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Ship Rotated Bounding Box Space for Ship
Extraction From High-Resolution Optical Satellite
Images With Complex Backgrounds

Zikun Liu, Hongzhen Wang, Lubin Weng, and Yiping Yang

Abstract—Extracting ships from complex backgrounds is the
bottleneck of ship detection in high-resolution optical satellite
images. In this letter, we propose a nearly closed-form ship ro-
tated bounding box space used for ship detection and design a
method to generate a small number of highly potential candidates
based on this space. We first analyze the possibility of accurately
covering all ships by labeling rotated bounding boxes. Moreover,
to reduce search space, we construct a nearly closed-form ship
rotated bounding box space. Then, by scoring for each latent
candidate in the space using a two-cascaded linear model followed
by binary linear programming, we select a small number of highly
potential candidates. Moreover, we also propose a fast version of
our method. Experiments on our data set validate the effectiveness
of our method and the efficiency of its fast version, which achieves
a close detection rate in near real time.

Index Terms—Ship detection, ship extraction from complex
backgrounds, ship rotated bounding box space.

I. INTRODUCTION

HIP detection in remote sensing images is an important is-
sue and has wide applications such as fishery management,
vessel traffic services, and naval warfare [1].

The main motivation for this work is to address two typical
challenges for ship detection in optical remote sensing images
with complex backgrounds. First, an effective and fast method
is much in demand when big data meet a platform with limited
computation capability. Second, it is difficult to extract ships
from complex backgrounds as illustrated in Fig. 2. Ships in
remote sensing images are strip-like, but they are often not
stand-alone, unlike the objects in natural images. Furthermore,
different ships or ships in varying time have amazing varieties
of shapes and appearances, which further increases the compli-
cation of ship detection.

Existing works on ship detection can be roughly divided into
three groups. The first group is based on pixelwise (or pixel-
based regions) labeling [2]—[5]. Due to the combinatorial explo-
sion, the search space of this way might be too large, making
it infeasible to work on it. To reduce the search space, these
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Fig. 1. Flowchart of our method.

methods were designed to perform pixelwise labeling first and
then group foreground pixels into regions by incorporating
prior knowledge. For example, Yang et al. [3] classified each
pixel into two classes by sea surface analysis based on sta-
tistics. Tang ef al. [5] grouped pixels by a threshold obtained
from a statistical Gaussian model and then connected positive
pixels into regions. The second group is based on bounding
box (including image patch) labeling [6]-[10]. For example,
Cheng et al. [8] detected objects (including ships) in remote
sensing imagery using a discriminatively trained mixture model
based on sliding windows. Han ez al. [9] detected typical ob-
jects in remote sensing images based on square sliding windows
in varying sizes by a detector trained using a new weakly su-
pervised learning framework. However, only labeling bounding
boxes is not accurate enough for ship localization; thus, it is
unsuited for ship classification. The third group is based on
rotated bounding box labeling [11], [12]. For example, Liu et al.
[11] detected ships by shape analysis, including ship head de-
tection and ship body extraction, after water and land segmen-
tation and removed false alarms by labeling rotated bounding
box candidates.

Despite some effectiveness, most existing works are unable
to tackle the aforementioned challenges. In particular, the tradi-
tional methods [11], [12] for ship detection are hand-crafted in
a step-by-step manner, which are not robust.

The goal of our work is to robustly generate a small number
of candidates that precisely cover ships of any type in complex
backgrounds. The framework is demonstrated in Fig. 1. Our
contribution is twofold. On the one hand, we construct a nearly
closed-form ship rotated bounding box space and analyze the
possibility of covering ships by the space. On the other hand,
to select a small number of highly potential candidates from
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Fig. 2. Various complex backgrounds.

this space, we design a two-cascaded linear model followed by
binary linear programming.

II. SHIP ROTATED BOUNDING BOX SPACE

In Section I, we list two challenges in ship detection. In fact,
complex backgrounds exist in both sea and inshore area as the
examples shown in Fig. 2. Things around ships include waves,
clouds, islands, other ships, docks, objects on land, etc.

