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Aggregating Rich Hierarchical Features for Scene
Classification in Remote Sensing Imagery
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Abstract—Scene classification is one of the most important issues
in remote sensing image processing. To obtain a high discrimina-
tive feature representation for an image to be classified, traditional
methods usually consider to densely accumulate hand-crafted
low-level descriptors (e.g., scale-invariant feature transform) by
feature encoding techniques. However, the performance is largely
limited by the hand-crafted descriptors as they are not capable
of describing the rich semantic information contained in various
remote sensing images. To alleviate this problem, we propose a
novel method to extract discriminative image features from the
rich hierarchical information contained in convolutional neural
networks (CNNs). Specifically, the low-level and middle-level
intermediate convolutional features are, respectively, encoded by
vector of locally aggregated descriptors (VLAD) and then reduced
by principal component analysis to obtain hierarchical global
features; meanwhile, the fully connected features are average
pooled and subsequently normalized to form new global features.
The proposed encoded mixed-resolution representation (EMR) is
the concatenation of all the above-mentioned global features. Due
to the usage of encoding strategies (VLAD and average pooling),
our method can deal with images of different sizes. In addition,
to reduce the computational consumption in the training stage,
we directly extract EMR from VGG-VD and ResNet pretrained
on the ImageNet dataset. We show in this paper that CNNs
pretrained on the natural image dataset are more easily applied
to the remote sensing dataset when the local structure similarity
between two datasets is higher. Experimental evaluations on the
UC-Merced and Brazilian Coffee Scenes datasets demonstrate
that our method is superior to the state of the art.

Index Terms—Convolutional neural networks (CNNs), mixed-
resolution representation, remote sensing scene classification,
vector of locally aggregated descriptors (VLAD).
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Fig. 1. Examples of different scene image types in the UC-Merced dataset [1]:
(a)–(d) buildings, (e) dense residential, (f) mobile home park.

I. INTRODUCTION

S CENE classification of remote sensing imagery refers to
the task of classifying an image into different categories of

land covers and ground objects. It is an important research topic
in the remote sensing community, and plays a significant role
in many practical applications, ranging from land management,
urban planning to environment prospecting and monitoring.

To achieve a good classification performance, features repre-
senting remote sensing images should have small within-class
scatter and large between-class scatter. However, due to large
variations of land covers and ground objects on the Earth, there
are large differences in their sizes, shapes, and structures. As a
result, it is very common in remote sensing images that different
semantic categories share some similar contents while images
from the same category have different appearance and texture.
As shown in Fig. 1, although the four images in (a)–(d) belong
to a same scene category, they have completely different build-
ing structures and shapes. Meanwhile, Fig. 1(d)–(f) shows three
images of different categories that contain similar objects. As all
of them are constituted by buildings, the different densities and
building sizes are the only ways to distinguish them. Owing to
these challenges, scene classification in remote sensing images
is still an open problem and remains active in the community.

To address this problem, Yang et al. [1] considered to use the
bag-of-visual-words (BOVW) model combined with a support
vector machine (SVM). Specifically, key points are detected in
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Fig. 2. Proposed framework of EMR by a pretrained VGG-16 network.

a given image by Difference of Gaussian and subsequently rep-
resented by scale-invariant feature transform (SIFT) [2]; then,
these SIFT descriptors are encoded by hard assignment and spa-
tially pooled together to obtain a single feature vector as the im-
age representation. Since hard assignment only assigns a SIFT
descriptor to its closest visual word in the codebook, much use-
ful information is lost. To alleviate this problem, sophisticated
encoding methods have been developed, such as sparse cod-
ing [3], compressive sensing [4], Fisher kernel coding [5] and
so on [6]–[8]. Although these methods can achieve a relative
good performance in scene classification, their discriminative
abilities are limited by the used local handcraft feature, e.g.,
SIFT.

Convolutional neural networks (CNNs), a representative data-
driven feature learning method, have been gradually considered
to be used in remote sensing scene classification due to its
large success in natural scene classification [9]–[11] and ob-
ject recognition [12]. Castelluccio et al. [13] studied different
learning methods to train CaffeNet [14] and GoogLeNet [15]
for land-use classification. Ševo et al. [16] used GoogLeNet
to automatically detect ground objects in aerial images. Cheng
et al. [17] learned a rotation-invariant CNN for ground object
recognition. Although the above-mentioned works depending
on CNNs have achieved amazing performance, two major prob-
lems limit the possibility of further improving the performance.
The first one is the fixed input image size. For example, the
input size of CaffeNet is 227 × 227 and it has to resize 256 ×
256 images in the UC-Merced dataset to fit the network; some
details may be discarded when resizing, hence reducing the clas-
sification accuracy. The other problem is that many intermedi-
ate convolutional features are discarded in those CNNs. Since
CNN is a hierarchical network structure with many intermediate

layers, combining output feature with intermediate features can
incorporate richer spatial and semantic information to further
improve the discriminative ability.

