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ABSTRACT 

In vivo fluorescence molecular imaging (FMI) has played an increasingly important role in biomedical research of pre-
clinical area. Fluorescence molecular tomography (FMT) further upgrades the two-dimensional FMI optical information 
to three-dimensional fluorescent source distribution, which can greatly facilitate applications in related studies. However, 
FMT presents a challenging inverse problem which is quite ill-posed and ill-conditioned. Continuous efforts to develop 
more practical and efficient methods for FMT reconstruction are still needed. In this paper, a method based on spectral 
projected gradient pursuit (SPGP) has been proposed for FMT reconstruction. The proposed method was based on the 
directional pursuit framework. A mathematical strategy named the nonmonotone line search was associated with the 
SPGP method, which guaranteed the global convergence. In addition, the Barzilai-Borwein step length was utilized to 
build the new step length of the SPGP method, which was able to speed up the convergence of this gradient method. To 
evaluate the performance of the proposed method, several heterogeneous simulation experiments including multisource 
cases as well as comparative analyses have been conducted. The results demonstrated that, the proposed method was 
able to achieve satisfactory source localizations with a bias less than 1 mm; the computational efficiency of the method 
was one order of magnitude faster than the contrast method; and the fluorescence reconstructed by the proposed method 
had a higher contrast to the background than the contrast method. All the results demonstrated the potential for practical 
FMT applications with the proposed method. 
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1. INTRODUCTION 
Fluorescence molecular imaging (FMI) has played an increasingly important role in biomedical research of pre-clinical 
and clinical areas [1-3]. Fluorescence molecular tomography (FMT), which is derived from FMI, is an important 
imaging modality which is able to quantify several important fluorescent proteins and localize the fluorescent sources 
inside small animals. It has the potential to elucidate molecular and cellular signatures or pathways in vivo by using 
specific small animal models, thus promotes related researches about cancer and accelerates drug development [4-6].  

However, FMT is usually an ill-posed inverse problem, because the measurements of photon distribution on the surface 
of small animals are limited. Besides, FMT is also an ill-conditioned inverse problem since it is unstable and sensitive to 
noise caused by CCD measurement errors and data discretization errors [7]. To overcome these difficulties and to obtain 
a reasonable solution, appropriate constraints on the solution should be incorporate into the FMT reconstruction. The 
regularization strategies are introduced by several researchers to make the solutions of FMT and other optical 
tomographic problems stable and less sensitive to perturbations. Tikhonov regularization is one of the most popular and 
commonly used strategies [8, 9]. However, it usually results in an over-smoothed solution of the FMT problem and it 
does not take advantage of the sparsity of the source distribution. For FMT, the domains of the fluorescent sources are 
usually small and sparse compared with the entire reconstruction domain, especially in mouse models with early-stage 
tumors. This can be considered as a priori information for FMT and thus sparse regularization can be incorporated into 
FMT to promote the sparsity of the solution [10, 11]. A straightforward way to incorporate sparsity regularization is to 
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use the l0-norm regularization. However, the FMT problem incorporated with l0-norm regularization becomes NP-hard 
and is difficult to be solved efficiently. Inspired by the theory of compressive sensing (CS), several researchers proposed 
various algorithms incorporated with l1-norm regularization to solve the FMT problem in recent years[7, 12-14], such as 
the sparsity adaptive subspace pursuit method and the iterated shrinkage based method with l1-norm (IS_L1) [13, 14]. 

Continuous efforts to develop more practical and efficient methods for FMT reconstruction are still needed [15]. In this 
paper, a method based on spectral projected gradient pursuit (SPGP) has been proposed for FMT reconstruction. The 
proposed method was based on the directional pursuit framework. A mathematical strategy named the nonmonotone line 
search was associated with the SPGP method, which guaranteed the global convergence. In addition, the Barzilai-
Borwein step length was utilized to build the new step length of the SPGP method, which was able to speed up the 
convergence of this gradient method. To evaluate the performance of the proposed method, several heterogeneous 
simulation experiments including multisource cases as well as comparative analyses have been conducted. The results 
demonstrated that: the proposed method was able to achieve satisfactory source localizations with a bias less than 1 mm; 
the computational efficiency of the method was one order of magnitude faster than the conjugate gradient based method 
with l2 norm (CG_L2); and the fluorescence reconstructed by the proposed method had a higher contrast to the 
background than the contrast method. All the results demonstrated the potential for practical FMT application with the 
proposed method. 