Sea and inshore ship detection face the same bottleneck: ship
extraction from complex backgrounds. Sea ship detection can
often achieve better performance, mainly because the complex
backgrounds are less common in sea.

A. Covering Ships

It is a tough task to hit the target when it is difficult to
improve the hit rate. To address this issue, we propose to raise
the number of trials. Specifically, to detect a ship o in image 1,
the usual practice is to try to get a small number of windows
or regions (false alarms might also exist) to cover o. We define
these windows or regions as candidate set C for the subsequent
strong classifiers. The probabilities of covering a ship with IV
and M (M > N) candidates (C"V and CM, respectively) are

N
PNy =1-JJ-P(c)) (1)
N M
pcMy=1-JJa-Pc)) [] a-Pc))
[ i=N+1

=P(CY) + (1= PECY)PECMN) > P(CY) 2

where C¥ is a subset of CM, CM~N =¢cM — ¢N and P(C;)
is the probability of ith candidate covering o. Equation (2)
indicates that, when the candidate set is expanded, it can cover
o with higher probability. Here, “a candidate covering 0” means
that the intersection over union (IoU) metric between them
exceeds a fixed value 0 < 7 < 1 (n = 0.5 in this letter).

According to the aforementioned analysis, for the ship detec-
tion task, on the one hand, we need to evaluate P(C;) for each
latent candidate in €. This goal can be achieved by scoring for
all latent candidates using various strategies. Ideally, a higher
overlap leads to a higher score. On the other hand, to raise
P(CV), we need to select proper N candidates from latent
candidate space 2.

However, before scoring for latent candidates, we need to
choose a proper latent candidate space. As will be discussed
in the next section, the common bounding box space is not
appropriate for ship detection.

@  ®»  © @

Fig. 3. Labeling ways. (a) Pixel. (b) Superpixel. (c) Bounding box. (d) Rotated
bounding box.

TABLE I
POTENTIAL CAPS OF FOUR LABELING WAYS

Labeling way Recall @ n=0.5 | AR Search space
Pixel 100% 100% Q (Too large)
Superpixel 100% 90.8% | €2 (Too large)
Bounding box 31.8% 134% | Q (~ 10T
Rotated bounding box 100% 75.8% | Q (~ 1013)

B. Ship Rotated Bounding Box Space Construction

Here, we compare four labeling ways for ship detection,
including labeling pixels [2], [3], [5], superpixels [13], bound-
ing boxes [6]-[10], and rotated bounding boxes [11], [12]. All
of the ways except labeling superpixels have been introduced
in Section I. Similar to labeling pixels, labeling superpixels
means classifying various superpixel-based regions and also
suffers from a large search space because of combinatorial
explosion. To our best knowledge, no successful methods have
been reported on classification in the initial search space of
the two ways. In Fig. 3, we provide examples to highlight the
differences between the four labeling ways. The superpixels are
generated using the method in [14].

In Table I, supposing that each candidate is correctly labeled,
we evaluate the potential caps of the four labeling ways. It can
be seen that pixel-based and superpixel-based ways have high
AR but too large search space. In this letter, AR denotes the
average recall between IoU 0.5 to 1, which rewards both high
recall and good localization and correlates surprisingly well
with the performance of the followed detector [15]. Labeling
bounding boxes has a proper search space but very low AR.
Labeling rotated bounding boxes, the one that we choose in this
letter, is a tradeoff between them. To our best knowledge, we
are the first to locate ships based on labeling rotated bounding
boxes, which is different from [11] and [12], while they locate
ships before getting rotated bounding boxes.

By labeling rotated bounding boxes, we can successfully
cover all ships in complex backgrounds and avoid the difficulty
of extracting objects. However, it is still inefficient to evaluate
P(C;) for all of the latent candidates in the rotated bounding
box space Qz(O(1013)). Here, we introduce quantization tech-
nology to reduce the search space.

