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Abstract—In this paper, we address the problem of online
RGB-D tracking where the target object undergoes significant
appearance changes. To sufficiently exploit the color and depth
cues, we propose a novel RGB-D tracking framework (DLS) that
simultaneously builds the target 2D appearance model and 3D
distribution model. The framework decomposes the tracking task
into detection, learning and segmentation. The detection and seg-
mentation components locate the target collaboratively by using
the two target models. An adaptive depth histogram is proposed
in the segmentation component to efficiently locate the target in
depth frames. The learning component estimates the detection
and segmentation errors, updates the target models from the
most confident frames by identifying two kinds of distractors:
potential failure and occlusion. Extensive experimental results on
a large-scale benchmark dataset show that the proposed method
performs favourably against state-of-the-art RGB-D trackers in
terms of efficiency, accuracy, and robustness.

I. INTRODUCTION

Object tracking is one of the fundamental problems in
computer vision with many applications. The most general
type of object tracking is single-object model-free online
tracking, in which an object is initialized in the first frame
and tracked in the subsequent frames with no prior knowledge.
Despite significant progresses in the last decades [1], [2],
object tracking is still challenging due to deformation, occlu-
sion, background clutter, and abrupt motion. Nowadays the
RGB-D sensors have been used in computer vision tasks and
demonstrate great performance improvement [3]. Therefore, in
this paper we consider to exploit the color (RGB) and depth
cues in RGB-D frames to overcome the tracking challenges
mentioned above.

Recently, the RGB-D trackers [4], [5], [6], [7], [8] have
shown superior performance against state-of-the-art RGB
trackers. However, two prominent issues occur in these ap-
proaches. The first issue is the insufficient target modeling
method. The depth channel of a RGB-D frame is merely
regarded as a gray image for further feature extraction and
model learning. This method ignores the physical property of
the depth cue and thus the learned model lacks target presen-
tation power. The second issue lies in the inefficient occlusion
handling method. Some trackers estimate the occlusion state
in an implicit way, e.g., the occlusion state is valid whenever
the tracking confidence is below a threshold. False estimations
may happen in clutter scenes since the target appearance is

(a) RGB frame (b) Depth frame
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Fig. 1: Outline of our approach. The DLS framework tracks
the target in the RGB-D frames (1a, 1b) via decomposing the
task into detection (1c), learning, and segmentation (1d). The
green dot indicates no learning distractor occurs in detection
and segmentation results respectively. Best viewed in color.

similar to the background and the tracking confidence is less
reliable. Other trackers locate the target by using traditional
color image segmentation methods during occlusion, which
may not be effective in the depth frames.

In this work, we propose a novel detection-learning-
segmentation (DLS) tracking framework to address the above
two issues by: (i) simultaneously learning 2D appearance
model and 3D distribution model of the target; (ii) efficiently
segmenting target by using an adaptive depth histogram. The
outline of the DLS framework is shown in Figure 1. The
RGB-D tracking task is decomposed into detection, learning
and segmentation by the DLS. First, the target location is
estimated by detection and segmentation independently and
simultaneously in the current frame. The detection component
uses a kernelized correlation filter to locate the target by 2D
appearance model and the segmentation component uses an
adaptive depth histogram to locate the target by 3D distribution
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model. Then, the learning component identifies two kinds of
distractors from the estimated locations: potential failure and
occlusion. Afterwards, the estimated locations are integrated
into the final target location according to the distractor state.
Finally, the learning component updates the appearance model
and the distribution model at the integrated target location if
no distractor occurs.

The main contributions of this paper are:
(i) A novel RGB-D tracking framework is designed, where

2D appearance cue and 3D distribution cue are simulta-
neously exploited to precisely model the target.

(ii) Target segmentation is carried out efficiently by building
and analyzing an adaptive depth histogram.

(iii) A distractor-aware learning method is proposed to effec-
tively alleviate model drift problem.

