
     

Indirect Adaptive Interval Type-2 Fuzzy Sliding Mode Controller  
Design for Flexible Air-breathing Hypersonic Vehicles 

Junlong Gao*,**. Ruyi Yuan*. Jianqiang Yi*,** and Chengdong Li*** 


*Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China 
(e-mail: (junlong.gao;ruyi.yuan;jianqiang.yi)@ ia.ac.cn).  

**University of Chinese Academy of Sciences, Beijing, 100049, China 
***School of Information & Electrical EngineeringShandong Jianzhu University, 250101, Jinan 

 (e-mail: lichengdong@sdjzu.edu.cn) 
 

Abstract: An indirect adaptive interval type-2 fuzzy sliding mode controller (AIT2-FSMC) for flexible 
air-breathing hypersonic vehicle (FAHV) longitudinal model is presented in this paper. The proposed 
controller is designed by combining an adaptive Mamdani linguistic based interval type-2 fuzzy logic 
system (IT2-FLS) with sliding mode control technique. For the sake of the FAHV longitudinal model 
stably controlled under parametric and structural uncertainties which mainly come from varying 
aerodynamic interferences, flexible modes in airframe mutual couplings and fuel consumptions in 
practical conditions, we decouple the model through feedback linearization and design the main 
controller by sliding mode control technique to achieve the system convergence. Moreover, three 
adaptive interval type-2 fuzzy logic systems, which uses difference combinations of velocity and altitude 
tracking errors, pitch angle and slip slide angle as the inputs of antecedent sets, are designed to estimate 
nonlinear time varying functions and inverse matrix with bounded uncertainties. The adaptive law of the 
IT2-FSMC is derived through Lyapunov synthesis approach to guarantee the system asymptotic stability. 
Several comparisons under different levels of complex parametric and structural uncertainties have been 
done. The simulation results validate the performance of the proposed controller with robustness and 
effectiveness. 
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1. INTRODUCTION 

Hypersonic flight technology was started with the concept 
of hypersonic combustion in 1950s and has been worldwide 
studied since 1960s (Curran, 2001). Hypersonic refers in 
particular to speed faster than 5 Mach. Moreover, hypersonic 
vehicles are also defined with reusability and high payload 
capacities (Bertin & Cummings, 2003). To date, lots of 
fundamental works have been done in generic hypersonic 
flight vehicles (GHFV) such as aerodynamics analysis and 
design, basic control systems, propulsion systems and so 
forth (Shaughnessy, Pinckney, & McMinn, 1990). In order to 
further improve the flight duration and effective payload, 
research focus is gradually focus on air-breathing hypersonic 
vehicles (AHV). The mainstream of the AHV aerodynamic 
shape is wave-rider shape and two models which already 
been tested based on this type of airframe are X-43A and X-
51A from NASA (Hank, Murphy, & Mutzman, 2008). 
However, there still are lots of researches to be done before 
making practical use of AHV. Currently most disclosed 
control related studies for GHFV and AHV are for rigid 
longitudinal model, whereas the couplings between scramjet 
engine and airframe will generate resonance frequencies 
which make flexible effects of AHV cannot be neglected. 
Besides, internal disturbances in flexible air-breathing 
hypersonic vehicles (FAHV) can also come from structural 

uncertainties, which are caused by the changing resonance 
frequencies under different fuel loads. On the other hand, 
external disturbances are mainly coming from aerodynamic 
parametric uncertainties which occur in conditions of severe 
atmospheric interferences. All the internal and external 
disturbances together will make great challenges to 
robustness and effectiveness of FAHV control systems. 

Sliding Mode Control (SMC), which belongs to special 
nonlinear control methods, is one of the typical control 
methods among robust control theory. Being proposed in 
1950s, sliding mode control has been widely applied into 
theoretical research and practical applications (Liu & Sun, 
2007). The principle of SMC is to design a system switch 
hyperplane based on the expected system dynamic 
characteristics, so that the controller can drive system states 
within a bounded region to achieve system convergence and 
stability. Nevertheless, the discrete switch characteristics of 
SMC (e.g. time delay switch, spatial lag switch or large 
inertia and so forth) will generate chattering effect which is 
not good to desired system responses. So far, researchers 
have used different methods to solve the chattering effect 
such as using filter (Su, Darkunov, & Ozguner, 1993), 
reducing switch gain (Hwang, 1996), replacing sign functions 
with saturation functions (Xu, Mirmirani, & Ioannou, 2004), 
using quasi-sliding mode control (Slotine & Sastry, 1983), 
using high-order sliding mode control (Levant, 2003), 



 
 

     

 

optimization with a variety of methods, adaptive sliding 
mode control (Wheeler, Su, & Stepanenko, 1998), hybrid 
algorithms like neural networks, fuzzy systems and so on 
(Lin, Chen, & Roopaed, 2011). 

