easy to implement
the winner-take-all sparsity constraints. The sparsification only
involves a sorting operation.

III. BIPARTITE GRAPH PARTITIONING

Generally speaking, for the sparse representations, there
exists a duality relation between the input signals and the
basis vectors of decoder. A category of objects are often
described by some co-occurred image patterns. By considering
the statistic of data batch, the lifetime sparsity allows a part
of instances to share a basis vector. The sharing is built on
the magnitude of activations. If the image contains a pattern
which maximizes the activation of the hidden unit, it will be
associated with the basis vector. Based on this notion, we pose
the clustering task as the bipartite graph partitioning problem.
Similar with the practice in [6], the final representations used
in our clustering method are the max-pooled outputs of the
encoder. The duality of the sparse representations is the most
important foundation for our proposed method. Actually, in
[11], [12], researchers find that the sparsified representations
only sacrifices little classification performance. Hence, if the
assumption that the discriminative information is mostly stored
in the dimension indices of representations is satisfied, then
our method are still applicable.



A. Graph Partitioning

First, we review some relevant terminologies. A graph is a
set of vertices and edges. A vertex is denoted by v and the set
of vertex is denoted by V. Each edge e connects two vertices
v; and v;. Hence, we can also denote the edge e as its vertices
pair (v;,v;). The set of edges is indicated by E. Hence, the
graph can be denoted by {V, E'}. Each edge in the graph is
associated with a weight I¥;;. A bipartitioning of the vertex
set V' is two subsets V7 and V, which satisfy V4 |J Vo = V and
Vi Vo = . The cut of a bipartitioning is the sum of edge
weights which connect vertices belong to different subset. The
cut can be formulated as:

>

cut(Vl, ‘/2) = Wij
v; €V1,v;€V2
In many realistic problems, it is desirable to separate the
vertex set into two nearly equally-sized subset meanwhile the
cut between them should be as least as possible. This goal can
be formulated as minimizing the objective function V.

cut(Vi, Vo)  cut(Vy, Va)
weight(Vy) — weight(Va)
where weight(Vi) = >, v >, ey Wik for | = 1,2. This

objective function is often referred as the normalized cut
criterion. It can be reformulated as:

NV, Vo) =2—- 501, Va)
within(Vy) — within(Va)
weight(Vy) — weight(Va)

where within(Vi) = >0 v >, cv Wi for I = 1,2.
S(V1, Vo) measures the strength of associations within all sub-
sets. Minimizing the normalized cut is equivalent to maximiz-
ing the intra-class associations. Based on the equivalence, for
the multipartitioning task, we should maximize the following
objective function:

N, Vo) =

S(V1,Va) =

within(V;)
Vi) = § o )
Vi) Z weight(V;)

i=1

S(Vi,Va, ...

B. Spectral Graph Partitioning

The graph partitioning is a NP-complete problem. The
spectral partitioning is an effective heuristic method [13].
In order to explain the principle of spectral partitioning, we
introduce some algebraic description methods for graph. For
the convenience of discussion, we suppose that the graph
G = {V, E} has n vertices and m edges. Then we have the
following definitions.

Definition 1. The Laplacian matrix L is a n X n matrix. The
matrix element L;; obeys that:

Zk Wik, =7
Lij = _Wij7 ) 7é JA H(Ui7’()j) ek
0, otherwise

First, we will talk about the graph bipartitioning problem.
Then we will generalize it to the multipartitioning problem.

Definition 2. Given a bipartitioning of V' into V; and V5, the
generalized partition vector ¢ is defined as:

+ % v; € V1
q; =
71/% v; € Vg

where 1; = weight(V}) for [ = 1, 2.

Theorem 1.
g Lq _cut(Vi, Vo) cut(Vy, Va)
qT Dq weightVy weightVa
where D is the diagonal degree matrix meeting that D;; =

Zk Wik.

Inspired by Theorem 1, although it is a NP-complete
problem to find the optimal generalized partition vector, the
real relaxation to optimal solution can be solved efficiently.