(iv) We evaluate the proposed method on a large-scale RGB-
D tracking benchmark dataset [4] with 100 challenge
videos and demonstrate its efficiency, accuracy, and
robustness against state-of-the-art trackers.

II. RELATED WORK

Significant progresses have been made in the RGB object
tracking [2], [9]. On the contrary, RGB-D tracking is a new
research branch of the object tracking and a few works have
been done on it. We review the works closely related to our
method from three aspects in this section.

Tracking by Detection. Object tracking is regarded as
a detection process in this framework. During tracking, a
set of positive and negative samples are collected to train
the target classifier. Many advanced techniques have been
applied to the classifier updating, including multiple-instance
learning [10], boosting [11], [12], P-N learning [13], structured
output SVM [14], and deep learning [15], [16], [17]. The
correlation filter based trackers [18], [19], [20], [21], [22] are
proposed rencetly to settle the sampling ambiguity problem in
binary classifiers. They use all circular-shift samples to learn
a regression model and use fast Fourier transforms to perform
high computational efficiency. However, these trackers are
prone to drift due to their relatively risky model update
methods. In our work, we propose a distractor-aware learning
method that updates the model in most confident frames to
alleviate the model drift problem.

Tracking by Segmentation. A pixel-level probabilistic
framework is proposed to jointly solve segmentation and
tracking in [23]. GrabCut [24] is applied to segment each
sample in a particle filter framework in [25]. Structural infor-
mation captured in superpixels is used to build a robust target
appearance model in [26]. PixelTrack [27] uses pixel-based
descriptors and a probabilistic segmentation method to track
the objects. In [28], an online gradient boosting decision tree
operating on individual patches is intergraded and the final
result is provided by segmentation masks. The above methods
may not be effective in depth frame segmentation since the
property of the depth frame is essentially different with the
color frame. We propose an adaptive depth histogram in this
work to efficiently segment the target.
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Fig. 2: Block flowchart of the DLS framework. Best viewed
in color.

RGB-D Tracking. In tracker [7], depth features are fused
with grayscale and color features in a feature pool to train
a boosting classifier. In [4], a SVM classifier is trained
using HOG features extracted in color and depth frames,
large displacement optical flow is integrated and occlusion is
handled by assuming that the target is the closest object in the
bounding box when there is no occlusion. The particle filter
tracking framework is applied in [5], each particle is equipped
with a latent occlusion flag variable to estimate occlusion.
In [6], a kernelized correlation filter with combined color
and depth features is applied for fast tracking, the depth cue
is exploited to estimate scale change and handle occlusion.
However, in the occlusion handle procedure, the estimation
is implicit in [7], [5], and the bounding box aspect ratio is
fixed in [7], [6], which will lead to an inaccuracy tracking
result. Meanwhile, trackers are inefficiency due to massive
appearance feature fusion [7], [5], extra occlusion tracking [4],
[6] or computationally expensive classifier and optical flow
algorithm [4]. Unlike the above methods, our proposed DLS
framework uses an adaptive depth segmentation method to
handle occlusion and uses a distribution model besides the
appearance model to precisely and effectively model the target.

III. DETECTION-LEARNING-SEGMENTATION

DLS is a framework designed for single-object model-free
online tracking in RGB-D frames. The framework simultane-
ously builds two target models: (i) the 2D appearance model
is built upon the commonly used image features extracted
from color and depth frames; (ii) the 3D distribution model is
built according to the point cloud distribution on the target
surface. Detailed block flowchart of the DLS is shown in
Figure 2. First, Detection and Segmentation independently and
simultaneously estimate the target location. Second, Learning
identifies distractors from the estimated locations. Third, In-
tegration fuses the location estimations into the final target
location according to the distractor state. Finally, Learning
updates the two target models at the target location if no
distractor occurs.