Type-1 fuzzy sets (T1-FSs) (originally called, known as 
fuzzy sets) were introduced by Zadeh in 1965 and was 
adopted into control in 1974 (Hagras, 2007). The concept of 
type-2 fuzzy sets (T2-FSs) was brought out by Zadeh as the 
expansion of type-1 fuzzy sets in the year after 1974. The 
differences between type-1 and type-2 fuzzy sets are mainly 
represented in the membership functions (MFs). A sample 
between type-1, interval type-2 and type-2 fuzzy sets can be 
seen in Fig.1 a)-c). The x axis is called universe of discourse, 
the u axis presents primary membership value whereas the μ 
axis stands for second membership. Type-1 fuzzy 
membership functions are fixed, which means type-1 fuzzy 
sets have no uncertainties associated with them. Type-2 fuzzy 
membership functions are themselves fuzzy. In Fig. 1 b) - c) 
higher curves of interval type-2 and type-2 FSs are called 
upper MF (UMF) and the curve beneath UMF is called lower 
MF (LMF). The banded region between UMF and LMF is 
named as footprint of uncertainty (FOU). FOU adds another 
degree of freedom in MF, making IT2-FSs & T2-FSs more 
capable to deal with uncertainties than T1-FSs. The structures 
of type-1 fuzzy logic system and type-2 fuzzy logic system 
are shown in Fig. 2 a) - b) separately. In Fig. 2 b), which is 
different from Fig. 2 a), the “Type reducer” transforms the 
inference engine output from T2-FS into T1-FS before the 
final defuzzification. As the simplified general type-2 fuzzy 
logic systems, interval type-2 fuzzy logic systems (IT2-FLSs), 
whose secondary membership value is 1, have some 
advantages in computational costs than T2-FLS. Therefore 
IT2-FLSs are widely studied and used into applications. The 
results reveal the IT2-FLSs can reduce design rules and the 
output of IT2-FLSs can be smoother than that of T1-FLS, etc.  

 
        a) T1 FS           b) interval T2 FS       c) (general) T2 FS  

Fig. 1. Samples of type 1 and type-2 fuzzy sets 

 
a)  T1 FLS                         b) T2 FLS 

Fig. 2. Structures of fuzzy logic systems 
Fuzzy sliding mode control (FSMC) or sliding mode fuzzy 

logic control (SMFC) (Niknam, Khooban, Kavousifard, & 
Soltanpour, 2014), which uses fuzzy logic systems to 
improve the performances of sliding mode control, has 
already been studied for decades. As the improved version of 
fuzzy sliding mode control, interval type-2 fuzzy sliding 
mode control has shown the combinations of both advantages 
of the two control techniques, which is not only more capable 
of handling uncertainties or disturbances but also can 

dramatically reduce the number of rules (Gao, Yuan, Yi, & Li, 
2015). Several interval type-2 fuzzy sliding mode controllers 
have been proposed by theoretical studies and applied in 
systems with characteristics of nonlinearity and time-varying  
(Lin & Chen, 2010; Lin, et al., 2011; Lin, Chen, & Roopaei, 
2010; Roopaei & Zolghadri, 2011). 

In general, this paper proposes an indirect adaptive interval 
type-2 fuzzy sliding mode controller (AIT2-FSMC) for 
FAHV longitudinal model. We design a sliding mode 
controller as the general controller based on differential 
geometric control theory to make the system convergence. 
Adaptive interval type-2 fuzzy logic systems are designed to 
estimate the uncertainty bounded nonlinear time-varying 
functions and inverse matrix values online to compensate the 
sliding mode controller. The adaptive laws, which are used 
for optimizing the consequent parts values in the IT2-FLS, is 
derived through Lyapunov synthesis approach. Step 
commands in velocity and altitude channels are used to verify 
the effectiveness and robustness under different levels of 
uncertainties of the proposed AIT2-FSMC. The comparisons 
of simulations validate high robustness of the controller. 