Theorem 2. The problem
min L4
a#0 " Dq’
is solved when q is the eigenvector corresponding to the second
smallest eigenvalue \o of the generalized eigenvalue problem

Lx = ADzx.

st. ¢"We=0

These theorems are the classical conclusions from the
algebraic graph theory. According to the eigenvector g, we
can partition the graph approximately.

There are two ways to generalize the bipartitioning method
to the multipartitioning problem. The first one is to apply the
bipartitioning method recursively to generate k£ subsets and
then merge them to k' subsets (k > k). The second is a
more efficient approach. Instead of solving the eigenvalues
and eigenvectors of Lx = ADu, the singular value decom-
position (SVD) of H = D~'/2LD~1/2 is computed. The k
eigenvectors corresponding to the k smallest eigenvalues form
the matrix X = [z1, s, ..., x%]. Then the row vectors of X
are normalized to unit length. The row vectors of X can be
seen as points in R*. We can cluster them. Each row vector
correspond to a vertex in the graph. In the end, the clusters
are merged.

C. Bipartite Graph partitioning

We model the associations between the input image and the
visual elements of decoder as a bipartite graph. Each input
image corresponds to a vertex and the image vertices’ set
is denoted by U = {u1,us, ..., u }. Each visual element of
decoder also corresponds to a vertex and the visual element
vertices’ set is denoted by V = {v;,vs,...,v,}. The com-
ponents of representations extracted by the CONV-WTA-AE
describe the association strength between the input images
u,; and the visual elements v;. Hence, they are used as the
weight value of the edge (u;,v;). Obviously, there are no
edges connecting the vertices in the same set. Hence, the set
of edge E can be denoted by {(u;,v;)lu; € U,v; € V'}. The
bipartite graph is denoted by a triple G = {U,V, E}. The



bipartite graph is only a particular case of the ordinary graph.
Hence, the method described above can be directly applied to
it. However, due to the adjacency feature of bipartite graph,
we can further improve the efficiency of the algorithm.
Because there only exist connections between vertices in
different sets, we can define the association matrix A. It is
a m x n matrix which the rows correspond to vertices in U
and the columns correspond to vertices in V. The element A;;

meets that:
W,
Aij = { 0

Hence, the Laplacian matrix L and the degree matrix D can

be rewritten as:
_( Dy 0
) o= (% 5 )

L:<

Lx = ADx can be rewritten as:

3(u7;, Uj) € E
otherwise

D, -A
—AT Dy

DY AD; Py = (1- M)z (1)
D, YPATDI e = (1= M)y @)
where y = D;mazg and z = Di/2a:1. y, z are the right

and left singular vectors of A, = D Y 2AD2_ /2 The vector
[2T,yT]T is the singular vectors of H. Generally, the size of
H is much larger than A,,. Hence, the computational cost to
solve the SVD of A,, is much less. The modified algorithm is
shown in Algorithm 1. Given the bipartite graph, we construct
the association matrix A and the degree matrix Dy, Ds. The
SVD of A,, is solved. Remarkably, in Algorithm 1, we choose
the singular vectors corresponding to the biggest singular
values. According to (1), the singular value of A,, is equal to
(I — X) where X is the eigenvalues of H. Hence, the smallest
eigenvalues of H correspond to the biggest singular values
of A,,. We form the matrix X by stacking the right and left
singular vectors. Furthermore, we note that Z, Y describe the
multi-modal information of the images and the visual elements
respectively. Then we normalize the row vectors of X and
cluster them. In (1), given the right singular vector, we can
infer the left singular vector and vice versa. This is a explain
for that the clusters of images and visual elements can be
implied each other.

Many methods have been proposed to merge the overpar-
titioned clusters. In our work, we discover that the clustering
result generated by spectral clustering algorithm is not accurate
enough. However, the confident instances are well discriminat-
ed. Hence, we propose a complete different method to merge
clusters in the next section.

IV. UNSUPERVISED DISCRIMINATIVE CLUSTERING

The clustering result is not very accurate. We can consider
that the spectral clustering contains two steps. The first step is
the dimensionality reduction. The second step is the common
clustering algorithm. Although the clustering is efficient, the
cluster results are not well discriminated. In our experiments,
the representations extracted by CONV-WTA-AE are more
than 10,000 dimensions. The number of clusters we used is

Algorithm 1 The spectral partitioning algorithm for bipartite
graph

1: Input: The graph G = {U, V, E'}, the number of overpar-
titioned subsets k, and the number of partitioned subsets
K.