A. Correlation Detection

For robust and efficient performance, we use the kernelized
correlation filter (KCF) [19], [20] in the detection component.
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The KCF uses a filter w to model the target appearance. The
filter is trained on a M ×N image patch x, which is lt times
larger than the target to contain background information. All
the circular shift versions of x are used as training samples
and each shifted sample xm,n, (m,n) ∈ {0, 1, . . . ,M − 1} ×
{0, 1, . . . , N − 1}, is labeled by a Gaussian function ym,n =

exp(− (m−M/2)2+(n−N/2)2
2σ2

l
). The convolution response of w

on the sample xm,n is given by f(xm,n) = w·φ(xm,n), where
φ denotes the mapping to a kernel space. The filter is trained
by minimizing the L2-error:

w = argmin
w

∑
m,n

(f(xm,n)− ym,n)2 + λ‖w‖2, (1)

where λ is the regularization parameter. Using a kernel
κ(x,x′) = φ(x) · φ(x′), the filter can be computed as
w =

∑
m,n αm,nφ(xm,n), where α is the dual variable of

w. According to [19], if the used kernel is shift invariant,
α can be computed efficiently by using the discrete Fourier
transformation (DFT) in the Fourier domain:

α̂ =
ŷ

k̂xx + λ
, (2)

where hatˆdenotes the DFT operator, kxx is a matrix whose
element (m,n) is κ(xm,n,x). We use the shift invariant
Gaussian kernel in this work.

During the target detection stage, a M ×N image patch z
is extracted at the last target location as the search window.
The detection response map can be obtained by evaluating all
cyclic shift patches of z:

f(z) = F−1(k̂xz � α̂), (3)

where x and α denote the learned target appearance mod-
el. The target bounding box is estimated by searching the
location of the maximal value of f(z). To cope with scale
changes, we apply the filter in multiple search window sizes
s = {s1, . . . , sp} similar to [29]. We extract search window
patches {zr}, r ∈ s, at the scale r relative to the last target
scale. The optimal scale s̃ of the target is:

s̃ = argmax
r

f(zr). (4)

To sufficiently model the target appearance, we use HOG
descriptors [30] in both color and depth frames. Moreover, we
extract color names [31], [20] in color frames to encode the
color informations.

B. Segmentation with Adaptive Depth Histogram

We propose an adaptive depth histogram to efficiently
segment the target in depth frames. The histogram is built
according to the target 3D distribution model xd ∼ N (µd, σ

2
d),

where xd denotes the depth value of cloud point on the target
surface, µd and σd are the mean and standard deviation of xd.
By analyzing the histogram, the target depth µtd in the current
frame is estimated straightforwardly and the target region is
obtained by the shifted distribution model xd ∼ N (µtd, σ

2
d).

The segmentation task is carried out in the 3D search
window centering on the last target location. For implementing

simplicity, we project cloud points into a depth image patch,
which is ls times larger than the target in the last frame. Target
is segmented by analyzing the adaptive depth histogram hd
extracted on the image patch. The histogram hd has two pa-
rameters: bin width bw and bin range [0, br]. It only considers
pixels in the foreground, therefore pixels with depth values
larger than br are left out. During the histogram extraction,
parameters bw and br are determined adaptively according to
the target distribution model:

bw = qwσd, (5a)
br = µd + qrσd, (5b)

where qw and qr are proportion factors. Once the histogram
hd is extracted, peaks are computed on it. We assume each
peak corresponds an object region in the foreground. The
peak closest to µd is regarded as the target depth µtd in the
current frame. Then we only remain pixels potentially belong
to the target in the search window, whose depth value is
within [µtd − 3σd, µ

t
d + 3σd] according to the centrality of

the distribution model. The connected component with the
maximum size is regraded as the target region. The target
location is estimated by computing the enclosing bounding
box over the target region.

C. Distractor-Aware Learning

The learning component updates the target models from
most confident frames in a distractor-aware manner. We define
two kinds of distractors: (i) potential failure and (ii) occlusion.
During tracking, the model updating is turned off whenever the
distractor occurs to avoid the model drift problem.