The rest of this paper is organized as follows: Section 2 
describes brief introduction of the flexible air-breathing 
hypersonic vehicle longitudinal model; Section 3 provides 
detail design processes of the proposed AIT2-FSMC 
including the adaptive interval type-2 fuzzy logic systems 
design and the controller design with adaptive law and 
analysis of the system stability; Section 4 compares several 
simulations under different levels of aerodynamic parameter 
and structural uncertainties; Section 5 draws conclusions. 

2. MODEL DESCRIPTION 

2.1   Flexible Air-breathing Hypersonic Model Description 

Hypersonic vehicles are with very complex dynamics and 
aerodynamic characteristics. It is quite difficult to build its 
complete and accurate model with 6 degrees of freedom. Due 
to above reasons and concerning confidential issues, there are 
three FAHV simplified models (Sun, Huang, Qian, & Wang, 
2012; Yang, Yi, Tan, & Yuan, 2014) unveiled to the public. 
We choose the one which demonstrates the flexible modes 
being reflected through moment and forces and is derived 
based on the assumption of flexible effects as free-free beam 
(Jason T, Bolender, & Doman, 2007). Moreover, the canard 
deflection (shown in Fig. 3) as an additional control variable 
was introduced in order to avoid constrains from unstable 
zero dynamics (Fiorentini, Serrani, Bolender, & Doman, 
2009). 
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Fig. 3. Air-breathing Hypersonic Vehicle  

The nonlinear longitudinal FAHV dynamic model 
equations are given below (Gao, et al., 2015): 



 
 

     

 

 cos / sinV T D m g                          (1) 

 sin / ( ) cos /L T mV g V                       (2) 

sinh V                                        (3)  

q                                           (4) 

/yy yyq M I                                     (5) 
22 , 1, 2,3i i i i i i iN i                (6) 

There are eleven flight states composed in the model, 
where  , , , ,V h q   and  1 1 2 2 3 3, , , , ,          represent 

rigid-body states and the first three flexible modes, 
respectively. , , , ,V h q  stand for the vehicle speed, flight 

path angle, altitude, angle of attack and pitch rate separately. 
The mode frequencies which relate to fuel level was given in 
(David O et al., 2008) and can be seen in table 1. In particular, 
the three flexible-mode-frequencies 1, 2, 3,, ,m m m    with the 

damping ratio constant i =0.02 will cause severe resonances 

which should be constrained or reduced in order to keep 
FAHV stably controlled. The nominal FAHV model is based 
on the condition of 50% fuel level. The canard deflection c  

and elevator deflection e  are designed to be ganged together. 

Their relationship is presented through the negative canard 

deflection gain eck  as: c ec ek  , /e c
ec L Lk C C   . 

Table 1. Vehicle mass and model frequencies under different 
fuel levels 

Fuel level 0% 30% 50% 70% 100%
Mass, slag/feet 93.57 126.1 147.9 169.6 202.2

1,m  rad/s 22.78 21.71 21.17 20.73 20.17

2,m  rad/s 68.94 57.77 53.92 51.24 48.4 

3,m  rad/s 140 117.8 109.1 102.7 95.6 

 
Coefficients , , , , iL T D M N  which determine the lift, 

thrust, drag, pitching moment and generalized forces are 
given as: 
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where the air density  is defined as 0 0exp( / )h h   with 
5 3

0 6.7429 10 /Slug ft   and 0 24000h ft , the 

deflection vector is defined as [ , ]T
e c  . A second-order 

engine model is introduced as： 
2 22 n n n n c                                 (9) 

where 
n

 is the engine damping ratio, n  is the nominal 

engine frequency. The bounded actuators are set as: 

 , 20 , 20 , 0.05,1.5e c      
                (10) 

The output vector is  , .
T

V hy =  

3. CONTROL DESIGN 

In order to minimize the impacts of the flexible air-
breathing hypersonic vehicle (FAHV) interferences which 
occurs by parametric uncertainties and variability in 
operating conditions and flexible effects, we design an 
indirect adaptive interval type-2 fuzzy sliding mode 
controller (AIT2-FSMC). This section draws the design 
details including FAHV input-output feedback linearization, 
controller design process, adaptive law and system stability 
analysis processes respectively. The overall control scheme is 
shown in Fig. 4.  
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Fig. 4. Overall Control Scheme 

