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Abstract

This paper investigates some basic properties of covering generalized rough sets, and

their comparison with the corresponding ones of Pawlak�s rough sets, a tool for data

mining. The focus here is on the concepts and conditions for two coverings to generate

the same covering lower approximation or the same covering upper approximation. The

concept of reducts of coverings is introduced and the procedure to find a reduct for a

covering is given. It has been proved that the reduct of a covering is the minimal

covering that generates the same covering lower approximation or the same covering

upper approximation, so this concept is also a technique to get rid of redundancy in

data mining. Furthermore, it has been shown that covering lower and upper approxi-

mations determine each other. Finally, a set of axioms is constructed to characterize the

covering lower approximation operation.
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1. Introduction

Various theories and methods have been proposed to deal with incom-

plete and insufficient information in classification, concept formation, and data
analysis in data mining. For example, fuzzy set theory [15], rough sets [6],

computing with words [12,16,17], linguistic dynamic systems [11,12], and many

others, have been developed and applied to real-world problems. The focus of

this paper is on the rough set theory, a tool originated by Pawlak [6] for data

mining, with the particular intention to generalize it for the possible applica-

tions in computing with words and linguistic dynamic systems for modeling

and analyzing complex systems and for data mining.

Pawlak�s rough sets provide a systematic approach for classification of ob-
jects through an indiscernibility relation. For example, when a universe of ob-

jects is described by a family of attributes, the indiscernibility of the objects can

be based on the attribute values of these objects. When two objects have the

same value over a certain group of attributes, we say they are indiscernible with

respect to this group of attributes, or have the same description with respect to

the indiscernibility relation. Objects of the same description consist of an

equivalent class and all equivalent classes form a partition of the universe. With

this partition, the rough set theory approximates any subset of objects of the
universe by two sets, called the lower and upper approximations.

Partition or equivalent relation, as the indiscernibility relation in Pawlak�s
original rough set theory, is still restrictive for many applications. To address

this issue, several interesting and meaningful extensions to equivalent relation

have been proposed in the past, such as tolerance relations [4,8], similarity

relations [9], and others [10,13,14]. Particularly, Zakowski has used coverings

of a universe for establishing the covering generalized rough set theory [18] and

an extensive body of research works has been developed [1–3,7]. The covering
generalized rough set theory is a model with promising potential for applica-

tions to data mining. In order to apply this theory to data mining, we address

some basic problems in this theory.

Given two coverings of a universe, two covering lower approximations, as

well as two upper approximations, will be induced. The issues to be addressed

in this paper are (1) for a particular covering, what would be the corresponding

‘‘smallest’’ covering that produces the same covering lower or upper approx-

imation? In data mining, it is an important issue to reduce the redundant in-
formation. (2) If two coverings induce the same covering lower or upper

approximation, what would be the relationship between the two coverings? (3)

If two coverings induce the same covering lower approximation, must they

induce the same covering upper approximation? And finally, (4) is there a set of

axioms to characterize the covering generalized rough sets?

A partition is no longer a partition by dropping any of its members, thus,

there is no redundancy problem for a partition. As for a covering, it could still
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be a covering by dropping some of its members. Furthermore, the resulting

new covering might still produce the same covering lower and/or upper ap-

proximation. Hence, a covering may have ‘‘redundant’’ members and a pro-

cedure is needed to find its ‘‘smallest’’ covering that induces the same covering
lower and upper approximations. This technique can be used to reduce the

redundant information in data mining.

In Pawlak�s rough set theory, the main concepts are the lower and

upper approximations. But, different partitions of a universe generate different

lower and upper approximations. In covering generalized rough set theory,

however, different coverings could generate the same covering lower or upper

approximations. Therefore, we need to know under what conditions two cov-

erings of a universe generate the same covering lower or upper approximation.
Furthermore, in Pawlak�s rough set theory, the lower and upper approxi-

mations are dual to each other and therefore determine each other. However, in

the covering generalized rough set theory, the covering lower and upper ap-

proximations are no longer dual, thus, the next question would be: can the

covering lower approximation still determine the covering upper approxima-

tion, and vice versa.