Potential failure estimation. Potential failure is estimated
under the assumption that the appearance of the target should
not change drastically between consecutive frames. To quan-
tize the appearance change, we regularize the response of the
tracking result in frame t as follows:

g(t) =

∣∣∣∣1− max f(xt)

max f(xt−1)

∣∣∣∣ , (6)

where xt and xt−1 denote the search patch in frame t and
t − 1 respectively. Note that the response maps of xt and
xt−1 should be computed under the same appearance model
obtained in frame t − 1. The potential failure state Gf is set
as:

Gf =

{
True, g(t) > λfail
False, otherwise. (7)

Occlusion estimation. Occlusion can be effectively esti-
mated by using the target segmentation result. Let pf denote
the peak with smaller depth value than the target in depth
histogram hd, Npf denote the number of pixels belong to peak
pf , NS denote the total number of pixels in the search window.
The occlusion state Go can be obtained by considering whether
there are other objects in front of the target:

Go =

{
True, Npf /NS > λocc
False, otherwise. (8)
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When no distractor occurs in the current frame, i.e. Gf ∨
Go = False, the tracking result is judged realiable. Then the
learning component updates the appearance model and the
distribution model simultaneously:

x̃t = (1− γa)x̃t−1 + γax
t, (9a)

α̃t = (1− γa)α̃t−1 + γaα
t, (9b)

σ̃td = (1− γd)σ̃t−1d + γdσ
t
d, (9c)

where t is the frame index, x̃ and α̃ denote the target
appearance model, σ̃d denotes the target distribution model,
γa and γd are the learning rate respectively.

D. Integration

The detection and segmentation components use essential
different models to locate the target. To sufficiently exploit
the complementarity of them, the integration component fuses
the detection bounding box bat and the segmentation bounding
box bst into the final output bt according to the distractor state
Go and Gf :

bt =

 (1− βi)bat + βib
s
t , Go = False

bst , Go = True ∧Gf = True
bat , Go = True ∧Gf = False.

(10)
During the normal stage (Go = False), bat and bst are fused

in a linear manner; during the occlusion stage (Go = True),
bst is more reliable and bat is used to correct bst when the
appearance of bat has a high similarity to the target before
occlusion (Gf = False). We summarize the overall algorithm
in Algorithm 1.

IV. EXPERIMENTAL RESULTS

We evaluate the proposed method on a large RGB-D track-
ing benchmark dataset [4]. First, we decompose and evaluate
the proposed RGB-D tracking framework. Next, we compare
the proposed DLS tracker with state-of-the-art RGB-D trackers
in both overall and attribute-based manners.

A. Experimental Setups

Our approach is implemented in native Matlab without
optimization. The experiments are carried out on an Intel I5-
2400 3.10 GHz CPU with 4GB RAM.

Parameters. In detection, the padding size lt is set to 1.5,
the regularization parameter is set to λ = 10−4, the width of
the Gaussian kernel is set to σ = 0.5, the scaling pool is set to
s = {0.94, 0.96, 0.98, 1.00, 1.02, 1.04, 1.06}. In segmentation,
the padding size ls is set to 0.5, the proportion factors qw and
qr is set to 3.0 and 6.0 respectively. In learning, the thresholds
for distractor estimation are set to λocc = 0.1 and λfail = 0.8,
the learning rate γa and γd are set to 0.02 and 0.3 respectively.
In integration, the ratio βi is set to 0.5. All Parameters are fixed
for all videos in the experiments.

Datasets. We evaluate our method on the Princeton Track-
ing Benchmark (PTB) [4]. The dataset contains 100 RGB-
D videos which are annotated with 11 attributes to indicate

Algorithm 1 Detection-Learning-Segmentation algorithm

Input: RGB-D frames {Ict , Idt }T1 , initial bounding box b1

Output: Bounding box predictions {bt}T2 ,
Target 2D appearance model {x̃, α̃},
Target 3D distribution model σ̃d.