Besides the above-mentioned two general problems of CNNs,
overfitting is a special problem that has to be considered when
using CNNs to deal with remote sensing images. Compared
with the number of labeled natural scene images, the number
of labeled remote sensing scene images is far from sufficient;
meanwhile, the manual annotation is too expensive and time
consuming. Therefore, fine-tuning a CNN architecture trained
on natural images with a small number of labeled remote sens-
ing images becomes a good choice [13]. However, to further
adapt the data, thousands of iterations usually are needed to
take full advantage of CNNs’s potentials [13], [18] and hence
fine-tuning CNNs becomes time consuming. Therefore, to re-
duce the computational consumption in the training stage, we
propose to directly extract encoded mixed-resolution represen-
tations (EMR) from VGG-VD and ResNet pretrained on the
ImageNet dataset. We will show in Section III that CNNs pre-
trained on the natural image dataset are more easily applied to
the remote sensing dataset when the local structure similarity
between two datasets is higher.

In this paper, we propose a novel framework to aggregate
rich hierarchical features in CNNs for a discriminative image
representation. As shown in Fig. 2, a remote sensing image
is first fed into a CNN trained on natural images, then both
the intermediate layer features in the convolutional layers and
the global semantic features in the fully connected layers are
encoded and concatenated together to construct the proposed
feature. For the intermediate layer features, they are first reduced
by principal component analysis (PCA) and then encoded by
vector of locally aggregated descriptors (VLAD) [19]; finally,
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the VLAD encoded features are subsequently reduced by PCA
and concatenated together. For the high-level features in each
fully connected layer, they are first reduced by PCA and then
average pooled followed by L2 normalization. The final image
representation is the concatenation of the obtained vectors from
both intermediate layers and fully connected layers. It is worth
to note that the dimension of a VLAD feature is independent
of the input image size. Meanwhile, the average pooling used
in the fully connected layers can deal with input images of
different sizes. Therefore, our method can handle images with
different sizes, meaning more detail information can be used
than the traditional methods fixing the input image size. Our
main contributions include three aspects.

1) We propose a novel framework of using the rich hierar-
chical features of a CNN to form a discriminative image
representation for scene classification. Our method incor-
porates features from low-level, middle-level, and high-
level simultaneously; hence, we term our method as EMR
for its such property.

2) Different from the traditional CNN-based feature extrac-
tion methods that have to fix the input image size to ob-
tain a fixed dimensional feature, our method is flexible
to images of different sizes owing to the used encoding
strategies (i.e., VLAD and average pooling).

3) We give an experimental analysis about the similarities
of local structures between natural images and remote
sensing images, which shows that CNNs pretrained on
the natural image dataset are more easily applied to the
remote sensing dataset when the local structure similarity
between two datasets is higher.

The rest of this paper is organized as follows. Section II
briefly reviews the related works. Then, Section III elaborates
our method, followed by experiments in Section IV. Finally, we
conclude this paper in Section V.

II. RELATED WORKS

In recent years, there is a growing concern over scene classifi-
cation in remote sensing imagery. The BOVW model is perhaps
one of the most popular approaches, which encodes dense low-
level features into a global semantic representation [1], [20]. Hu
et al. [21] proposed an unsupervised feature learning framework
to learn low-level features for the BOVW model. Zhu et al. [22]
combined BOVW with global texture features to obtain a dis-
criminative representation. Cheriyadat [3] used sparse coding to
extend the BOVW model for aerial scene classification. Zhao
et al. [5] proposed a local Fisher kernel (LFK) framework to
incorporate rich spatial information and strong discriminative
ability. However, the gap between the low-level features and the
semantic meanings limits their descriptive abilities to handle
complex scenes [23].

CNN [24] is a trainable multilayer architecture, which in-
corporates multiple feature extraction stages from low level to
high level. It usually consists of several convolutional layers,
nonlinear layers, pooling layers, fully connected layers, and a
loss layer. The convolutional layer computes filter responses for
the input, which are input to the nonlinear layer subsequently.

These generated feature maps incorporate large amounts of low-
level or middle-level features to contain abundant local structure
and semantic information. The pooling layer reduces the spatial
sizes of input feature maps by nonlinear down sampling and
provides robustness to translation. After several stacked con-
volutional, nonlinear and pooling layers, the fully connected
layers are commonly used to obtain high-level semantic repre-
sentations. In the end, the loss layer is used at training time to
penalize the deviation between predicted and true labels. The
CNN architecture is trained in an end-to-end framework by back
propagation, hence it can learn powerful semantic representa-
tion about objects from huge amounts of data. It also has good
robustness to translation, scale, and distortion. Therefore, CNN
has gained extensive attention and achieved best results on a
range of vision tasks [12], [25]–[27].

Different CNN architectures have been designed to improve
the discriminative ability while reducing the number of model
parameters. AlexNet [9] considered to relieve the overfitting
problem by some tricks, such as rectified linear units (ReLU)
nonlinearity, data augmentation, and dropout. It was the first
successfully trained deep CNN architecture and won the com-
petition in the 2012 ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC-2012). SPP-net [28] used the spatial
pyramid pooling in the last feature maps and generated a fixed-
length global semantic representation; hence, it had good robust-
ness to different image sizes. Network-in-network (NIN) [29]
increased the depth and expressiveness of the CNN architec-
ture by using multilayer perceptrons to convolve the inputs
and showed strong discriminative abilities in object recogni-
tion. Inspired by NIN, Szegedy et al. [15] designed the “in-
ception module” to parallel convolve at different spatial scales
and reduce the number of model parameters. Therefore, their
final CNN architecture, GoogLeNet, could increase both the
depth and width of the network while keeping the computa-
tional cost constant. In addition, there were many other CNN
architectures with strong discriminative abilities, such as, Over-
Feat [30], CaffeNet [14], ZF-net [31], VGG-F, VGG-M, VGG-S
[32], etc.