2. METHODS 
2.1 Photon propagation model 

Photon propagation in biological tissues can be described using the radiative transfer equation (RTE). For photon 
propagation in biological tissues with the near-infrared spectral window, scattering is the main phenomenon over 
absorption. Thus the diffusion equation (DE), which is a low-order approximation of the RET, is usually used to explain 
photon propagation in highly scattering media [16]. For FMT with continuous wave (CW) excitation point sources, the 
following coupled DEs have been widely used to depict photon propagation: 
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where Ω denotes the domain of the problem; r denotes a certain position in the domain Ω; subscripts x and m denote the 
excitation and emission wavelengths, respectively; Φx,m denotes the photon flux density; Dx,m denotes the diffusion 
coefficient and μax,am denotes the absorption coefficient. In the forward model, the excitation light spot is usually modeled 
as an isotropic point source Θδ(r - rl), which is located one mean free path of photon transport beneath the surface. Θ 
denotes the amplitude of the point source, rl (l = 1, 2,···, L) denotes the different excitation point source positions, δ(r) 
denotes the Dirac function. ημaf denotes the fluorescent yield to be reconstructed, where η denotes the quantum 
efficiency and μaf denotes the absorption coefficient of the fluorescent probe. 

To solve the coupled equations, the Robin-type boundary conditions (RBC) are implemented on the boundary ∂Ω of the 
domain Ω [17]: 

 , , ,2 ( ) ( ) / ( ) ( ) 0 ( )x m x m x mD r r n r q r r∂Φ ∂ + Φ = ∈∂Ω
r  (2) 

where nr  denotes the outward normal vector to the surface ∂Ω and q is a constant depending on the optical reflective 
index mismatch at the boundary. 

2.2 Finite element discretization 

The finite element method is used to solve the DEs together with the boundary condition. The domain of the problem is 
discretized with tetrahedron elements and the base functions are treated as the test functions. Then the FMT problem can 
be linearized and the following matrix-form equations can be formed. 

 [ ]{ } { }x x xK SΦ =  (3) 

 [ ]{ } [ ]{ }m mK F XΦ =  (4) 

with ( , ) ( ) ( ) ( )x i jF i j r r r drψ ψΩ= Φ∫ . 
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Ψi(r) and Ψj(r) denote the base functions of the node i and node j, respectively; Kx and Km denote the system matrix 
during excitation and emission, respectively. Φx and Φm denote the photon density on the finite element nodes during 
excitation and emission, respectively. Sx denotes the excitation light source distribution on the finite element nodes. 
Vector X, which is yet to be reconstructed, denotes the fluorescent yield on the finite element nodes. 
Based on Eq. (4), the following linear relationship between the photon density Φm and the unknown fluorescent yield 
distribution can be established: 
 1{ } [ ][ ]{ } [ ]{ }m mK F X G X−Φ = =  (5) 

By removing the immeasurable entries in Φm as well as the corresponding rows in matrix G, the following equation is 
formed: 
 ' '{ } [ ]{ }m G XΦ =  (6) 

Then we assemble Eq. (6) for different excitation positions and the following linear relationship between the emitted 
fluorescence measurements Φ on the surface and the unknown fluorescent yield distribution X can be formed: 
 { } [ ]{ }A XΦ =  (7) 

2.3 Reconstruction based on the spectral projected gradient pursuit method 

To promote the sparsity of the solution, the l1-norm regularization is incorporated into the FMT problem. Then, Eq. (7) 
can be transformed into the following form: 

 
2 1

minimize ( )  subject to 
X

f x AX X τ= −Φ ≤   (8) 

where τ denotes the regularization parameter. To solve the FMT problem, a method named spectral projected gradient 
pursuit (SPGP) was proposed to obtain a sparse solution to Eq. (8). It uses a projection operator defined as: 

 
1

( ) arg min   subject to 
x

P c c x xτ τ= − ≤  (9) 

This projection operator denotes the projection of a vector c onto the one-norm ball with radius τ. The proposed method 
was based on the directional pursuit framework. The new solution is estimated as xn=Pτ(xn−1−αgn−1), where gn−1 denotes 
the gradient of the objective function and α denotes the step length. Thus the update direction of the proposed method is 
calculated to be dn=Pτ(xn−1−αgn-1)−xn−1. To evaluate whether the newly generated solution is appropriate for the problem, 
a nonmonotone line search strategy was introduced as follows: 

 
22

0 min( 1, 1) 1 12 2
max ( )T

n j n L n j n nr r d gγ≤ ≤ − − − − −≤ +   (10) 

where rn denotes the residual of the objective function and γ denotes the sufficient descent parameter. This strategy 
ensures that the objective function decreases sufficiently within L (L≥ 2) iterations. It is able to overcome some cases 
where the sequence of iterates follows the bottom of a curved narrow valley, which may occur in some specific 
optimization problems. 