2: Construct the association matrix A and the degree matrix
Dy, Ds.

3: Compute the SVD of A, = D;/*AD;/?, find k right
and left singular vectors z1, 29, ..., 2 and Y1, Yo, ..., Y of
A,, (which correspond to the k biggest singular values),

and form the matrix
Z
()

by stacking the right and left singular vectors in columns.
4: Normalize the row vectors of X to unit length.
5: Apply K-means algorithm to cluster the row vectors of X.
6: The row vectors in Z and Y corresponds to the vertices in
U and V respectively. Based on the clusters of row vectors
of X, the vertices in the graph G can be clustered.
7: Merge k subsets into k' clusters.
8: Output: The k' clusters of vertices.

less than 50. Hence, large amount of information may be
lost in the first step. However, we discover that the confident
instances in each cluster are well discriminated. We should
refine the clustering results and merge them. In [14], Singh et
al claim that, due to the simplicity of similarity metric, most
popular clustering algorithm can’t deal with high dimensional
data effectively. The supervised trained classifiers usually
provide a good similarity metric but it is inferred from the
labeled data. Singh et al proposed an important idea whether
we can start from an initial clustering and train a classifier to
generate a better similarity metric. Then the similarity metric
can be used to compute well discriminated clusters. Through
iterating this operation, the accuracy of clustering will be
refined. However, this method easily causes the overfitting
problem. Hence, the dataset should be divided into several
subsets. Each greedy improvement on a subset should be
generalized to other subsets. Based on this idea, we design
an algorithm to refine the clustering results. We show it
in Algorithm 2. First, we choose confident instances in the
initial clusters. The initial cluster C; obtained by spectral
graph partitioning contains images and visual elements. The
confidence of the image is computed by its associations with
the visual elements in the same cluster. Then, we divide the
representation dataset into m subdatasets. We train a linear
SVM classifier for each cluster. Given the previous classifier,
we can compute the signed distances of the samples to the
hyperplane. According to the confidences, the positive and
negative instances are reassigned and the classifier is retrained.
The number of positive instances is increased. In Algorithm 2,
the size of each cluster are assumed to be equal. Hence, when
we have enough positive instances, we can stop the iterations.
We compute the predictions of classifier on the training set



Algorithm 2 The unsupervised discriminative clustering algo-

rithm

1: Input: The representation vectors of training data and

their initial cluster labels. The number of initial clusters
1S .

2: The n,,;, most confident instances in each cluster are

chosen.

3: The set of representation vectors D is divided into m

subsets D1, Do, ..., D,,.

4: while i =1 :n, do

5. The confident instances in the cluster C; are chosen as

the positive instances and other confident instances are

chosen as the negative instances, then a linear SVM cl f;

is trained.

while j = n,in 1 InC : Nipgs do

while £k =1:m do
Given the classifier cl f;, the confidence (the signed
distance of the sample to the hyperplane) of in-
stances in Dy, are computed.

9: The 5 most confident instances are chosen as the
positive instances and other instances are chosen
as the negative instances, then cl f; is re-trained.

10 end while

11:  end while

12: end while

13: If the prediction results of the classifiers clf; and the

classifiers clf; are similar, we will merge these two
clusters.

14: Output: A set of SVM classifiers.

® 3 a

and compare it with previous classifiers. If eighty percent of
the predicted results are the same as a previous classifier, we
will discard the current classifier.

V. EXPERIMENT

We verify our method on the MNIST dataset. This dataset
contains 60,000 hand-written digit images as training data and
10,000 images as test data. The size of images is 28 x 28. The
total number of categories is 10.