Using CNNs in remote sensing images has been reported
with high performance. Zhao et al. [33] proposed multiscale
CNN algorithm to learn spatial-related features for hyperspec-
tral remote imagery classification. In [23], a gradient boost-
ing random convolutional network framework was proposed to
combine multiple CNNs for remote sensing scene classification.
However, the number of labeled remote sensing scene images is
usually far from sufficient for a deep CNN architecture training.
This may be caused by three reasons.

1) Although it becomes easier to acquire a huge number
of remote sensing images with the rapid development of
satellite and sensor techniques, images with single purified
category labels are difficult to be observed.

2) The manual annotation is too expensive and time con-
suming, which dispels researchers’ enthusiasm of labeling
training samples.

3) Compared with traditional supervised methods, deep
CNN based methods usually need more training samples
to overcome the overfitting problem.
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Therefore, researchers proposed to use a network architec-
ture pretrained in natural scene images for initialization and
then fine-tune the network by remote sensing images [13], [18].
Actually, directly using the features of CNNs pretrained in nat-
ural scene images to classify remote sensing scenes could also
have excellent results [34]. Napoletano et al. [35] represented
aerial images by the fully connected features of multiple CNNs
pretrained on the ImageNet dataset and achieved better results
than traditional methods.

Recently, encoding local features from a pretrained CNN
has been widely used to extract a discriminative high-level
semantic representation [36]–[38]. In these methods, the
last convolutional feature maps are treated as a set of local
features; then, these local features are encoded into a global
semantic representation by some encoding methods [3], [5], [6].
Compared with traditional handcraft descriptors, such as SIFT,
local binary patterns (LBP) [39], Haarlike, etc., local features
from pretrained CNN could describe the semantic meanings
more precisely; hence, the final image representation becomes
more discriminative. In [40], multiscale images were input into
a pretrained CNN architecture; then, local features of different
scale images were combined together and further encoded into
a single representation by Fisher Vector. Although their work
successfully employed local features from a pretrained CNN to
construct a global image representation and achieved good per-
formance for remote sensing classification, it still ignored huge
amounts of semantic information included in rich intermediate
layers of CNNs. As described in [41], the low-level features
from lower convolutional layers are full of specific structure
information whereas the middle-level features from upper con-
volutional layers incorporate semantic information invariant to
illumination, pose, location, etc. Therefore, using features from
multiple convolutional layers could incorporate richer semantic
information. Long et al. [42] proposed fully convolutional
network (FCN) to handle arbitrary sizes of images and incorpo-
rate multilayer convolutional features to improve the semantic
segmentation accuracy. However, FCN cannot be used for
scene classification, which requires image level representation.

The spatial information is also an important consideration for
constructing discriminative representations. Wang et al. [43]
proposed the spatial latent Dirichlet allocation model to encode
spatial structures among visual words. Yang et al. [1] extended
the spatial pyramid match kernel to BOVW for remote sens-
ing scene classification. They also proposed a novel spatial co-
occurrence kernel to consider the relative spatial arrangement.
Chen et al. [44] proposed a pyramid of spatial relations model to
describe spatial relationships of low-level features. Inspired by
their works [43], [1], [44], as shown in Section III-D, we also in-
corporate rich spatial information to improve the discriminative
ability.

In this paper, we consider to use the features extracted from
two kinds of the latest network architectures, VGG-VD [10]
and ResNet [11]. Both of them are pretrained on the Ima-
geNet dataset and have shown strong discriminations. Different
from [34], [35], and [40], we take full advantage of semantic
information contained in pretrained CNNs, i.e., both of the inter-
mediate convolutional features and the fully connected features

are encoded to form a global image representation. As a result,
our method could have stronger discrimination than the state of
the arts, which is validated by our experiments.

III. FEATURE CONSTRUCTION

The pipeline of the proposed method is shown in Fig. 2. It can
be found that the EMR is based upon the intermediate convo-
lutional features and fully connected features from a pretrained
CNN. In the following, we will first explain the reason why using
CNNs pretrained on natural scene images can still achieve good
performance for remote sensing scene classification. Then, we
introduce two typical CNN architectures, VGG-VD and ResNet,
used in our method. A brief introduction of the VLAD encoding
technique is given afterward. Finally, we elaborate how to en-
code richer spatial and semantic information for a global image
representation.

A. Analysis of the Similarity Between the Natural Imagery and
Remote Sensing Imagery

The remote sensing images are acquired from the sky whereas
the natural images are usually at a horizontal view; hence, ob-
jects in remote sensing images have completely different shapes
and poses from natural images. Nevertheless, as evidenced in the
literature, using features of CNNs pretrained in natural images
could still achieve good performance for remote sensing scene
classification [34], [40], [35]. In addition to the good general-
ization of CNNs, we claim that an important reason is the local
structure similarity between remote sensing images and natu-
ral images. This is because that if the local similarity between
natural images and remote sensing images is higher, the first
several convolutional filters learned from natural images can
more precisely describe local structure information in remote
sensing images, and the descriptions of the latter convolutional
layers would be more meaningful, thus encoding more plentiful
and precise semantic information into the final representation,
which is critical for a better classification performance.