By scale/aspect-ratio quantization, we obtain a nearly closed-
form search space, which is beneficial for dealing with scale
variance. As shown in Fig. 4, we cluster the sizes of all of the
training samples in our data set by k-means (we set k = 36,
in view of detection rate, AR, and computation time). After
linking the origin to two remote points by two lines, respec-
tively, it can be seen that most of the points lie along the two
lines, indicating that the size space can be roughly viewed as
closed form. For example, if we reduce a 600 x 90 ship to one
third of the original size, the resulting 200 x 30 version is still
close to one of the cluster centers.
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Fig. 4. Nearly closed-form scale quantization. Cluster ship sizes in training
data by k-means and parameter £ = 36.

Besides scale/aspect-ratio quantization, we still need to quan-
tize rotation angles between 0° and 180°. Experimentally, we
choose 4° as the rotation interval for our method and 12° for its
fast version.

Above all, we get a reduced search space Qg of Q2 g, which
we call “ship rotated bounding box space.” For example, the
number of latent candidates in g for a 1200 x 800 image
is about 10°. As a result, the size of (g makes it possible to
use fast scoring methods. Therefore, we can efficiently select a
small number of highly potential candidates Q¢ (10%) from Qg
which enables the usage of complex classifiers followed. This
space is specialized for ships in remote sensing images.

III. CANDIDATE SCORING AND SELECTION

Based on ship rotated bounding box space ({2g), we evaluate
P(C;) by scoring for C; using a two-cascaded linear model,
and then, we can further select N candidates by binary linear
programming. Ideally, the more overlap between the candidate
and any ship, the higher score we should get.

As shown in Fig. 1, a testing image is rotated with fixed
interval between 0° and 180°. Latent candidate sets in ship
space are collected. In stage I, using a BING linear model
(Section III-A), we score for each candidate in these sets and
discard the ones with low scores. Then, we merge the obtained
subsets into €2;. In stage II, based on the scores obtained in
stage I and some additional features, we use a linear model
of (3) to score for each candidate in €2;. Finally, we select N
candidates from €2; using binary linear programming.

A. Candidate Evaluation by a Two-Cascaded Linear Model

We score for latent candidates in {2 g by a two-cascaded linear
model

s; = (wrr, ®p) 3)

I =(a,i,x,y) “4)
¢, =By, £, W, (] %)
By = (wr, g1) (6)

where wr; € R? and w; € R% are model parameters, and
s;, ®;, and [ are the candidate score, feature vector, and
candidate location, respectively. In (4), a, ¢, x, and y are the
rotation angle, size index, and coordinate of the center point.
In(5), B € R, E; € R®, W, € R*, and C; € R are the BING
ship model score, edge distribution feature, rotated bounding
box contour feature, and context feature (as will be detailed
later). Vector g; € R%* in (6) is the normed gradient feature.

Fig. 5. BING objectness model (left) and our model (right).

Equations (6) and (3) represent the linear models of stages I
and II, respectively. They are cascaded into a two-layer model.

In stage I, the linear model is trained in the same way as
stage I of BING [16] but on our data set. When resizing ships
in remote sensing images to a fixed size (e.g., 8 x 8, chosen as
a matter of experience and computation convenience), the norm
of the corresponding image gradient exhibits common evidence
of ships in such an abstracted view. The learned linear model
wr € R% in stage I is shown in Fig. 5. Our model is different
from BING objectness model (the left one). Compared with
stand-alone objects in nature images, most ships have salient
contours, islands, robust ship heads, and smooth areas around
ship islands. Accordingly, our model has high weights in the
four sides and center, some highest values in the left and right
sides, but low weights around the center pixels.