First, we train the CONV-WTA-AE to extract the repre-
sentations. We refer the architecture proposed in [6]. There
is a drawback in the training process of CONV-WTA-AE.
At the beginning of training, the sparsity regularizations act
on the representations. Due to the randomness of parameters,
the representations extracted by encoder may be meaningless.
The winner-take-all constraints discard most of the compo-
nents. The decoder has to use a limited number of randomly
initialized basis vectors to reconstruct the input signal. The
reconstruction error is big. However, at the beginning of the
training of other sparsity regularization methods such as PSD,
the random dictionary matrix leads the representations dense.
The reconstruction error is little and many parameters can be
trained. Hence, the early training stage of CONV-WTA-AE is
not very efficient. Indeed, the big reconstruction error often
causes the training divergent. For the ReLUs, the big learning

The reconstructuion error

25

mean square error of reconstruction

0 100 200 300 400 500 600
number of epochs

Fig. 2. The training curve of the CONV-WTA-AE.

Fig. 3. The visualized deconvolutional kernel.

rate often causes that some units are activated a big value and
some units are always inactivated. Too many big activation
values cause overflow in the calculation. Too many inactivated
units cause the decrease of learning capacity. Therefore, the
learning rate of stochastic gradient descent (SGD) has to be set
at a small value. In [15], leaky ReLU (LReLU) is proposed.
It can speed up the optimization. Hence, we train an encoder
which is a stack of LReLU convolutional layers firstly. Then
we switch the LReLU to ReLU. We show the training curve
in Fig. 2. The vertical axis show the reconstruction error.
The mean square error is used. We take a iteration on all
training data as one epoch and the reconstruction error is
averaged over the epoch. The switch happened at the 30-th
epoch. We can see that the fluctuation of training process is
not obviously. We observe the learning curve in real time.
When the curve achieves a smooth stage, we will decrease the
learning rate correspondingly. The training is stopped until the
reconstruction error is convergent.

We also visualized the deconvolutional kernel in Fig. 3.
These kernels look like the “strokes” of the digit characters.
They have clearly semantic meaning. Hence, intuitively, the
sparse representations denote the association between the input
image and the visual elements.

The bipartite graph partitioning algorithm is applied to
obtain the initial clustering instances. Generally, we need
overpartition the graph first. For MNIST dataset, we know its
actual class number in advance. Hence, we use a process of
cross-validation to determine the number of clusters. We test &k
in {10, 20,40}. On one hand, increasing & can discriminate the
instances in different categories better. On the other hand, with
the increase of k, Algorithm 2 will also cost more computation
time. Hence, we set the number of clusters to be 20. The



10 15

Fig. 4. The visualized confusion matrix between clustering results and real
categories.
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Fig. 5. The top-10 confident instances in each cluster.

confusion matrix between the clustering results and the real
categories is visualized in Fig. 4. The rows index the real
categories and the columns index the clusters. The color of
each cell corresponds to the number of instances.

The instances can’t be clustered well. We can see the last
cluster include the instances belong to ”3” and ”5”. If we
assign a real category to each cluster, the recognition accuracy
is 83.6%.

In Fig. 5, the confident instances in each cluster are plotted
in one column. We can see that the confident instances are
well discriminated. Particularly, the confident instances in the
last cluster are all the character ’5”. Based on these confident
instances, we apply Algorithm 2 to refine and merge the
clusters. By cross-validation, we set the parameters m = 6,
Nmin = 30, inc = 10, e, = 800. Finally, we obtain 10
clusters and the recognition accuracy on the test set achieves
95%. We use scikit-learn [16] to implement these algorithms.
The experiments are run on a computer with Intel i5-2400 at
3.1 GHz CPU. The bipartite graph partitioning algorithm is
very efficient. Its running only need 20 minutes. Because a
set of linear SVMs should be trained in each iteration, the
learning process of Algorithm 2 costs more time. The whole
clustering algorithm is completed in 4 hours.

VI. CONCLUSION

In this paper, we apply the bipartite graph partitioning
algorithm to the sparse representations extracted by CONV-
WTA-AE. The duality between the visual elements and the
input images can be used to cluster the images. The CONV-
WTA-AE can’t directly deal with large images. It is natural to
use CONV-WTA-AE to study the properties of image patches.
Hence, in the future, we will apply our method to discover the
semantic mid-level image patches.
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