To support this point, we statistically study the local similar-
ity between natural and remote sensing images by three typical
datasets. The ImageNet dataset [45] consists of huge amounts of
natural images from 1000 object categories. It contains about 1.2
million training images, 50 000 validation images and 100 000
test images. We randomly pick up 2100 images from the train-
ing set, resize them to 224 × 224, and calculate their local
structure distribution. Note that when an image is input to a
CNN, it usually subtracts the mean image of the training set
for preprocessing [9]. We adopt the same strategy to prepro-
cess all images in the following experiments; hence, the local
structure distribution is calculated in preprocessed images. We
use the uniform LBP (LBPu2

8,1) and rotation-invariant uniform
LBP (LBPriu2

8,1 ) to describe fundamental properties of local im-
age structure. Due to the space limitation, please refer to [39]
for more details about LBPu2

8,1 and LBPriu2
8,1 . We calculate his-

tograms of LBPu2
8,1 and LBPriu2

8,1 from all pixels in the above-
mentioned 2100 natural images. Similarly, the histograms of
LBPu2

8,1 and LBPriu2
8,1 are also calculated on the UC-Merced [1]

and Brazilian Coffee Scenes [34] datasets, which are remote
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Fig. 3. Local structure distribution in natural images and remote sensing images: (a) histograms of LBPu 2
8 ,1 , 59 bins are used; and (b) histograms of LBPriu2

8 ,1 ,
10 bins are used.

TABLE I
INFLUENCE OF LOCAL STRUCTURE SIMILARITY

Dataset The chi-square
distance

Accuracy (%)

LBPu 2
8 , 1 LBPr iu 2

8 , 1 Caffe [34] OverFeat [34] VGG-
16

VGG-
19

UC-Merced 0.0084 0.0069 93.42 90.91 90.67 89.62
Brazilian Coffee
Scenes

0.4904 0.4860 84.82 81.2 86.78 85.98

sensing scene datasets. Fig. 3 presents the corresponding statis-
tical results. The chi-square distance between histograms from
UC-Merced and ImageNet as well as the chi-square distance be-
tween histograms from Brazilian Coffee Scenes and ImageNet
are listed in Table I. It also contains classification accuracies
on the UC-Merced and Brazilian Coffee Scenes datasets by us-
ing the last-layer fully connected features from CaffeNet, Over-
feat, VGG-16, and VGG-19 pretrained on the ImageNet dataset.
From Fig. 3 and Table I, it can be seen that compared with the
Brazilian Coffee Scenes dataset, histograms of the UC-Merced
dataset are more similar to those of ImageNet. As a result, such
a similarity means that the convolutional filters learned from the
ImageNet can be easier applied to UC-Merced than Brazilian
Coffee Scenes and better classification performance can be
achieved.

B. Typical CNNs

Due to the strong discriminative abilities shown in the
ILSVRC classification task, two kinds of the latest CNN ar-
chitectures, VGG-VD and ResNet, are used in our method, re-
spectively. Both of them are implemented by MatConvNet [46]
and pretrained on the ImageNet ILSVRC challenge dataset.

1) VGG-VD: Simonyan and Zisserman [10] designed very
deep CNN architectures (VGG-VD) and won the second place
in ILSVRC-2014. The most important design of their network
architectures was the stack of convolutional layers with small
receptive fields. Although the largest receptive field of all con-
volutional filters is 3 × 3, stacking multiple convolutional lay-
ers could achieve a larger receptive field. This design could
effectively increase the expressiveness by using more layers;

Fig. 4. Residual learning: (a) illustration of a residual learning block, and
(b) practical block used in ResNet-152.

meanwhile, the number of parameters decreased rapidly, result-
ing in a deeper network with fewer parameters. Two successful
VGG-VD architectures, known as VGG-16 (including 13 con-
volutional layers and 3 fully connected layers) and VGG-19 (in-
cluding 16 convolutional layers and 3 fully connected layers),
have showed strong discriminative abilities on the ImageNet
ILSVRC challenge dataset; hence, we, respectively, use their
pretrained network models to extract features in our method.

2) ResNet: He et al. [11] proposed the residual learning
framework to ease CNN training; hence, the deeper network
could be designed to increase the discrimination. As shown in
Fig. 4(a), the feature map X is first input to a convolutional
layer and a nonlinear layer, generating an intermediate fea-
ture map σ (W1X). Here, σ is the nonlinear activation function
ReLU [47], and Wi denotes the filter parameters of the ith con-
volutional layer and the biases are omitted for simplification.
Then, σ (W1X) is input to the following convolutional layer,
obtaining a residual mapping F (X) = W2σ (W1X). Finally,
a shortcut connection is used to acquire an identity mapping
H (X) = F (X) + X . Fig. 4(b) shows the practical residual
block used in ResNet. In this paper, the pretrained ResNet-152
is used, which won the competition on the ILSVRC 2015 clas-
sification task.
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Fig. 5. Example of the convolutional feature maps.

Due to the space limitation, please refer to [10] and [11]
for the detailed description of VGG-16, VGG-19, and ResNet-
152. In our method, we extract features after the ReLU layers,
because it achieves a slightly better performance than extracting
features before the ReLU layers according to our experiments.