In stage II, we use (3) to calculate the final scores. The linear
model wrr € R? is trained by linear support vector machine.
However, it is difficult to select good candidates by linearly
stretching the 1-D score obtained in stage I as described in
[16] because our latent candidates of each scale have different
rotation angles and their scores no longer stand in a cluster
(see analysis in Section IV-A). Therefore, we further explore
some additional features: edge distribution, rotated bounding
box contour, and context feature.

Edge distribution (F£;): Edges always distribute differently
in the outside, middle, and center areas of a ship. Taking into
account efficiency, we approximate edge strength by computing
convolution on the 8 x 8 normed gradient map in stage . We
define the edge distribution feature as E; = [EP™, Emid, peenter],

Rotated bounding box contour (W;): We define W; =
(WP, W, W2, W3], where WP, W}, W2, and W} are the
sum of all of the absolute operator values on the head, tail,
left, and right side of the rotated bounding box with location [,
respectively, divided by the perimeter of the corresponding side.
The operator that we use is [—1, —1, 0, 1, 1], which operates
on each pixel of edges of rectangles along the perpendicular
direction. In practice, we resize the image to half of its original
size in both height and width, and use an integral image for
speeding up. This work is related to [11].

Context information (C7): We define C; = S}/ Slf , Where

7 is the sea area in the rotated bounding box and Slf is the
foreground area. We fix sea pixels by Otsu algorithm in [5].

For stage II, we select candidates in {2; as positive training
samples whose IoU with any ship is bigger than 7, others as
negative ones.
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B. Highly Potential Candidate Selection

Finally, we design a method to select N highly potential
candidates. It is not a good idea to select top N high-score
candidates directly. In stage I, we select the rectangles with
high scores from local patches by nonmaximal suppression as
[16]. However, it cannot suppress candidates between different
rotation angles and sizes. To address this issue, we formulate
the candidate selection as a new binary linear programming
problem, which is different from [11]

H
max E S$; T4
T

i=1

H
st a; €{0,1},) @ =N,
=1

Tri + Tro + -+ Tpn <1,

Where {mk’la A 7xkn} = QkHI(wk?ka’U) > 77)
N
1§u,v§n,](w1,w2):u @)
w1 UWQ

where N is a fixed value, H is the size of (27, and €2y, is the kth
subset of Q; in which I(wpgy,wk,) of any two candidates wy.,,
and wy,, is larger than a fixed value . However, the computation
time of (7) is inefficient because we need to do many times of
I(wl, wg).

For this reason, we develop two ways to accelerate the com-
putation: first, we approximately compute €2, in local grid of
location, angle, and area value. Second, we compute I (w1, ws)
of two rotated bounding boxes as

w1 Nws . ZSieA Si

= 8
w1 U wsg Sl"’_Sl_ESieASi ®

I(wl,wg) =

where 57 and S are the areas of rotated bounding boxes w; and
wa, respectively, and A is a triangle set in which each triangle’s
vertexes are composed of a fixed center point and two adjacent
vertexes of a convex polygon. The vertexes of this polygon are
composed of inner vertex points or intersection points of w;
and ws. Inner points are defined as vertexes of w; in ws (or vice
versa). The fixed center point can be any point in the polygon.
On a single laptop CPU, our method is about 450 times faster
than the one in [17].

C. Algorithm Variants

For the proposed method, we develop two versions. The first
one, whose rotation interval is set as 4°, includes stages I and II
shown in Fig. 1. The second one called “Fast version,” whose
rotation interval is set as 12°, is composed of stage I and the
“Binary linear programming” module.

IV. RESULTS AND EVALUATION
We evaluate our methods on our data set HRSC2016.! Our

data set contains 1070 images collected from Google Earth.

Thttps://sites.google.com/site/hrsc2016/. Now researchers can see samples
on this site. The full data set will be released in several months.
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Fig. 6. Score ranking histogram of positive candidates with the same scale in
stage I. The results are obtained by BING on VOC2007 (left) and our method
(right), respectively.

