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Abstract— Playing table tennis with human is a
challenging work for robot. The common architec-
ture for table tennis robot in the past researches
are to gather information at first, then predict
the ball status at hitting point, and the motion
mechanism moves according to the prediction at
last. In order to save the time for the later two steps,
the gathered information is limited. In this paper,
we propose a new architecture, in which the robot
would keep gathering the information and amending
the prediction as the motion mechanism moves.
To combine the gathered information and obtain
reliable prediction of hitting point, a data processing
algorithm is proposed. The algorithm is based on
the kinetic analysis of the ball and the extended
Kalman filter. The estimation of angular velocity
measurement is also improved in this algorithm.
Finally, the validity of the algorithm is confirmed
by conducting experiments.

I. INTRODUCTION
Playing table tennis with human is a challeng-

ing task for robot. The complexity of the task
make table tennis robot an ideal platform for
many research. Since 1980s, a number of research
groups have focus on this question and quite a lot
of works have been done. Most work follows a
common framework: Firstly, the ball is detected
with high speed vision system. Then the hitting
point is predicted by model identification method.
At last, the motion mechanism completes the
hitting action. Therefore, high speed vision pro-
cession, model identification and motion control
are the three main contents to be studied.

In most early work like [1] and [2], the spin
of ball is ignored because of the difficulty both
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in the measurement of ball angular velocity and
the complex kinetic analysis. In recent years,
with the improvement of technology, many groups
take the spinning of the ball into consideration.
In [3], Nakashima explored a high-speed vision
sensors with 900 frames per second to capture
the rotation of ball, and derived analytical models
of the rebound phenomenon between a ping-pong
ball and the table/racket rubber. Then in 2014,
with the help of a pan-tilt vision system, Zhang
observed the spinning motion through recognizing
the position of the brand on the ball [4]. This
kind of solutions are direct and accurate. However,
they must be supported by camera systems with
extremely high sample speed, which make the w-
hole system expensive and complex. From another
aspect, mathematic method is proposed in [5] and
[6] to solve this problem. In this kind of method,
the angular velocity of the ball is estimated based
on the bending trajectory of the ball. Their defect
is that to guarantee the robustness, we have to
capture a relative longer flying trajectory of the
ball. In practical playing, a long-time detecting
process will not leave the motion mechanism
enough time to finish the hitting action. Therefore,
they are difficult to be used in practical playing.

To overcome such conflict, we propose a so-
lution that improves both the detecting model
and the action model. In our solution, a rough
initial hitting parameters is delivered to the motion
mechanism once the necessary data is gathered.
With these parameters, the motion mechanism
begins to move at once. Meanwhile, the robot
keeps tracking the ball, and amending the initial
parameters when the motion mechanism is mov-
ing.

In order to realize such design, the robot shall
contains two features. Firstly, the motion mecha-
nism demands to be capable of altering its desti-
nation in real time. Second, the robot demands to



be capable to combine the ball status information
gathered at realtime and the trajectory information
gathered earlier.

In this paper, we introduce an algorithm which
enable the robot to combine the realtime infor-
mation and the history information. The work is
based on physical model and the extended Kalman
filter(EKF). With more abundant ball status cap-
tured, the estimation of angular velocity is also
improved.

The remainder of this paper is organised as
follows. First of all, section II introduces the
hardware framework of our robot. Then section
III gives the fundamental kinetics model for the
ball. Based on this model, Section IV proposes
filters both for the captured ball status and the
predicted hitting points. The complete algorithm
is described in V, and the experimental results are
presented in section VI. Finally, in section VII, the
conclusion is given.

II. SYSTEM HARDWARE

Our work is based on a platform which is
improved form the work in [7] and [8]. The
system contains three parts: a stereo vision system
to detect the ball, a motion mechanism to hit
the ball and a control system to connect both
of them. Figure 1 presents the practical robot
system. In the picture, the stereo vision system is
marked by the red rectangle. It contains 2 smart
cameras work at 200 frames per second. Besides,
the data gathered by the cameras are processed
by a regular computer. The motion mechanism
with 5 degrees of freedom is marked by the green
rectangle. The motion controller is marked by the
yellow rectangle. Its core component is a motion
control card, by which the motion mechanism can
change its trajectory planning at real time, which
is a key feature in the proposed algorism.