Finally, the problem of what constitutes the essential properties for the

covering lower and upper approximations is investigated through the estab-
lishment of a set of axioms that characterize the covering lower approximation

operations. However, the corresponding problem for the upper approximation

operations is still an open question.

2. Fundamentals of Pawlak’s rough sets

Let U be a finite set, the universe of discourse, and R an equivalent relation

on U , called an indiscernibility relation in rough set theory [6]. R will generate a

partition U=R ¼ fY1; Y2; . . . ; Ymg on U , where Y1; Y2; . . . ; Ym are the equivalent

classes, and, in rough set theory, they are also called elementary sets of R. For
any X � U , we can describe X in terms of the elementary sets of R. Specifically,
Pawlak [6] introduced the following two sets:

R�ðX Þ ¼ [fYi 2 U=R jYi � Xg; R�ðX Þ ¼ [fYi 2 U=R jYi \ X 6¼ ;g:

They are called the lower and upper approximations of X , respectively.

Let ; be the empty set, �X the complement of X in U , then the following

conclusions have been established for Pawlak�s rough sets [6]:

(1L) R�ðUÞ ¼ U (Co-normality)

(1H) R�ðUÞ ¼ U (Co-normality)

(2L) R�ð;Þ ¼ ; (Normality)

(2H) R�ð;Þ ¼ ; (Normality)
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It has been shown that (3L), (4L), and (8L) are the characteristic properties

of the lower approximation, and, correspondingly, (3H), (4H), and (8H) are

the characteristic properties of the upper approximation [5,19,20].

3. Concepts and properties of covering approximations

Definition 1. Let U be a universe of discourse, C a family of subsets of U . If

none subsets in C is empty, and [C ¼ U , C is called a covering of U .

It is clear that a partition of U is certainly a covering of U , so the concept of

a covering is an extension of the concept of a partition.

In the following discussion, the universe of discourse U is considered to be

finite.

Now we will list some definitions and results about covering rough sets used

in this paper [1,3,7].

Definition 2. Let U be a non-empty set, C a covering of U . We call the ordered

pair hU ;Ci a covering approximation space.

Definition 3. Let hU ;Ci be a covering approximation space, x 2 U , then set

family

MdðxÞ ¼ fK 2 C jx 2 K ^ ð8S 2 C ^ x 2 S ^ S � K ) K ¼ SÞg

is called the minimal description of x.

Definition 4. For a set X � U ; set family C�ðX Þ ¼ fK 2 C jK � Xg is called the
covering lower approximation set family of X .

(3L) R�ðX Þ � X (Contraction)

(3H) X � R�ðX Þ (Extension)

(4L) R�ðX \ Y Þ ¼ R�ðX Þ \ R�ðY Þ (Multiplication)

(4H) R�ðX [ Y Þ ¼ R�ðX Þ [ R�ðY Þ (Addition)

(5L) R�ðR�ðX ÞÞ ¼ R�ðX Þ (Idempotency)
(5H) R�ðR�ðX ÞÞ ¼ R�ðX Þ (Idempotency)

(6) R�ð� X Þ ¼� R�ðX Þ,
R�ð� X Þ ¼� R�ðX Þ

(Duality)

(7L) X � Y ) R�ðX Þ � R�ðY Þ (Monotone)

(7H) X � Y ) R�ðX Þ � R�ðY Þ (Monotone)

(8L) R�ð� R�ðX ÞÞ ¼� R�ðX Þ (Lower-complement relation)

(8H) R�ð� R�ðX ÞÞ ¼� R�ðX Þ (Upper-complement relation)

(9L) 8K 2 U=R, R�ðKÞ ¼ K (Granularity)
(9H) 8K 2 U=R, R�ðKÞ ¼ K (Granularity)
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Set X� ¼ [C�ðX Þ is called the covering lower approximation of X .