1: for t = 2 : T do
2: Crop out the searching window in frame t;

// Detection
3: Compute the correlation maps f(zr) using {x̃, α̃} and

Eq. (3), estimate the new bounding box bat ;
// Segmentation

4: Compute the adaptive depth histogram hd using σ̃d and
Eq. (5), estimate the new bounding box bst ;
// Learning—distractor estimation

5: Estimate the potential failure state Gf using Eq. (7) and
the occlusion state Go using Eq. (8);
// Integration

6: Predict bt by integrating bat and bst using Eq. (10);
// Learning—model update

7: if Gf ∨Go = False then
8: Update the appearance model {x̃, α̃} and the distri-

bution model σ̃d using Eq. (9);
9: end if

10: end for

different challenges in tracking task. Among the 100 videos,
ground truth of 5 validation videos are released for parameter
setting. Oppositely ground truth of the rest 95 evaluation
videos are reserved to prevent data-specific parameter tuning.
We run our algorithm on all evaluation videos in PTB and
submit our tracking results to the website of the dataset for
evaluation.

Evaluation Methodology. To validate the performance of
our approach, we follow the evaluation metric used in [4].
Results are evaluated by the average success rate, which can
be obtained by calculating the area-under-the-curve (AUC) of
the tracker’s success plot. The success plot is defined as the
percentage of success frames where the overlap between result
bounding box and ground truth exceeds a threshold to ∈ [0, 1].

B. Component analysis

To demonstrate the sufficiency and efficiency of the pro-
posed DLS framework, we implement two more algorithms
using individual components of the DLS. First, we implement
a tracker DT merely using the detector of the DLS. In addition,
we implement a tracker DLT with the detection and learning
components of DLS, DLT can update the model selectively by
considering distractors during tracking. We report the results
on the 95 benchmark evaluation videos using the average
success rate metric. As shown in Table I and Figure 3,
the DLT tracker outperforms the DT tracker in all attributes
since the additional learning component helps the tracker to
update the target model correctly and avoid model drift. The
proposed DLST tracker (use all components) outperforms the
DLT tracker, performances are improved in a large margin
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TABLE I: Experimental results on the Princeton Tracking Benchmark: average successful rates (SR) and rankings (in
parentheses) are presented under different attributes. The best and the second best results are in red and blue respectively.

Algorithm all target type target size movement occlusion motion type
SR human animal rigid large small slow fast yes no passive active

DLST 0.74(1) 0.77(1) 0.69(2) 0.73(4) 0.80(1) 0.70(4) 0.73(5) 0.74(1) 0.66(2) 0.85(2) 0.72(5) 0.75(1)
PrinT [4] 0.73(2) 0.74(2) 0.63(3) 0.78(1) 0.78(2) 0.70(2) 0.76(2) 0.72(2) 0.72(1) 0.75(4) 0.82(1) 0.70(3)
OAPF [5] 0.73(3) 0.64(4) 0.85(1) 0.77(2) 0.73(3) 0.73(1) 0.85(1) 0.68(3) 0.64(3) 0.85(1) 0.78(3) 0.71(2)

DS-KCF [6] 0.69(4) 0.67(3) 0.61(4) 0.76(3) 0.69(4) 0.70(3) 0.75(3) 0.67(4) 0.63(4) 0.78(3) 0.79(2) 0.66(4)
PrinT-PC [4] 0.59(5) 0.51(5) 0.52(5) 0.73(5) 0.63(5) 0.56(5) 0.74(4) 0.53(5) 0.55(5) 0.64(6) 0.75(4) 0.53(5)
SAMFD[29] 0.54(6) 0.45(6) 0.50(6) 0.67(6) 0.52(6) 0.55(6) 0.65(6) 0.49(6) 0.41(6) 0.72(5) 0.66(6) 0.49(6)

DT 0.57 0.49 0.57 0.67 0.56 0.58 0.68 0.53 0.43 0.77 0.67 0.54
DLT 0.63 0.55 0.63 0.74 0.59 0.67 0.72 0.60 0.49 0.84 0.73 0.60
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Fig. 3: Comparison of the trackers equipped with different
components of the DLS framework. The DLST tracker e-
quipped with all the components performs best.

in human, large, fast, occ, and active attributes due to the
superior power of segmentation in handle deformation and
occlusion. The analysis demonstrates that components in the
DLS framework collaborate with each other in a effective and
complementary way.