III. KINETICS MODEL OF FLYING BALL

The kinetics model of flying ball is important
for the prediction of the ball trajectory. There have
been many researchs to this topic. Some groups
simply use polynomials to fit the sample data [9],
others use models based on simplified kinetics
analysis like [4], [10]. Our work is based on the
model proposed in [6], which take the spinning
of ball into consideration.

Fig. 1: The table tennis robot

In this section, we will introduce the flying and
rebounding model proposed in [6].

A. Flying Model

In the model proposed in [6], there are three
main forces on the flying ball, which are the
Magnus Force, gravity, and air resistance. The
force analysis can be expressed as follows

m~̇v = FD + FG + FM

FD = −1

2
ρSCD‖~v‖~v

FM =
1

2
CMρSrb~ω × ~v

FG = [0 0 −mg]

(1)

where FG is the gravity force, FD is the air
resistance, FM is the Magnus force, ρ is the air
density, S is the effective cross-sectional ball area,
CD is the drag coefficient, CM is the Magnus
coefficient, rb is the radius of the ball, m is the
mass of the ball, g is the gravity accelerator,
~v = [vx, vy, vz]

T is the flying velocity of the ball,
~ω = [ωx, ωy, ωz]

T is the angular velocity.
According to the force analysis, the acceleration

on each direction can be calculated as v̇x
v̇y
v̇z

 =

 −kd‖~v‖vx + kmδ1
−kd‖~v‖vy + kmδ2

−kd‖~v‖vz − g + kmδ3

 (2)

where kd = 1
2mρSCD, km = 1

2mCMρSrb, δ1 =
wyvz − wzvy , δ2 = wzvx − wzvz , δ3 = wxvy −
wzvx.

Assume that in the flying process, the angular
velocity ~w keeps unchanged. With the calculated
acceleration, the motion of the ball can be repre-



sented by a state-transition equation as

S[n] = AS[n− 1] +BU [n] (3)

where the vector S = [x, y, z, vx, vy, vz] denotes
the status of ball, and the other parameters are
explained as follows.

A =

[
I tcI
0 P

]
B = I

P =

 ad −kmwztc kmwytc
kmwztc ad −kmwxtc
−kmwytc kmwxtc ad


(4)

where tc denotes the sample time, I is a 3 × 3
identity matrix , ad = 1 − kd ‖~v‖ tc, U [n] =
[0 0 0 0 0 − gtc].

In the model, P varies with S[n]. Therefore,
the ball status is a nonlinear system.

B. Rebounding Model

In [6], model to describe the ball rebounding at
the table is also proposed. The model is presented
as follow: vx2

vy2
vz2

 = Ar

 vx1
vy1
vz1

+

 a3wy1

a4wx1

0

 (5)

 wx2

wy2

wz2

 = Br

 wx1

wy1

wz1

+

 b3vy1
b4vx1
0

 (6)

where [vx1, vy1, vz1]
T and [wx1, wy1, wz1]

T de-
notes the velocity and the angular velocity
before the rebound, while [vx2, vy2, vz2]

T and
[wx2, wy2, wz2]

T denotes the one after rebound.
Ar = diag(a1, a2,−ez), Br = diag(b1, b2, ew).
ai, bi, ez and ew are parameters in the rebound
model, and can be estimated by experiment.

C. The calculation of angle velocity

In both [6] and [4], similar models for the
angle velocity calculation were proposed. The
basic equation is introduced as ∆1

∆2

∆3

 = Mw

 wx

wy

wz

 (7)

The parameters in (7) are explained as follows:

Mw(n) =

 0 vz(n) −vy(n)
−vz(n) 0 vx(n)
vy(n) −vx(n) 0


∆1 = 1

kmtc
[vx(n+ 1)− vx(n) + kd ‖−→v (n)‖ vx(n)tc]

∆2 = 1
kmtc

[vy(n+ 1)− vy(n) + kd ‖−→v (n)‖ vy(n)tc]

∆3 = 1
kmtc

[vz(n+ 1)− vz(n) + kd ‖−→v (n)‖ vz(n)tc]
(8)

In (7), Mw(n) is a singular matrix, thus the
angle velocity can not be solved directly. Howev-
er, given that our method keeps tracking the ball
in the whole bout, ball statues can be captured
for many times in one trajectory. Then (7) can be
solved by least square method(LSM).

IV. FILTERS ON DATA

Based on the model described above, the gath-
ered information demands to be processed to
generate reliable prediction of hitting point. In
this section, two filters are designed for both
the captured ball status and the predicted hitting
points.