Set X �
� ¼ X � X� is called the covering boundary of X .

Set family BnðX Þ ¼ fMdðxÞ jx 2 X �
� g is called the covering boundary ap-

proximation set family of X .
Set family C�ðX Þ ¼ C�ðX Þ [ BnðX Þ is called the covering upper approxi-

mation set family of X .

Set X � ¼ [C�ðX Þ is called the covering upper approximation of X .

If C�ðX Þ ¼ C�ðX Þ, X is said to be definite, otherwise indefinite.

Definition 5. Let C be a covering of U , P ðUÞ the power set of U . Operations LC

and HC : P ðUÞ ! P ðUÞ are defined as follows:

X 2 P ðUÞ; LCðX Þ ¼ X�; HCðX Þ ¼ X �:

We call them the covering lower approximation operation and the covering

upper approximation operation, coupled with the covering C, respectively.
When the covering is clear, we omit the lowercase C for the two operations.

Proposition 1. The covering approximation set families C�ðX Þ and C�ðX Þ have
the following properties:
(1) C�ð;Þ ¼ C�ð;Þ ¼ ;, C�ðUÞ ¼ C�ðUÞ ¼ C,
(2) C�ðX Þ � C�ðX Þ,
(3) C�ðX�Þ ¼ C�ðX Þ ¼ C�ðX�Þ,
(4) X � Y ) C�ðX Þ � C�ðY Þ.

Proposition 2. If C is a partition, X� and X � are the Pawlak’s lower and upper
approximations of X .

Proposition 3. C�ðX Þ ¼ C�ðX Þ if and only if X is a union of some subsets in the
covering C.

Proposition 4. X� ¼ X if and only if C�ðX Þ ¼ C�ðX Þ.

Corollary 1. X� ¼ X if and only if X is a union of some elements of C.

Proposition 5. X� ¼ X � if and only if C�ðX Þ ¼ C�ðX Þ.

Corollary 2. X� ¼ X � if and only if X� ¼ X .

Corollary 3. X ¼ X � if and only if X� ¼ X .

Corollary 4. X � ¼ X if and only if X is a union of some elements of C.
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Corresponding to the properties of Pawlak�s rough sets listed in Section 2,

we have the following results.

Proposition 6. For a covering C, the covering lower and upper approximations
have the following properties:

From Examples 1–4, the following six properties of Pawlak’s lower and upper
approximations do not hold for the covering lower and upper approximations:

Example 1 (Multiplication and addition). Let U ¼ fa; b; c; dg; K1 ¼ fa; bg,
K2 ¼ fa; cg, K3 ¼ fc; dg, C ¼ fK1;K2;K3g. Clearly, C is a covering of U .

For X ¼ K1, Y ¼ K2, we have

X� ¼ K1 ¼ fa; bg; Y� ¼ K2 ¼ fa; cg;

thus, X� \ Y� ¼ fag.
On the other hand, X \ Y ¼ fag, thus

ðX \ Y Þ� ¼ fag� ¼ ;:

Therefore, X� \ Y� 6¼ ðX \ Y Þ�.
For X ¼ fag, Y ¼ fcg, we have

C�ðX Þ ¼ C�ðY Þ ¼ ;; MdðaÞ ¼ fK1;K2g; MdðcÞ ¼ fK2;K3g;
thus, X � ¼ K1 [ K2 ¼ fa; b; cg, Y � ¼ K2 [ K3 ¼ fb; c; dg,

X � [ Y � ¼ U :

On the other hand, X [ Y ¼ fa; cg, thus,

(1L) U� ¼ U (Co-normality)

(1H) U � ¼ U (Co-normality)

(2L) ;� ¼ ; (Normality)

(2H) ;� ¼ ; (Normality)

(3L) X� � X (Contraction)

(3H) X � X � (Extension)

(5L) ðX�Þ� ¼ X� (Idempotency)
(5H) ðX �Þ� ¼ X � (Idempotency)

(7L) X � Y ) X� � Y� (Monotone)