Then, in order to generate the new step length, the Barzilai-Borwein step length is introduced. It has the form as follows: 
 ( ) / ( )T T

BB x x x gα = Δ Δ Δ Δ  (11) 

Where Δx denotes the increment of xn−1 between two consecutive iterations and Δg denotes the increment of the gradient 
gn-1 between two consecutive iterations. Then the new step length is calculated to be αn = min {αmax, max [αmin, αBB] } in 
which αmax and αmin are two initial parameters. By using the Barzilai-Borwein step length, the convergence of this 
gradient method can be speeded up [18]. At last the halting conditions are used to determine whether to discontinue the 
proposed method or not. The main steps of the proposed method are summarized below: 
 
Spectral Projected Gradient Pursuit Method 

x0 = Pτ[x], r0 = Φ − Ax0, g0 = −ATr0. 
n = 1. 
Outer Iteration: 
(1) α = αn−1 
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Internal Iteration : 
(2)  xn = Pτ(xn−1−αgn−1) 
(3)  rn = Φ−Axn 
(4)  dn = xn−xn−1 

(5)  if ‖rn‖
2 

2 ≤max0≤j≤min(n−1,L−1)‖rn−1−j‖
2 

2 + γ(dn)Tgn−1 then 
(6)   Exit Internal Iteration 
  else 
(7)   α = α/2 

end if 
End Internal Iteration 

(8) gn = −ATrn 
(9) Δx = xn – xn−1; Δg = gn – gn−1 
(10) αBB = (ΔxTΔx)/(ΔxTΔg) 
(11) if ΔxTΔg≤0 then 
(12)  αn = αmax 

else 
(13)  αn = min{αmin, max[αmin, αBB]} 

end if 
(14) n = n+1 
(15) if halting condition true then  
(16)  Exit Outer Iteration 

End if 
End Outer Iteration 
Output: 
(17) x = xn 
 

3. EXPERIMENTS AND RESULTS 
To evaluate the feasibility of the proposed method, numerical experiments were conducted in this section. The 
experiments were conducted based on a mouse-mimicking hetergeneous phantom, which was a cylinder and was 20 mm 
in diameter and 20 mm in height, as shown in Fig. 1. The phantom consisted of four kinds of materials representing bone 
(B), heart (H), lung (L) and muscle (M), as shown in Fig. 1(a). The optical parameters of the materials were listed in 
Table 1. To produce the fluorescence measurements, three fluorescent sources, which were spherical and were 2 mm in 
diameter, were centered in z = 0 plane and were placed in the left and right lungs, as shown in Fig. 1(b). The fluorescent 
yields of the sources were set to be 0.5. The black dots in Fig. 1(c) denote the excitation light sources, which were 
modeled as isotropic point sources located one mean free path of photon transport beneath the surface in z = 0 plane. For 
each excitation source, fluorescence measurements were obtained from the opposite cylindrical side with 160° field of 
view (FOV), as presented in Fig. 1(c). Fig. 1(d) demonstrated that the measured fluorescent data mapped onto the surface 
of the phantom. In order to reconstruct the fluorescent sources, the heterogeneous phantom was discretized into 3756 
nodes and 21715 tetrahedron elements using the finite element method, as shown in Fig. 1(e). To better evaluate the 
feasibility of the proposed method, the conjugate gradient based method with l2 norm (CG_L2) was used to reconstruct 
the same data sets [19]. All of the reconstructions were carried out on a personal computer with 2.39 GHz Intel Core 2 
Duo CPU and 2 GB RAM. 
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Fig. 1. The mouse-mimicking hetergeneous phantom for numerical experiments. (a) The 3D view of the mouse-mimicking 
hetergeneous phantom which consisted of four kinds of materials representing bone (B), heart (H), lung (L) and muscle (M). 
(b). The setup of the phantom for triple fluorescent sources. (c). The cross-section image of the phantom in the z = 0 plane. 
(d) The measured fluorescent data mapped onto the surface of the phantom. (e) The discretized heterogeneous phantom. 