3.1  Sliding Surfaces Design 

We use the throttle setting value c  and elevator deflection 

e  as the control vector u  to make the whole flight control 

system track a given reference-commands vector  ,
T

c cv h  in 

velocity and altitude channels respectively, which means the 

system should make the tracking error  ,
T

v he e  converge to 

zero, where v ce v v  , h ce h h  . , , ,c cv v h h are real-time 

signals and command signals in velocity and altitude, 
respectively. However, the FAHV longitudinal model in 
section 2 should be decoupled before the control design 
process. Therefore, we use velocity and altitude tracking 
errors to define the sliding surfaces as: 

 3

1 0
/

t

v vS d dt e dt                         (11) 

 4

2 0
/

t

h hS d dt e dt                         (12) 



 
 

     

 

3.2 Feedback Linearization of FAHV 

In order to obtain the full state feedback linearization 
form of FAHV longitudinal model, we calculate the first 
derivative of equation (11) and (12) respectively based on 
differential geometric control theory (Xu, et al., 2004). We 
get the following equations which include high order 
commands of (4) (4), , ,c cv v h h  : 

2 3
11 12

(4) 2 3 4
21 22

3 3 H (13)

4 6 6

v c v v v v v v v e c

h c h h h h h h h h h e c

S V g e e e H

S h g e e e e H H
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     
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   
   

 where 
T

1 0 2( ) /vg m    x x Ω x  
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  2
22 / sin( ) /H T m                                            (19) 

where  TV h  x and
T

0 0 0V h     x    . Then (13) 

can be written as: 

2 2 1 (2 )
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where 

 Te c u , 11 12

21 22

H H

H H

 
  
 

H ， ,v h   are all real and 

2 33 3v v v    
2 3 44 6 6h h h h       in (13) are Hurwitz 

polynomials. 

3.3  Adaptive Interval Type-2 Fuzzy Sliding Mode Controller 
Design 

The sliding mode process can be divided into two phases 
which are reaching phase with , 0v hS S   and sliding phase 

with , 0, 0v hS S  . With the form of equation (20), the 

sliding controller is then designed to drive the derivatives of 
the sliding surfaces to satisfy the following forms: 

           1 1 1 2 1

3 2 2 4 2

( / )

( / )
v

h

S m sat S m S

m sat S m SS
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

                     (21) 

where ( 1,..., 4)im i  and 1 2,  are strictly positive 

constants. Substituting (21) into (20), we can get: 
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where

 
1 1 1 2 1 3 2 2 4 2( / ) , ( / )v hu m sat S m S u m sat S m S      . 

In real-time dynamics, there are a lot of uncertainties 
including the flexible effect uncertainties, structural 
variability, unknown disturbances and high order derivate of 
variables in FAHV decoupled model which cannot be easily 
obtained from sensors. However, those uncertainties means 
the calculation values of vg and hg  and | , 1,2ij i jH    in (14) - 

(19) may not reflect the values they should stand for. 
Moreover, this phenomenon is not expected because it will 
make negative contributions to robustness of the control 
system and cause serious consequences simultaneously. 
Because both T1-FLS and T2-FLS (including IT2-FLS) are 
universal approximator (Li, Yi, & Zhang, 2014; Mendel, 
Hagras, Tan, Melek, & Ying, 2014), we replace vg , hg  and 

ijH  with uncertainty-bounded approximation values ˆvg , ˆhg  

and ˆ
ijH  which are generated from Mamdani based IT2-FLSs 

for the potential to perform better than T1-FLSs and less 
computational intensive than T2-FLS. Then (22) can be 
expressed as:  

2 2 1 (2 )
301

3(4) 3 1 (3 )
40

ˆ
ˆ

ˆ

i i i
c v v v vie

j j j
c c h h h hj

V C e g u

h C e g u


 

  


  


              





H      (23) 