The image sizes range from 300 x 300 to 1500 x 900, and
most of them are larger than 1000 x 600. In our data set, there
are more than 25 types of ships with large varieties of scale,
position, rotation, shape, and appearance, which are suitable
for evaluating methods of ship detection. After excluding sub-
marines, hovercrafts, and those annotated as “difficult” label,
our training, validation, and testing data sets contain 443 images
with 1207 samples, 183 images with 541 samples, and 444
images with 1071 samples, respectively.

We compare our methods with the state-of-the-art ship de-
tection approaches? [5], [11], BING [16] and its variant “BING
based on our ship space.” Please note that, for Tang’s method
[5], we only need to implement the part of initial ship location
without removing false alarms. We also evaluate Tang’s method
on “Sea set” which includes only sea images (28 images and 32
samples) and Liu’s method on “Head set” which only contains
ships with “V” shape head (247 images and 575 samples). The
training work of “BING based on our ship space” is done on
our data set. Furthermore, we select top 124 images from our
training set to evaluate four labeling ways (Section II-B).

In our experiment, parameters are empirically chosen. In
detail, we set k = 0.5, = 0.5, and N = 5000.

A. Analysis for Stage |

Here, we analyze why we need to design our stage II.
Fig. 6 shows the score ranking histogram of positive candidates
with the same scale in stage L. It can be seen that score rankings
generated by BING on VOC2007 [18] are in a cluster and can
be easily moved to the front of the queue by linear stretching
of the scores using a corresponding linear model in stage II of
BING. However, the ones generated in stage I of our method
are not in a cluster. It is difficult to improve the rankings of
these positive candidates in the same way. Therefore, we need
to explore more cues in our stage II.

B. Candidate Quality Evaluation

We evaluate AR and DR-#WIN (detection rate given #WIN
candidates) on our testing set. The results are shown in Fig. 7.
BING only achieves 20.8% detection rate (DR) and 3.7% AR
using 5000 candidates. “BING based on our ship space” gets
only 87.2% DR (but much higher than BING) and 43.4% AR.
Both Tang’s method and Liu’s method get very low DR. Tang’s

2We have put the source codes implemented by us on our data set website,
which are used to check the correctness of our comparison experiments.
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Fig. 7. Comparative experimental results. Here, we calculate AR using 5000
candidates.

Fig. 8. Candidate samples on HRSC2016: the best fitness in 5000 candidates.
Note that the images in the bottom row contain a few false-negative judgments.

method on “Sea set” can achieve 67.3% DR with less than
10 candidates. Our method gives 49.8% AR and 97.6% DR.
The fast version can achieve close DR (97.2%) but lower AR
(37.0%). It can be seen that our method achieves the best
performance.

On the same laptop with an Intel i7-6700K CPU, we evaluate
the computation time per image for our method, fast version,
“BING based on our ship space”, and BING method.

The times for the four methods are 1.26, 0.31, 0.78, and
0.08 s, respectively. The fast version is about four times slower
than BING, mainly because our ship rotated bounding box
space is much larger (about 5 times for one 1155 x 820 image)
than the window space of BING.

Howeyver, the fast version can still meet the demand of near-
real-time application.

Fig. 8 shows the ones with best fitness to ground truth in
5000 candidates generated by our method. In the bottom row,
there are several ships uncovered by the 5000 candidates. We
find that the rankings of the candidates which can cover those
uncovered ships are always between 5000 and 20 000.

V. CONCLUSION

We have presented the possibility of covering ships of any
type in complex backgrounds based on a nearly closed-form
ship rotated bounding box space. Based on the space, we
have designed a two-cascaded linear model to score for latent
candidates, followed by binary linear programming to select
a small number of highly potential candidates. Experimental
results prove the effectiveness of our method.

Here are some possible directions for improvement: design-
ing a new method to construct ship rotated bounding box
space instead of k-means, exploring why we get a different
distribution of candidate score ranking in stage I of our method,
and introducing other additional cues to further reduce the
number of candidates while maintaining high DR and AR.
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