 
Table 1. The optical parameters of the mouse-mimicking hetergeneous phantom 

Material μax(mm-1) μsx(mm-1) μam(mm-1) μsx(mm-1) 
Bone 0.0024 1.75 0.0035 1.61 
Heart 0.0083 1.01 0.0104 0.99 
Lung 0.0133 1.97 0.0203 1.95 

Muscle 0.0052 1.08 0.0068 1.03 
 
3.1 Evaluation of reconstruction accuracy 

In the first experiment, fluorescence was excited by point sources from 12 different locations in sequence, as illustrated 
in Fig. 1. (b). Thus 12 measurement data sets were used to reconstruct the fluorescent sources. To simulate the real case, 
5% Gaussian noise was added to these measurement data sets. CG_L2 method was used as the contrast method to verify 
the accuracy of the proposed method. Fig. 2 gives the reconstruction results of the CG_L2 method (a, b, c, d) and the 
proposed method (e, f, g, h). Fig. 1(a) and Fig. 1(e) demonstrate the 3D views of the reconstructed fluorescent sources in 
the phantoms.  Fig. 1(b) and Fig. 1(f) give the 3D views of the reconstructed fluorescent sources assembled with the 
actual fluorescent sources. Fig. 1(c), Fig. 1(d), Fig. 1(g) and Fig. 1(h) demonstrate the corresponding slices images in the 
z = 0 plane. The green circles in the slice images denote the real locations of the fluorescent sources. The fluorescence 
intensity in Fig. 1(d) and Fig. 1(h) is normalized. From Fig. 2 we can clearly see that, the proposed method can recover 
the three fluorescent sources exactly. For each fluorescent source, the distance between the center of the actual 
fluorescent source and the center of the reconstructed fluorescent source is less than 1mm. However, the sources 
reconstructed by the CG_L2 method were over-smoothed due to the over-smoothing effect of the Tikhonov 
regularization and were not located in the right regions. Besides, the fluorescence reconstructed by the proposed method 
had a higher contrast to the background than the fluorescence reconstructed by the CG_L2 method, as shown in Fig. 1(d) 
and (e). 

Proc. of SPIE Vol. 9316  931604-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/11/2015 Terms of Use: http://spiedl.org/terms



(a) (c)

-0.09

0.07

0.05

0.03

0.01

0.5

0.4

0.3

0.2

1

(c) ()

NV NOW Miir
c.

(g) (h)

 

 

 
Fig. 2. The fluorescent yield reconstruction results by the CG_L2 method (a, b, c, d) and the proposed method (e, f, g, h). (a, 
e) The 3D views of the reconstructed fluorescent sources in the phantom. (b, f) The 3D views of the reconstructed 
fluorescent sources assembled with the actual fluorescent sources in the phantom. The actual fluorescent sources were 
indicated by the yellow spheres. (c, g). The corresponding slice images in the z = 0 plane. The green circles in the slice 
images denote the real locations of the fluorescent sources. (d, h). The slice images in the z = 0 plane. The fluorescence 
intensity in these images is normalized. 

3.2 Evaluation of reconstruction efficiency 

To examine the reconstruction efficiency of the proposed method, we compared the efficiency of proposed method with 
the CG_L2 method based on four different groups of data sets, which were presented on table 2. The sizes of the data 
sets were determined by the density of the discrete volumetric mesh. For the two reconstruction methods, the zero vector 
was used to initialize the unknowns. The results of the comparison are displayed in Table 2. It shows the time consumed 
by the proposed method as well as the contrast one for reconstructing the four groups of data sets. Each value of the 
reconstruction time was the average of ten independent runs. 

From the results, we can clearly see that: 1. The proposed method worked more efficiently than the CG_L2 method when 
reconstructing the same data sets. 2. The proposed method became more computationally competitive as the size of the 
data set increases. 3. These data sets were discretized based on the mouse-mimicking hetergeneous phantom, which 
meant that our method was potential for practical applications. 

Table 2. The efficiency comparison between the proposed method and the CG_L2 method. The size of the volumetric mesh 
equals the number of nodes multiplied by the number of tetrahedral elements. 

No. Volumetric mesh size The proposed method 
(s) 

CG_L2 method 
(s) 

1 2970×16877 6.80 96.25 

2 3756×21715 9.17 166.17 

3 4650×26722 11.75 282.25 

4 5255×30393 14.86 508.36 
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4. CONCLUSIONS
A new method based on spectral projected gradient pursuit was presented in this paper for FMT reconstruction. This
method has introduced several strategies including the nonmonotone line search and the Barzilai-Borwein step length to 
guarantee the global convergence and simplify the computational complexity. To evaluate the proposed method, several
heterogeneous simulation experiments were conducted. From the results, the conclusion could be drawn that the SPGP 
method was able to achieve satisfactory source localizations with a bias less than 1 mm; the computational efficiency of
the method was one order of magnitude faster than the contrast method; and the fluorescence reconstructed by the
proposed method had a higher contrast to the background than the contrast method. All the results demonstrated the 
potential for practical FMT applications with the proposed method. 
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