Based on (14) - (15), the first two dominant contribution 
variables in ,v hg g  are velocity and altitude. Simultaneously, 

substituting (7) - (8) into (16) - (19), the two variables which 
have cumulative maximum orders in 11 21H H，  and 12H ， 22H  

are velocity & pitch angle and velocity & side slip angle, 
respectively. Therefore, we define ,v he e , ,ve   and ,ve   

where = +   as the antecedent input variables of IT2-FLSs 

in approximating ˆ ˆ,v hg g , 11 21
ˆ ˆH H，  and 12 22

ˆ ˆH H，  separately. 
Additionally, we can achieve smaller total fuzzy rules in 
these three systems to lower computational resource cost. 
The Mamdani rule based IT2-FLSs consist of a collection of 
IF-THEN rules in the following forms: 
1) IT2-FLS for ˆ ˆ,v hg g : 

   : If  is  and  is ,then  is  and  is k k k k k
v v h h v v h hRule x S x S g T g T 

2) IT2-FLS for | , 1,2
ˆ

ij i jH  : 

   
11 2111 21: If  is  and  is , then  is ,  is k k k k k

v v H HRule x S x S H T H T   

   
12 1212 22: If  is  and  is , then  is ,  is k k k k k

v v H HRule x S x S H T H T   

where k=1,2,…,m. m is the number of rules, 
,v vx e ,h hx e ,x  .x    The antecedent sets 

   , ,k k k k
v hS S S S ，  which have 5 rules separately are IT2-FSs, 

and consequent sets  , ,k k
v hT T 

ij

l
HT (i, j=1, 2) are T1-FSs.  

The firing set ( )k xF  and degree of firing kf  associated 

with the thk rule (k=1,2,…,m) are 



 
 

     

 

 / ( ) ( ) ( )
k k
v h

k
v h v hS S

x x x F = //[ , ]
kk
v hv hf f               (24) 

 1,2; 1| ( ) ( ) ( )
k kij
v

k
H i j vS S

x x x


   F =[ , ]
kk
f f            (25) 

 1,2; 2| ( ) ( ) ( )
k kij
v

k
H i j vS S

x x x 


  F =[ , ]
kk
f f           (26) 

where  / ( ) ( )k k
v h

k
v h v hS S

x x f ,  / ( ) ( )k k
v h

k
v h S Sv hx x f ,  

 ( ) ( )k k
v l

k
l v lS S

x x f ,  ( ) ( )k k
v l

k
l S Sv lx x f  ( ,l   ). The 

 1
1

( )
k
k

kS
x  and  1

1

( )
k
k

kS
x are LMF and UMF grades of 

1
1( )

k
k

kS
x  

respectively ( 1 ,k v h ), the  ( )
k
l

lS
x  and  ( )

k
l

lS
x  are LMF 

and UMF grades of  ( )
k
l

lS
x  respectively. Assume k

vC , 

k
hC and 

ij

k
HC are the centroid of the thk consequent 

set k
vT and k

hT and | , 1,2
ij

k
HT i j   respectively. By using the 

singleton fuzzification, product inference, centre-average 
defuzzification, and the centre-of-sets type reducer, the IT2-
FLSs type-reducer are given by (Mendel, et al., 2014)

                                                                                  

        

1 1

/1
c

/1

1 [ , ]
m m

v v

m k k
v h vk

v vl vrm k
v hk

g g g



    
    
 

f f

f

fC C

C
 (27)

 
1 1

/1
c

/1

1 [ , ]
m m

h h

m k k
v h hk

h hl hrm k
v hk

g g g



    
    
 

f f

f

fC C

C
(28)

 
1,2; 1

1 1

|1
c 1,2; 1

1

1,2; 1

| 1

[ , ]

ij i j

m m
Hij Hij

m k k
Hk

ij i j m k

k

ijl ijr i j

H

H H





 
 



 

 

  


    
 

f f

f

fC C

C

     (29) 

1,2; 2

1 1

|1
c 1,2; 2

1

1,2; =2

| 1

[ , ]

ij i j

m m
Hij Hij

m k k
Hk

ij i j m k

k

ijl ijr i j

H

H H

 
 





 

  


    
 

f f

f

fC C

C

     (30) 

where , ,k k k
v hf C C  

ij

k
HC (i, j=1, 2) are T1-FSs in IT2-FLSs. 