A. Analysis on the ball status prediction

Theoretically, once the initial state is given, the
subsequent states can be computed by numerical
integration, and the hitting points can be predict-
ed. However, the error both in the modeling of
the process and in the detection of the ball is
unavoidable, and would gather with the count of
iteration. In this section, the model error caused
by noise is analyzed, and its covariance matrix is
given.

Considering a predict process from t1 to t2,
and n times of iterations are needed( n = [(t1 −
t2)/tc]). Let S[i] denotes the ball status at the time
t = t1 + itc, thus S[0] = St1 and S[n] = St2.
Besides, let wc[i] denotes the model error in one
iteration.

If there is no rebound process between t1 and
t2, the prediction process can be represented in
(9).

S[n] =(

n�1∏
i=0

A[i])S[0] + λ[n]BU +Wc[n]

(9)



where

λ[n] =

n�1∑
i=1

(

n�1∏
k=i

A[k]) + I

Wc[n] =

n�1∑
i=1

(

n�1∏
k=i

A[k])wc[i] + wc[n]

(10)

If the ball is just lower than the table in the
kth iterations(0 < k < n), then rebound model
shall be applied. In this situation, A[k] in (9) is
replaced as Â[k] = ArA[k].

Based on (9), the mapping from St1 to St2 can
be defined as

St2 = Fn(St1) =

n�1∏
i=0

A[i]St1 + λ[n]BU (11)

As discussed above, Fn(·) is a nonlinear func-

tion. It’s Jacobian matrix is Ã =
n�1∏
i=0

A[i]. Be-

sides, W [n] denotes the gathered noise in the
process of iteration. It can be computed by a
recurrence formula

Wc[n] = A[n− 1]Wc[n− 1] + wc[n] (12)

Assuming that wc[n] is subject to Gaussian
distribution with covariance matrix cc, and the
covariance matrix of Wc[n] is denoted as Cc[n],
then we have

Cc[n] = A[n− 1]Cc[n− 1]AT [n− 1] + cc (13)

B. EKF on the ball status sequence

When the ball is flying across the table, a
sequence of ball status is captured by the stereo
vision system. Let Stk denotes the kth captured
ball status, tk denotes the capture time. To predict
Stk from Stk�1

, we shall run nk�1 iterations.
According to (11) and (13), Sk = Fnk�1

(Sk�1),
and the corresponding covariance of predict error
is Cnk

= Cc[nk]. With these information, EKF
can be applied to estimate the status of the ball.

In the remaining of this paper, we use {S̄tk} to
denote the filtered sequence.

C. Filter on the hitting point

With a relative stable estimation of ball status
{S̄tk}, the hitting points can be predicted.

In our robot, the hitting points are fixed on a
virtual plane, as shown in figure ??. Assuming

that we need run nh steps of iterations to translate
ball status S̄k to the virtual hitting plane, and the
final predicted hitting point is Hk, we have

Hk = Fnh
(S̄k) (14)

The covariance corresponding matrix is CH =
C[nh], which can be obtained by (13).

From each ball status in {S̄tk}, corresponding
sequence of landing point {Hk} and its error
covariance matrix {ch} can be obtained according
to (13) and (14).

To combine the information in {Hk} and {ch},
a filter is designed as a refresh equation:

Cs = Ch[k − 1] + ch

K1 = Ch[k − 1]Cs
�1

K2 = chCs
�1

Ch[k] = (I −K1)Ch[k − 1]

H̄[k] = K1H̄[k − 1] +K2Hk

(15)

where K1 and K2 are respectively the weight
matrix of the new predicted Hk and the last
estimated H̄[k− 1], Ch[k] is the error covariance
matrix of newly estimated H̄[k], which would be
used in process of next captured data.

V. ALGORITHM ARCHITECTURE

Based on the discussion in the section IV,
a complete arithmetic is designed to generate
accurate and stable sequence of H̄ . The flow chart
for the algorithm is shown in figure 2.

As shown in the figure, the arithmetic is divided
into two part. Part A is the a filter to smooth the
captured ball status. In this part, the captured ball
status at tk serves as the observed value for the
EKF, while the predicted ball status at tk based
on S̄tk�1

serves as the predicted value. Further-
more, during the computation of prediction, the
Jacobian matrix of Fnk

and the covariance matrix
of the error(Ãk and Ctk ), are obtained. All these
information are delivered into the EKF filter. The
outcome of the filter is S̄tk , which is a more
reliable estimation of ball status compared to Stk .