C. State-of-the-art Comparison

We compare our DLST algorithm with five state-of-the-
art RGB-D trackers on the benchmark. The trackers are from
four different categories of tracking algorithms: (i) correlation
trackers (DS-KCF [6], SAMFD [29]); (ii) binary discrimina-
tive trackers (PrinT [4]); (iii) generative trackers (OAPF [5]);
and (iv) point cloud trackers (PrinT-PC [4]). We report both the
overall and attribute-based results using the average success
rate metric in Table I and Figure 4.

Overall performance. The all SR column in Table I shows
that our DLST tracker preforms favorably against state-of-the-
art RGB-D trackers, since it sufficiently exploits both appear-
ance cue and distribution cue to learn a more accurate target
model. To evaluate the efficiency of the considered algorithms,
we report the average frame rate of the top three trackers over
the whole benchmark in Figure 5. Our algorithm is much faster
than the other two top rank trackers, which demonstrates an
excellent performance-speed ratio due to the use of simpler
features and efficient depth segmentation method. Figure 6
shows the qualitative evaluation of the proposed algorithm
against state-of-the-art trackers. Our algorithm is able to locate
the target accurately in challenging scenarios such as defor-
mation (row 1, 3, 4), occlusion (row 1, 2, 3, 4), background
clutter (row 3, 4), and abrupt motion (row 5).
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Fig. 4: Comparison with state-of-the-art RGB-D trackers.
The proposed DLST tracker performs favorably against other
RGB-D tracking algorithms.

0.0 1.0 2.0 3.0 4.0 5.0
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Fig. 5: Average frame rate of the top three RGB-D trackers
on PTB. Our DLST tracker achieve superior computational
efficiency.

Attribute-based performance. To further analyze the per-
formance of the proposed algorithm in different categoriza-
tions, we report the result comparisons for all 11 attributes
in Table I and Figure 4. Among state-of-the-art methods, our
DLST algorithm performs the best results in human, large,
fast, and active categorizations, performs the second best
results in animal, occlusion, and no occlusion categorizations.
The results show that our algorithm achieves comparable
performance in almost all categorizations and superior per-
formance in handle targets with deformation and fast motion,
since in the DLST the distribution model is robust against
deformation and the learning component estimate distractors
effectively in scenes with drastic variations.

V. CONCLUSIONS

In this paper, we propose a novel framework (DLS) for
online RGB-D tracking. The DLS framework simultaneously
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#090 #136 #200#191

#023 #040 #105#074

SAMFDOurs PrinT DS-KCF

#012 #035 #065#053

Fig. 6: Qualitative evaluation of the proposed tracking algo-
rithm, the PrinT [4], DS-KCF [6], SAMFD [29] trackers on
five challenging videos (from top to down are bdog occ2,
bear back, computerbar1, new ex occ2, and zball no2, re-
spectively). Our algorithm performs consistently against state-
of-the-art RGB-D trackers. Best viewed in color.

builds target 2D appearance model and 3D distribution model,
effectively taking advantage of the color and depth cues. In the
DLS, tracking task is decomposed in to detection, learning,
and segmentation: the detection component uses a correla-
tion filter to locate the target by 2D appearance model, the
segmentation component uses an adaptive histogram to locate
the target by 3D distribution model, the learning component
updates the target models in a distractor-aware manner. Exten-
sive experimental results on a large-scale RGB-D benchmark
demonstrate that components of the framework complement
with each other, and the proposed method performs favorably
against the state-of-the-art trackers in terms of efficiency,
accuracy, and robustness.
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