We use new symbols and  to denote 

 
 

1 2
, , , ,

1 2
, , , ,

( , ,..., )

, ,...,

m T
v h v h v h v h

Tm
v h v h v h v h

   

 C C C C
               (31) 

 

1 2

1 2

( , ,..., )

, ,...,

ij ij ij ij

ij ij ij ij

m T
H H H H

T
m

H H H H

   

 C C C C
                 (32) 

 , / /1
/

mk k k
v h v h v hk  


 f f                             (33) 

1,2; 1 1
| = /

ij

mk k k
H i j k     f f , 1,2; 2 1

| = /
ij

mk k k
H i j k      f f      (34) 

where   represents lower and upper respectively. ,v h  

denotes v  or h  and ,
k
v h  denotes k

v  or k
h  respectively. 

/
k

v hf  and 
ij

k
H f  stand for  the firing values which are used to 

compute the boundaries ,v hg   and ijH   in (27) - (30) and 

can be obtained by using the Karnik-Mendel iterative 
method(Mendel, et al., 2014) Based on IT2-FLS theory, the 

uncertainty terms ˆvg  , ˆhg  and Ĥ  in (23) can be achieved by 

 
 

 | , 1,2

ˆ ( ) 2 / 2

ˆ ( ) 2 / 2 (35)

ˆ ( ) / 2 / 2

T
v vl vr v vl vr

T
h hl hr h hl hr

T
ij i j ijl ijr Hij Hijl Hijr

g g g

g g g

H H H

  

  

  

     
     


    
3.4 Adaptive Law 

In order to adjust the consequence part parameters in the 
IT2-FLSs, the optimal parameter estimation *

vg , *

hg  and 
*

| , 1,2ijH i j   are defined as： 

* ˆarg min sup
v

g gv v v

g v v
V U

g g
 


 

 
  

 
                   (36) 

   * ˆarg min sup
h

g gh h h

g h h
H U

g g
 


 

 
  

 
                  (37) 

 * ˆarg min sup
ij

H Hij ij H

H ij ij
H U

H H
 


 

   
 

               (38) 

where 
gv

 , 
gh

  and 
Hij

  are compact sets of *

vg , *

hg  and 

*

ijH , respectively. They are defined as： 

 25 | 0
g v v vv

g g gR M                       (39) 

  25 | 0
g h h hh

g g gR M                      (40) 

 25 | 0
H ij ij ijij

H H HR M                     (41) 

where 
vgM , 

hgM  and 
ijHM  are positive constants. Then the 

minimum of approximation errors can be defined as : 
*

*

*

ˆ ˆ
ˆ

v v e

ch h

g g

g g





              

H H                    (42) 

Substituting (33) , (23)into (20) , we can get: 

 

 

2 ( )

0

3 ( ) (4)

0

*

*

*

ˆ ˆ

(43)

/ 2
=

i
i v v civ e e e

j
c c ch j h h cj

T T
gv v gv v v eT T

H H H HT T
cgh h gh h h

T
gv gvl gvr v

T
gh g

c e g VS

S c e g h

u

u

u

  
  

    
    

   

  

 





                                 
    

      
     

 





 H H H

 
   
   

11 11 11 12 12 12

21 21 21 22 22 22

/ 2

1

2

hl ghr h

T T
eH H l H r H H l H r

T T
cH H l H r H H l H r

u

     


     

 
 
   

    
        

where *
gv gv gv    ， *

gh gh gh    ， *
| , 1, 2ij ij ijH i j H H      

The Lyapunov candidates are chosen as following  for 
analysing the close-loop system stability. 

 ij

1 22 2 2 2

T T TT
gv gv gh gh H Hij

ij

S S
V

     
  

                  (44) 

The time derivative of  (44) is: 

 
1 2

T T T
gv gv gh gh Hij HijT

ij

V S S
     
  

   
  

               (45) 

Substituting (43) into (45), we can calculate the following 
adaptive laws of  | , 1, 2, ,

ijv h H i j     as: 



 
 

     

 

   
   
   

11 11 11 12 12 12

21 21 21 22 22 22

1 2

3 4

5 6

/ 2; / 2 (46)

/ 2; / 2

/ 2; / 2

v v vl vr h h hl hr

H v e H l H r H v c H l H r

H h e H l H r H h c H l H r

S S

S S

S S

       

         

         

    

    


   

 

 

 

    Substituting the adaptive law (46) into (45), we can get： 

  2 2
11 12 21 22

2 2
11 12 21 22

( ) ( )

vT

h

T
v v v h h h

T
v v h h

u
V S

u

S m S sat S m S m S sat S m S

S m S m S m S m S







  
      
    

    



 (47) 

when  is small enough and ( , 1, 2)ijm i j  are strictly 

positive constants, we can guarantee the values of (47) no 
larger than 0 and make tracking errors converge to zero. 