(9L) 8K 2 C, K� ¼ K (Granularity)

(9H) 8K 2 C, K� ¼ K (Granularity)

(4L) X� \ Y� ¼ ðX \ Y Þ� (Multiplication)

(4H) ðX [ Y Þ� ¼ X � [ Y � (Addition)

(6) X� ¼� ð� X Þ�;X � ¼� ð� X Þ� (Duality)

(7H) X � Y ) X � � Y � (Monotone)

(8L) ð� X�Þ� ¼ �X� (Lower-complement relation)

(8H) ð� X �Þ� ¼� X � (Upper-complement relation)
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ðX [ Y Þ� ¼ fa; cg:

It is clear that BnðX [ Y Þ ¼ ;, hence,
ðX [ Y Þ� ¼ ðX [ Y Þ� ¼ fa; cg:

Therefore, ðX [ Y Þ� 6¼ X � [ Y �.

Example 2 (Duality). Let U ¼ fa; b; c; d; eg, K1 ¼ fa; b; c; dg, K2 ¼ fa; bg,
K3 ¼ feg. C ¼ fK1;K2;K3g is a covering of U .

For X ¼ K2, we have X� ¼ fa; bg, ð� X Þ� ¼ ðfc; d; egÞ� ¼ U , so

� ð� X Þ� ¼ ; 6¼ X�:

For X ¼ fc; dÞ; we have X � ¼ U ; ð� X Þ� ¼ fa; bg; so
X � 6¼� ð� X Þ�:

Example 3 (Monotone). Let U ¼ fa; b; cg, K1 ¼ fa; bg, K2 ¼ fb; cg, C ¼
fK1;K2g, X ¼ fbg, Y ¼ fa; bg, we have:

C�ðX Þ ¼ ;; X� ¼ ;;
X � X� ¼ fbg; MdðbÞ ¼ fK1;K2g;
BnðX Þ ¼ fK1;K2g; C�ðX Þ ¼ fK1;K2g;
X � ¼ K1 [ K2 ¼ fa; b; cg:

On the other hand,

C�ðY Þ ¼ fK1g; Y� ¼ fa; bg;
Y � Y� ¼ ;; BnðY Þ ¼ ;;
C�ðY Þ ¼ fK1g; Y � ¼ K1 ¼ fa; bg:

Clearly, X � Y whereas X � � Y � is not valid.

Example 4 (Lower-complement relation and upper-complement relation). Let

U ¼ fa; b; cg, K1 ¼ fa; bg, K2 ¼ fb; cg, X ¼ fa; bg, Y ¼ fag, we have

X� ¼ fa; bg; ð� X�Þ� ¼ ð� fa; bgÞ� ¼ fcg� ¼ ;;
Y � ¼ fa; bg; ð� Y �Þ� ¼ ð� fa; bgÞ� ¼ fcg� ¼ fb; cg:

So, ð� X�Þ� ¼� X�, ð� Y �Þ� ¼� Y � do not hold.

4. Reduct of coverings

From the above definitions and propositions, we know that for a uni-

verse U and a covering C of U , C can generate covering lower and upper

W. Zhu, F.-Y. Wang / Information Sciences 152 (2003) 217–230 223



approximations on U . When C is a partition, the generated covering lower and

upper approximations are, respectively, the lower and upper approximations in

the Pawlak�s sense.
Now, we wonder if a covering C of U generates a Pawlak�s lower approx-

imation, should the covering C be a partition? That is to say, when a covering

C is not a partition, can there exist a partition C0 such that C and C0 generate

the same covering lower approximations?

In a more general sense, when should two coverings generate the same

covering lower approximations or the same covering upper approximations on

U .

In Pawlak�s rough set theory, the lower and the upper approximations are

dual, so they are dependent on each other. As to the above definitions of
covering generalized rough sets, the covering lower and upper approximations

on U are not dual. Now we want to ask whether the covering lower and upper

approximations are dependent on each other.

In this section, we pay our attention to these questions.