C. Vectors of Locally Aggregated Descriptors

Feature maps output by a convolutional layer can be viewed as
a set of local descriptors. As shown in Fig. 5, the features across
feature map channels at each location constitute a local descrip-
tor, which describes semantic information of the correspond-
ing spatial region (receptive filed). Compared with traditional
handcraft descriptors, local descriptors generated from convo-
lutional feature maps incorporate richer semantic information;
hence, encoding these descriptors into a global representation
can help achieve a more discriminative feature vector. In this
paper, we choose to use the well-studied VLAD to encode these
descriptors.

Suppose V = {v1 , v2 , · · · , vk} is a codebook with k vi-
sual words, which is usually learned from a training set of
local descriptors by k-means. For a local descriptor set P =
{p1 , p2 , . . . , pm} extracted from an image, its locally aggre-
gated descriptors (VLAD) feature [19] can be calculated as
follows:

qi,j =
∑

pl such that N N (pl )=vi

pl,j − vi,j (1)

where pl,j and vi,j , respectively, denote the j th components of
the local feature pl and the visual word vi , NN(pl) = vi means
that vi is the nearest neighbor visual word of pl . The final VLAD
feature Q is a single vector concatenating all qij s and normal-
ized to unit length. Therefore, for a d dimensional local feature
with k visual words, the dimension of VLAD feature will be
k × d. When we use VLAD to encode intermediate convo-
lutional features from pretrained CNNs, the dimension of the
generated VLAD feature is independent of the size of interme-
diate convolutional features. As a result, for different sizes of
input images, we can obtain a fixed dimensional VLAD feature.
In this paper, the VLAD encoding technique is implemented

Algorithm 1: Encoded Mixed-Resolution Representation.
Input: Input Image I
Output: EMR Feature F

1: Input I to a pretrained CNN, the last convolutional
feature maps in different resolution and the fully
connected features are reserved.

2: for all Reserved intermediate convolutional features do
3: Reduce local features by PCA.
4: for all Spatial divisions do
5: Encode the corresponding local features by VLAD.
6: end for
7: Concatenate all VLAD vectors from different

divisions and reduce its dimension by PCA.
8: end for
9: for all Reserved fully connected features do

10: Reduce fully connected features by PCA.
11: Average pooling these reduced features.
12: L2-normalize the pooled feature.
13: end for
14: Concatenate all encoded features from intermediate

convolutional layers and fully connected layers to form
the final feature F .

by vlfeat [48]; meanwhile, a kd-tree is built to quickly find the
nearest neighbor visual word of each local feature.

D. Encoded Mixed-Resolution Representation

Algorithm 1 gives the pseudocode of our proposed method
and Fig. 2 shows the whole procedure by an example of using a
pretrained VGG-16 network.

Due to the existence of pooling layers, CNNs can generate
convolutional feature maps with different sizes. Obviously, these
feature maps have different resolutions. From the first convolu-
tional layer to the last convolutional layer, the generated feature
maps have lower and lower resolutions with higher and higher
semantic information. For example, feature maps of the first
convolutional layer usually describe 3 × 3 or 5 × 5 regions and
tend to extract low-level structure information, such as, corners
and edges; feature maps of the latter convolutional layers can de-
scribe larger spatial regions, representing some parts of objects
or even whole objects. Therefore, encoding local descriptors
from convolutional feature maps in different resolutions can in-
corporate multiple levels of semantic and spatial information. In
a deep CNN network, there are several convolutional layers ex-
porting feature maps in the same resolution. In this case, we use
the feature maps from the last convolutional layer in each reso-
lution as they have the strongest expressiveness. Meanwhile, in
order to incorporate richer spatial information, the feature maps
can be spatially divided into multiple groups for generating their
VLAD representations. As shown in Fig. 2, four kinds of spatial
divisions are used and 11 spatial groups are generated accord-
ingly. We extract VLAD features from these spatial groups and
concatenate them into a single vector. As the feature dimension
becomes too high, we use PCA to reduce its dimension. Finally,
the computed features from different intermediate convolutional
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Fig. 6. Different scene categories contained in the UC-Merced dataset: (a) agricultural, (b) airplane, (c) baseball diamond, (d) beach, (e) buildings, (f) chaparral,
(g) dense residential, (h) forest, (i) freeway, (j) golf course, (k) harbor, (l) intersection, (m) medium residential, (n) mobile home park, (o) overpass, (p) parking lot,
(q) river, (r) runway, (s) sparse residential, (t) storage tanks, (u) tennis court.

layers are concatenated together as a single vector and we call
it as encoded convolutional feature.

In addition to the intermediate convolutional features, the
fully connected features of pretrained CNNs provide high-level
generalized representations, which have shown strong discrim-
ination in remote sensing classification [34], [35]. Therefore,
we also use features from the fully connected layers in the pro-
posed framework. To handle input images with different sizes,
we consider to average pool features in each fully connected
layer. Specifically, features from each fully connected layer are
first reduced by PCA; then these reduced features in each fully
connected layer are respectively average pooled to obtain a ro-
bust feature; finally, the pooled feature of each fully connected
layer is L2 normalized. Fig. 2 has shown specific feature dimen-
sions of the VGG-16 layers with an input image of 256 × 256
× 3. It can be found that the average pooling strategy can elim-
inate the influence of the input image size and thus obtaining a
fixed dimensional feature vector. The encoded fully connected
feature concatenates normalized features of all fully connected
layers.