4. SIMULATIONS 

4.1 Robust verification under structural uncertainties 

In this part, four different levels of fuel capacities in Table 
1 including 30% and 50% (nominal value), 70% and 100%  
are studied respectively to verify robustness of the proposed 
adaptive interval type-2 fuzzy sliding mode controller (AIT2-
FSMC) in Fig. 5 and the compared type-1ones (AT1-FSMC) 
in Fig.6. However, the condition with 0% fuel capacity is not 
included because it is not realistic to increase altitude and 
velocity at the same time. In Fig. 5 and Fig. 6, the FAHV 
velocity and altitude tracking errors increase successively 
with the increasing of fuel capacities. Simultaneously, the 
deflections of elevator (Dec), throttle settings and flexible 
mode vibrations in Fig. 7-8 are also presented the situations 
of successively increasing. However, the actuator’s responses 
are far from saturation settings in AIT2-FSMC or AT1-
FSMC under 100% fuel capacity, whereas the flexible modes 
are also well constrained.  
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Fig. 5. Velocity and Altitude Responses with Fuel Capacity 

from 30% to 100% of the AIT2-FSMC 
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Fig. 6. Velocity and Altitude Responses with Fuel Capacity 

from 30% to 100% of the AIT2-FSMC 
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Fig. 7. Actuators Responses in Different Levels of Fuel 

Capacities 
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Fig. 8. Flexible Mode Responses in Different Levels of Fuel 

Capacities 

4.2 Robust verification under parametric uncertainties 

The AIT2-FSMC and AT1-FSMC show strong robustness 
with the constant aerodynamic parametric uncertainties 
which vary from 10% to 30% with nominal fuel capacity 
level. The aerodynamic coefficients of the lift and thrust are 
decreasing whereas the drag and pitch moment are increasing 
with the same level, simultaneously. The two controllers 
deteriorate with the increase of parametric uncertainty as 
shown in Fig. 9 and Fig. 10. However, AIT2-FSMC shows 
better performances both in tracking errors and actuators’ 
responses. Different from what we proposed in (Gao, Yuan, 
Yi, & Li, 2015) which only adopted adaptive laws to estimate 
ˆ ˆ,v hg g , the AIT2-FSMC and AT1-FSMC comparison results 

show minor different behaviour between each other, however, 
the AIT2-FSMC behaves still better than the AT1-FSMC. 

The result should be occurred in | , 1,2
ˆ

ij i jH   estimation which 

make the system with better capabilities in dealing with 
parametric and structural uncertainties, and promoted the 
type-1 fuzzy logic systems’ performance to a certain degree.  
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Fig. 9. Responses of Actuators under 10%, 20% and 30% 
Parametric Uncertainties 
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Fig. 10. Responses of Tracking Errors under 10%, 20% and 

30% Parametric Uncertainties 

5.  CONCLUSIONS 

The complex and volatile external environment and the 
internal conditions with flexible vibrations and varying 
structural uncertainties of FAHV make great challenges in 
designing a controller with high robustness and effectiveness. 
An indirect interval type-2 fuzzy sliding mode controller 
(AIT2-FSMC), which uses sliding mode controller as the 
core controller and uses adaptive IT2-FLSs to estimate time-
varying nonlinear functions and inverse matrix values based 
on the feedback linearization of FAHV, is presented. The 
consequent fuzzy sets are tuned online through adaptive laws 
which are derived through Lyapunov synthesis approach. 
Different levels of external and internal uncertainties are used 
to verify the robustness of the AIT2-FSMC. The simulations 
comparisons show that AIT2-FSMC has certain 
improvements than the AT1-FSMC especially facing with 
high levels of uncertainties whereas there are minor 
differences between the AIT2-FSMC and AT1-FSMC with 
non-external disturbances. In general, the simulation results 
validate the robustness and effectiveness of the proposed 
controller. 
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