Example 5. A non-partition covering C can generate Pawlak�s lower and upper

approximations. Let

U ¼ fa; b; c; dg; K1 ¼ fag; K2 ¼ fb; cg;

K3 ¼ fdg; K4 ¼ fa; dg; C ¼ fK1;K2;K3;K4g:

The covering lower approximation generated by C is the same as the lower
approximation generated by a partition C0 ¼ fK1;K2;K3g. It is same for upper

approximations.

This example also shows that two distinct coverings can generate the same

covering lower and upper approximations.

Definition 6. Let C be a covering of a universe U and K 2 C. If K is a union of

some sets in C � fKg, we say K is a reducible element of C, otherwise K is an

irreducible element of C.

Definition 7. Let C be a covering of U . If every element of C is an irreducible

element, we say C is irreducible; otherwise C is reducible.

Proposition 7. Let C be a covering of a universe U . If K is a reducible element of
C, C � fKg is still a covering of U .

Proposition 8. Let C be a covering of U , K 2 C, K is a reducible element of C,
and K1 2 C � fKg, then K1 is a reducible element of C if and only if it is a re-
ducible element of C � fKg.

224 W. Zhu, F.-Y. Wang / Information Sciences 152 (2003) 217–230



Proof. If K1 is a reducible element of C � fKg, K1 can be expressed as a union

of some sets inðC � fKgÞ � fK1g ¼ C � fK;K1g. It certainly can be expressed

as a union of some sets in C � fK1g, so it is a reducible element of C.
On the other hand, suppose K1 is a reducible element of C. We have that K1

can be expressed as a union of some sets in C � fK1g, say T1; T2; . . . ; Tn. It is
easy to see that Ti � K1 for every i. If all sets among T1; T2; . . . ; Tn are not equal
to K, K1 can be expressed as the union of sets T1; T2; . . . ; Tn in

ðC � fKgÞ � fK1g, so K1 is a reducible element of C � fKg. If some one among

T1; T2; . . . ; Tn is equal to K, say T1 ¼ K, from that K is reducible in C, there are
sets S1; S2; . . . ; Sm 2 C � fKg, such that T1 is the union of S1; S2; . . . ; Sm. Be-
cause T1 � K1; S1; S2; . . . ; Sm cannot be equal to K1, so we have K1 ¼ T1 [
T2 [ � � � [Tn ¼ S1 [ S2 [ � � � Sm [ T2 [ � � � [ Tn, and S1; S2; . . . ; Sm, T2; . . . ; Tn
are not equal to either K or K1. It follows that K1 is a reducible element of

C � fKg. �

Proposition 7 guarantees that after deleting a reducible element in a covering,

it is still a covering, whereas Proposition 8 shows that deleting a reducible el-

ement in a covering will not generate any new reducible elements or make other

originally reducible elements become irreducible elements of the new covering.

So, we can compute the reduct of a covering of a universe U by deleting all
reducible elements in the same time, or by deleting one reducible element in a

step. The remainder still consists of a covering of the universe U , and it is ir-

reducible. For an algorithm to compute the reduct of a covering (see [21,22]).

Definition 8. For a covering C of a universe U , the new irreducible covering

through the above reduction is called the reduct of C, and denoted by

reductðCÞ.

Proposition 8 guarantees that a covering has only one reduct.

Proposition 9. Let C be a covering of U , and K a reducible element of C,
C � fKg and C have the same MdðxÞ for all x 2 U .

Proof. In fact, if K is a reducible element in C, K 62 MdðxÞ for all x 2 U and for

any element K1 of C, if K � K1, there must be some other element K 0 such that

K 0 � K � K1, so C � fKg and C have the same MdðxÞ for all x 2 U : �

Corollary 5. Suppose C is a covering of U , then C and reductðCÞ have the same
MdðxÞ for all x 2 U .