The entire feature of our method is an alliance of the en-
coded convolutional feature and the encoded fully connected
feature. It is worth to note that although PCA has been used
many times in different stages, their projections are different.
As our method encodes features from both the intermediate
layers and the fully connected layers of a pretrained CNN, we
call it as Encoded Mixed-resolution Representation (EMR).
By using VGG-16, VGG-19, and ResNet-152 as the pretrained
CNNs, respectively, we obtain three corresponding features as
VGG16_EMR, VGG19_EMR, and ResNet152_EMR, which
are evaluated on two remote sensing classification datasets in
the following experiments.

Fig. 7. Examples of the Brazilian Coffee Scenes dataset: (a) coffee, (b) non-
coffee.

IV. EXPERIMENTS

A. Experimental Setup

To evaluate the performance of our method in the task of
remote sensing scene classification, we conduct experiments on
two widely used datasets. We report the accuracy rate calculated
as the number of correct classifications divided by the total
number of classifications.

We first evaluate on the UC-Merced dataset [1], which col-
lects land-use images from the USGS National Map Urban Area
Imagery with a pixel resolution of one foot. It consists of 21
distinctive scene categories, as shown in Fig. 6. Each class con-
tains 100 images with the fixed size of 256 × 256. Similar to
the experimental setting in [1], fivefold cross validation is per-
formed. Specifically, the dataset is first randomly partitioned
into five equal-sized subgroups, each of which contains 20 im-
ages per category; then, the classifier is circularly trained on
four subgroups and evaluated on the remaining subgroup; fi-
nally, the classification accuracy rate is the average over the
above-mentioned five evaluation results.

In addition to UC-Merced dataset, we also evaluate on the
Brazilian Coffee Scenes dataset [34], which includes two cate-
gories of scenes: coffee and noncoffee. Fig. 7 shows some ex-
amples. In this dataset, all images are multispectral ones. Each
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Fig. 8. Parameter evaluation for VGG16_EMR.

image incorporates the red, green, and near infrared bands with
a fixed size of 64 × 64. It contains five folds, four of which
have 600 samples and the remaining one has 476 samples. The
numbers of coffee and noncoffee samples in each fold are the
same. Fivefold cross validation is used too.

The extracted image representations are combined with the
linear SVM (implemented by liblinear [49]) to distinguish dif-
ferent scene categories. Although this processing is simple and
standard, our method can still achieve the best classification
performance in the following experiments, which reflects the
strong discriminative ability of the proposed feature.

B. Parameter Evaluation

1) Parameter Settings: Three important parameters exist in
the proposed feature: the reduced dimension of local convolu-
tional features d by PCA, the number of clusters k, and the
reduced dimension of each layer l by PCA (for simplicity, the
reduced dimension of local fully connected features is set to l
too). We use the UC-Merced dataset to estimate the most suit-
able parameter settings for our method. Since these parameters
are independent of the used CNN architecture, we only evaluate
the influence of different parameters by VGG-16.

When evaluating each parameter, we keep the other param-
eters at the best settings. Fig. 8 shows the accuracy rates with
different parameter settings. It can be seen that the highest accu-
racy rate can be achieved at d = 128 and d = 160, thus we set
d = 128 for its lower dimension. For convolutional layers whose
feature dimension is lower than d, their original dimension is
retained. From Fig. 8(b), we can find that increasing the number
of clusters can notably improve VGG16_EMR’s discriminative
ability. The highest accuracy rate is reached when the number
of clusters reaches 256. Then, the accuracy rate decreases if
continue increasing the number, as a consequence, we set the
number of clusters as k = 256. Accordingly, the dimension of
the generated VLAD feature is equal to 32 768 and concate-
nating VLAD vectors from different spatial divisions forms a
360 448 dimensional feature vector for each convolutional layer.
However, as shown in Fig. 8(c), the reduced feature of each
layer only needs a low dimension of l = 512. Finally, we set
d = 128, k = 256, and l = 512 in the following experimental
evaluations.

2) Influence of Different CNN Layers: In this part, we
analyze the discriminative abilities of features extracted from

Fig. 9. Accuracy rates of features extracted from different layers of VGG-16
on the UC-Merced dataset.

different layers of VGG-16. To this end, we denote the reduced
VLAD features in different resolutions as Fr1,Fr2, . . . ,Fr5,
separately. As shown in Fig. 2, Fr1 is from the largest resolu-
tion whereas Fr5 is from the smallest. The normalized features
from the first two fully connected layers are, respectively, de-
noted as Fc1 and Fc2 (note that Fc2 is different from the fully
connected feature of VGG-16 used in Section III-A because
of the different input image sizes, i.e., one is 256 × 256 and
the other is 224 × 224). Furthermore, C7 means the feature
combining Fr1,Fr2, . . . ,Fr5, Fc1 and Fc2 whereas C6 only
combines Fr2,Fr3, . . . ,Fr5, Fc1 and Fc2. Fig. 9 shows their
classification results on the UC-Merced dataset and we have
several observations as follows.

1) From Fr1 to Fr4, the accuracy rate has significantly in-
creased, indicating the improved discriminative ability of
convolutional features with deeper network.

2) The performance of Fr5 is poorer than Fr3 and Fr4. This
may because the number of local convolutional features
is a bit less (16 × 16), which cannot provide adequate
semantic information.