Then in the second part, a hitting point Hk

is predicted based on S̄tk . Its error covariance
matrix ch is also calculated during the iteration
process according to (13). These information are
processed by filter B, which is described in (15).
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Fig. 2: Algorithm Architecture.

Finally, we get the filtered hitting point H̄k, and
its error covariance matrix Chk

.
Besides, with S̄tk and S̄tk�1

keep refreshing, a
sequence of Mw[n] in (7) can be gathered. To save
the calculating time, the recursive least squares
method is explored to refresh the estimated angle
velocity W . Then the refreshed angle velocity is
updated to both the predictor A and predictor B,
in preparation of the next captured data.

VI. EXPERIMENTS AND RESULTS

To testify the proposed method, a groups of
trajectories were measured. The gathered trajecto-
ries contained different flying direction and initial
status, and can present the situation in practical
playing.

A. Filter on the ball’s position

First of all, the proposed trajectory filter was
explored to process the captured ball status by
the stereo camera system. The effect is presented
in figure 3. It shall be noticed that the scales of
different axis are different, and the variation in y-
direction is only 4 cm. Therefore, the error in y-
direction is quite acceptable for practical playing.

It’s clear that the filtered positions were more
accordant with the physical law that a flying
object obeys. Thus the filter is effective to restrain
the noise in the captured data.

B. Filter on the hitting points

To verify the effectiveness of the proposed
method, two further experiments were conducted.
In the first experiment, with the filtered initial
points {~Stk}, the hitting points were predicted.

Fig. 3: Captured ball positions and filtered posi-
tions

Fig. 4: Predicted hitting points with and without
filtered.

The results were recorded with out filtered. In
second experiment, the predicted hitting points
were filtered by the proposed filter. Figure 4
represent the vibration of the predicted hitting
points position in one typical trajectory.

In the figure, axis T denotes the predicted
landing time and hitting time. It can be seen that
the unfiltered prediction changed with no regular,



TABLE I: Standard deviations of the predicted hitting points (m)

x y z t
NO. Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered
1 0.0093 0.0066 0.0027 0.0017 0.0004 0.0002 0.0010 0.0008
2 0.0079 0.0058 0.0021 0.0015 0.0004 0.0001 0.0011 0.0008
3 0.0111 0.0085 0.0030 0.0021 0.0004 0.0001 0.0018 0.0014
4 0.0119 0.0074 0.0014 0.0010 0.0004 0.0001 0.0026 0.0018
5 0.0105 0.0090 0.0012 0.0009 0.0004 0.0006 0.0030 0.0022
6 0.0191 0.0133 0.0027 0.0019 0.0005 0.0002 0.0019 0.0014
7 0.0107 0.0074 0.0018 0.0012 0.0004 0.0001 0.0023 0.0016
8 0.0236 0.0145 0.0032 0.0019 0.0004 0.0002 0.0009 0.0004
9 0.0122 0.0085 0.0030 0.0018 0.0004 0.0001 0.0023 0.0017

10 0.0119 0.0094 0.0024 0.0016 0.0003 0.0001 0.0021 0.0017
11 0.0056 0.0042 0.0017 0.0010 0.0004 0.0001 0.0019 0.0014

which would lead to the vibration of the servo
motion mechanism. Meanwhile, the variation of
the filtered prediction is smooth and compact,
which denotes that the prediction is stable.

The proposed algorithm is applied on the dif-
ferent trajectories, and the captured points at the
hitting plane are considered as the ground truth
points. The standard deviations of the predicted
hitting points are recorded in the table I. It can
be seen that the standard deviations of filtered
prediction is much smaller than the unfiltered one
in all the trajectories, which indicates that the
algorithm is effective and robust.

VII. CONCLUSIONS
In this paper, a new data processing algorithm

for table tennis robot is proposed. Firstly, we
introduce the kinetic analysis model for the ball.
Based on the model, filters for both the cap-
tured ball status and the predicted hitting points
are designed to fuse the original captured data.
Furthermore, we improve the estimation method
for the ball’s angular velocity. The experiments
confirmed the effectiveness and the robustness of
the proposed algorithm, and demonstrated that
it is sufficiently strong to generate stable and
accurate prediction of the hitting point status.
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