Proposition 10. Suppose C is a covering of U , K is a reducible element of C,
X � U , then the covering lower approximations of X generated by the covering C
and the covering C � fKg, respectively, are same.
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Proof. Suppose the covering lower approximations of X generated by the

covering C and the covering C � fKg are X1, X2 respectively. From the defi-

nition of the covering lower approximation, it is evident X2 � X1 � X . On the

other hand, from the Proposition 6(5L) and the corollary of the Proposition 4,
there exists K1;K2; . . . ;Kn in C, such that X1 ¼ K1 [ K2 [ � � � [ Kn. It is obvious

that K1;K2; . . . ;Kn are all subsets of X .
If none of K1;K2; . . . ;Kn are equal to K, then they all belong to C � fKg, so

K1;K2; . . . ;Kn are all the subsets of X2. If some one among K1;K2; . . . ;Kn is

equal to K, we suppose K1 ¼ K. Because K is a reducible element of C, K can

be expressed a union of some elements T1; T2; . . . ; Tm of C � fKg, so,

X1 ¼ K1 [ K2 [ � � � [ Kn ¼ T1 [ T2 [ � � � [ Tm [ K2 [ � � � [ Kn. For T1; T2; . . . ; Tm;
K2; . . . ;Kn are all subsets of X , and they are elements of C � fKg, so they are all
subsets of X2. Now we have proved X1 � X2.

Therefore, X1 ¼ X2. �

Corollary 6. Suppose C is a covering of U , then the covering lower approxi-
mations of X generated by the covering C and the covering reductðCÞ, respec-
tively, are same.

Proposition 11. Suppose C is a covering of U , K is a reducible element of C, and
X � U , then the covering upper approximations of X generated by the covering C
and the covering C � fKg, respectively, are same.

Proof. By Proposition 10, the covering lower approximations of X generated

by the covering C and the covering C � fKg, respectively, are same, thus,

from Definition 4, the corresponding covering boundary sets are same.

Again, from Proposition 9, the two coverings have the same MdðxÞ for all

x 2 U , thus, by the definition of the covering upper approximation, the cov-
ering upper approximations of X generated by the two coverings respectively

are same. �

Corollary 7. Suppose C is a covering of U , then the covering upper approxi-
mations of X generated by the covering C and the covering reductðCÞ, respec-
tively, are same.

Combining the corollaries of Propositions 10 and 11, we have the following
conclusion.

Theorem 1. Let C be a covering of U , then C and reductðCÞ generate the same
covering lower and upper approximations.

Proposition 12. If two irreducible coverings of U generate the same covering
lower approximations for all X � U , then the two coverings are same.
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Proof. Let U be a universe, C1, C2 two coverings of U , and they generate the

same covering lower approximation LðX Þ for all X � U . Now we prove that

any element of C1 is an element of C2. Suppose K 2 C1, we have LðKÞ ¼ K.
From the corollary of Proposition 4, in the covering C2, K is a union of some
elements of C2. Let K1;K2; . . . ;Kn be the elements of C2 such that

K ¼ K1 [ K2 [ � � � [ Kn. By Proposition 6(9L), for any Ki, LðKiÞ ¼ LðKiÞ. Sim-

ilar to the above proof, there exist elements of C1, Ti;1; Ti;2; . . . ; Ti;mðiÞ, such that

Ki ¼ [
mðiÞ

j¼1
Ti;j. Thus, K ¼ [

n

i¼1
[
mðiÞ

j¼1
Ti;j. Since C1 is irreducible, Ti;j ¼ K for all i; j.

Therefore, for all i, Ki ¼ K, hence, K is an element of C2.

Similarly, any element of C2 is an element of C1, therefore, C1 and C2 have

the same elements, that is, C1 ¼ C2. �

From Theorem 1 and Proposition 12, we have

Theorem 2. Let C1, C2 be two coverings of U , C1, C2 generate the same covering
lower approximation if and only if reductðC1Þ ¼ reductðC2Þ.

Corollary 8. Let C be a covering of U , C generates a Pawlak’s lower approxi-
mation if and only if reductðCÞ is a partition.