3) The performance of Fr3, Fr4, and Fr5 is better than Fc1
and Fc2, which shows the significance of using semantic
information in intermediate layers.

4) The accuracy rate of Fc1 is higher than that of Fc2,
demonstrating a better generalization ability of the first
fully connected layer than the second fully connected
layer.
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TABLE II
INFLUENCE OF DIFFERENT PRETRAINED CNNS

CNN AlexNet VGG-F VGG-M VGG-S VGG-16 VGG-19 ResNet-152

Accuracy
Rate(%)

96.86 97.05 96.95 96.95 98.19 97.62 98.76

5) If combining features of convolutional layers and fully
connected layers (C6 and C7), the better classification
performance can be obtained. However, the performance
of C7 is a little poorer than C6 owing to the weaker
discrimination of Fr1.

In summary, the intermediate layers of CNNs incorporate
rich semantic information, thus by combining features extracted
from multiple CNN layers, a feature with very strong dis-
criminative ability can be obtained. Meanwhile, convolutional
features in the largest resolution lack sufficient discrimina-
tive abilities. Therefore, we encode fully connected features
and all intermediate convolutional features except for the
largest resolution to construct VGG16_EMR, VGG19_EMR,
and ResNet152_EMR.

3) Influence of Pretrained CNNs: Besides VGG-16, VGG-
19, and ResNet-152, we also tried other CNNs in our proposed
framework and evaluated their performance on the UC-Merced
dataset. These networks include AlexNet [9], VGG-F, VGG-M,
and VGG-S [32]. All of them are implemented by MatCon-
vNet and pretrained on the ImageNet dataset too. The classifi-
cation results are presented in Table II. It can be seen that using
VGG-F, VGG-M, and VGG-S perform slightly better than us-
ing AlexNet, but worse than using VGG-16 and VGG-19. The
features extracted by ResNet-152 achieves the best accuracy. It
can be found that these results are exactly similar to the classi-
fication performance on the ImageNet dataset. This illustrates
that if a CNN achieves better performance on the classifica-
tion task, its intermediate features in each layer usually have
stronger discrimination; hence, our proposed feature based on
this CNN architecture can achieve a higher performance. This
is the reason why we use VGG-16, VGG-19, and ResNet-152
to construct EMR features in this paper.

4) Influence of Input Image Sizes: In this part, we evaluate
the influence of different input image sizes to EMR. The input
sizes of VGG-16, VGG-19, and ResNet-152 are all 224 × 224
whereas the image size in the UC-Merced dataset is 256 × 256;
hence, we evaluate the influence of input image sizes of both 224
× 224 and 256× 256 pixels. The commonly used image size 320
× 320 is also included in our evaluation. For the Brazilian Coffee
Scene dataset, its image size, 64 × 64, is much smaller than the
above-mentioned three sizes. Even though, we evaluate these
different image sizes on the Brazilian Coffee Scenes dataset to
study the influence of excessive zoom. Table III shows their
classification accuracy rates. It can be found that VGG16_EMR
and ResNet152_EMR achieve higher accuracy rates with size of
256 × 256 than those of 224 × 224 on the UC-Merced dataset.
The possible reason is that when resizing images to smaller ones,
some semantic information has been discarded. When resizing
images in the UC-Merced dataset to 320 × 320, VGG19_EMR

TABLE III
INFLUENCE OF DIFFERENT INPUT IMAGE SIZES

The UC-Merced dataset The Brazilian Coffee Scenes dataset

224 256 320 224 256 320

VGG16_EMR 97.76 98.19 98.14 92.28 92.03 91.80
VGG19_EMR 97.95 97.62 97.90 91.60 92.25 91.03
ReNet152_EMR 98.38 98.76 98.90 99.00 96.26 96.31

TABLE IV
CLASSIFICATION ACCURACY RATES OF DIFFERENT METHODS ON THE

UC-MERCED DATASET

Method Accuracy(%)

Feature-based PSR [44] 89.10
UFL-SC [21] 90.26
SIFT + SC [3] 81.67
FK-S [5] 91.63
VLAD [6] 92.50
VLAT [6] 94.30
LGFBOVW [22] 96.88

Network-based GoogLeNet [13] 97.10
GBRCN [23] 94.53
Multiview deep learning [50] 93.48
CaffeNet [34] 93.42
OverFeat [34] 90.91
OverFeat + Caffe [34] 99.43
VGG-S + IFK(VGG-16) [40] 98.49
VGG16_EMR 98.14
VGG19_EMR 97.90
ResNet152_EMR 98.90
ResNet152(intermediate) + VGG16(fully connected) 99.43
ResNet152(intermediate) + VGG19(fully connected) 99.48

and ResNet152_EMR perform slightly better than the original
size. However, VGG16_EMR and ResNet152_EMR become
worse when resizing the image to larger sizes on the Brazilian
Coffee Scenes dataset. Based on the above-mentioned results,
we evaluate our proposed method with the input image sizes of
320 × 320 on the UC-Merced dataset and 224 × 224 on the
Brazilian Coffee Scenes dataset in the following experiments.

C. Comparison With the State of the Art

1) UC-Merced: As shown in Table IV, we compare our pro-
posed features with the state of the arts on the UC-Merced
dataset. The competitive methods can be classified into two cat-
egories: feature-based and network-based. The feature-based
methods usually encode dense local descriptors into a global
representation by different feature encoding methods, such as
sparse coding [3], Fisher Vector [5], VLAD [6], etc., [21], [44].
However, due to the limited descriptive abilities of local de-
scriptors, these methods do not work very well, which can be
seen from Table IV. To alleviate the problem of limited descrip-
tive abilities of using a single local descriptor, LGFBOVW [22]
mixed several local descriptors in the BOVW framework and
achieves the accuracy rate at 96.88%. Compared to the feature-
based methods, the network-based methods perform much bet-
ter. In [23] and [50], Zhang et al. and Luus et al. designed
special CNN architectures for scene classification. However,
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TABLE V
CLASSIFICATION ACCURACY RATES OF DIFFERENT METHODS ON THE

BRAZILIAN COFFEE SCENES DATASET

Method Accuracy(%)

BIC [34] 87.0
BOVW + SIFT [34] 80.5
OverFeat [34] 84.82
CaffeNet [34] 81.2
OverFeat + CaffeNet [34] 83.04
GoogLeNet [13] 91.83
VGG16_EMR 92.28
VGG19_EMR 91.60
ResNet152_EMR 99.00

their network depths are insufficient; hence, their final clas-
sification performance is not good enough. Using pretrained
GoogLeNet and further fine-tuning it on the UC-Merced dataset
can help achieve a good performance with 97.10% accuracy rate,
which is superior to all feature-based methods. Directly using
the fully connected features from either CaffeNet or OverFeat
to classify remote sensing scenes, it cannot achieve a good clas-
sification performance. However, once concatenating both of
them, it can reach a surprising accuracy rate 99.43%. VGG-
S+IFK(VGG-16) [40], which combines the fully connected fea-
ture from pretrained VGG-S and the Fisher vector encoding
last convolutional features from pretrained VGG-16, also ob-
tains a high classification accuracy rate up to 98.49%. Our
proposed feature, VGG16_EMR and VGG19_EMR, achieve
accuracy rates at 98.14% and 97.90%, respectively. Although
their performance is worse than OverFeat+Caffe and VGG-
S+IFK(VGG-16), they achieve the best performance on the
UC-Merced dataset among all the methods using a single CNN
model. ResNet152_EMR performs better than VGG16_EMR
and VGG19_EMR, just slightly worse than OverFeat+Caffe.
Because the fully connected feature of ResNet-152 is average
pooled from its lower convolutional layer rather than learned
from the dataset, combining it with its convolutional layer fea-
tures is not able to encode additional information. When we
replace the normalized features in ResNet152_EMR by the nor-
malized features in VGG16_EMR or VGG19_EMR to form a
mixed feature, higher accuracy rate (99.43% or 99.48%) can
be achieved. The highest accuracy rate 99.48% is achieved by
ResNet152(intermediate)+VGG19(fully connected).

2) Brazilian Coffee Scenes: The results are listed in Table V.
The BOVW with dense SIFT performs the worst in this dataset.
The simple color feature, border-interior pixel classification
(BIC), improves the accuracy rate by 6.5%. Using fully con-
nected features from pretrained OverFeat and CaffeNet achieve
accuracy rates no more than 84.82%, which are not as good
as their performance on the UC-Merced dataset. The reason is
mainly caused by the difference between the characteristic of
these two datasets. The spectral information in Brazilian Coffee
Scenes is entirely different from UC-Merced, which is more sim-
ilar to ImageNet. Such a different spectral information further
results in a significant difference on local texture. As shown in
Section III-A, the local similarity between Brazilian Coffee
Scenes and ImageNet is much lower than that between UC-

Merced and ImageNet. Therefore, the fully connected fea-
tures learned from natural images can be easily applied on
the UC-Merced dataset than on the Brazilian Coffee Scenes
dataset. Our proposed features, VGG16_EMR, VGG19_EMR,
and ResNet152_EMR, can still achieve good performance with
accuracy rates: 92.28%, 91.60%, and 99.00%. This indicates the
importance of encoding intermediate convolutional features. Al-
though GoogLeNet is fine-tuned on the Brazilian Coffee Scenes
dataset, it still performs much worse than ResNet152_EMR,
which validates the strong discrimination of our proposed
method.

V. CONCLUSION

This paper proposes a novel image representation method
named EMR to classify remote sensing scene images. To en-
code rich semantic information contained in CNNs, we con-
sider to fully employ the low-level, middle-level, and high-level
features from the intermediate convolutional features and fully
connected features of CNNs. Specifically, the low-level and
middle-level features from intermediate convolutional layers
are, respectively, encoded into a global image representation by
VLAD, followed by a PCA to reduce the feature dimension.
Meanwhile, the fully connected features are average pooled
and subsequently normalized to form new global features. The
EMR combines all the above-mentioned global features. Ow-
ing to the good properties of VLAD and average pooling, our
method can handle input image with different sizes. In addition,
we have statistically analyzed that CNNs pretrained on the nat-
ural image dataset are more easily applied to the remote sensing
dataset when the local structure similarity between two datasets
is higher. With our proposed encoding method, using CNNs
pretrained on the natural image dataset can also help achieve
very good performance on remote sensing images even if their
local structure similarity to natural images is relatively low.
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