From Proposition 9 and the definition of covering upper approximations,

we have the following result.

Proposition 13. If two irreducible coverings of U generate the same covering
upper approximation, the two coverings are equal.

Proof. From Proposition 6(9H) and the corollary of Proposition 5, the proof of
this proposition is similar to that of Proposition 11. �

From Proposition 13 and the corollary of Proposition 11, we have:

Theorem 3. Let C1;C2 be two coverings of U ;C1;C2 generate the same covering
upper approximation if and only if reductðC1Þ ¼ reductðC2Þ.

Corollary 9. Let C be a covering of U , C generate a Pawlak’s upper approxi-
mation if and only if reductðCÞ is a partition.

Theorem 4. Let C1, C2 be two coverings of U , C1, C2 generate the same covering
lower approximation if and only if they generate the same covering upper ap-
proximation.

Theorem 4 shows that the covering lower approximation and the covering

upper approximation determine each other.
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Theorem 5. Let C is a covering of U , C generates a Pawlak’s lower approxi-
mation if and only if C generates a Pawlak’s upper approximation.

5. The axiomization of the lower approximation operation

As we know in Section 2, Pawlak�s lower and upper approximation oper-

ations have been axiomized. Now, we want to know which are the character-

istic properties for the covering lower approximation operation and the

covering upper approximation operation. We get the axiomization of the

covering lower approximation operation as follows. As for the axiomization of

the covering upper approximation operation, it is still an open problem.

Theorem 6. Let U be a non-empty set. If an operation L : P ðUÞ ! PðUÞ satisfies
the following properties: for any X ; Y � U
(1) LðUÞ ¼ U (Co-normality)
(2) X � Y ) LðX Þ � LðY Þ (Monotone)
(3) LðX Þ � X (Contraction)
(4) LðLðX ÞÞ ¼ LðX Þ (Idempotency)
then there exists a covering C of U , such that the covering lower approximation
operation LC generated by C equals to L.

Proof. Let C ¼ fA � U : LðAÞ ¼ A;A 6¼ ;g. By property (1) of L, C must be a

covering of U . For any X � U , LCðX Þ ¼ [fK � X : K 2 Cg: For any K � X
and K 2 C, K ¼ LðKÞ from the definition of C. By the property (2) of L, we
have LðKÞ � LðX Þ, so K � LðX Þ, that means LCðX Þ � LðX Þ. On the other hand,

if LðX Þ ¼ ;, it is obvious that LðX Þ � LCðX Þ. If LðX Þ 6¼ ;, by (4),

LðLðX Þ ¼ LðX Þ, so LðX Þ 2 C. From (3), LðX Þ � X , so LðX Þ � LCðX Þ from the
definition of LC. Now we have proved that LðX Þ ¼ LCðX Þ. �

The following example shows that the above four properties for a covering

lower approximation operation are necessary and independent of each other.

Example 6. Let ½U ¼ fa; b; cg, consider the following cases:

1. Let LðX Þ ¼ ; for any X � U . This L satisfies all the four properties except

(1).
2. Let Lð;Þ ¼ ; , LðfagÞ ¼ fag, LðfbgÞ ¼ fbg, LðfcgÞ ¼ fcg, Lðfa; bgÞ ¼ fa; bg,

Lðfa; cgÞ ¼ fa; cg, Lðfb; cgÞ ¼ fbg, LðUÞ ¼ U . This L satisfies all the four

properties except (2). Since fcg � fb; cg, but LðfcgÞ ¼ fcg and Lðfb; cgÞ ¼
fbg, so LðfcgÞ � Lðfb; cgÞ does not hold.

3. Let LðX Þ ¼ U for any X � U . This L satisfies all the four properties except

(3).
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4. Let LðfbgÞ ¼ ;, LðfagÞ ¼ ;, Lðfa; bgÞ ¼ fag, LðX Þ ¼ X for all other X � U .

Since LðLðfa; bgÞÞ ¼ LðfagÞ ¼ ; 6¼ Lðfa; bgÞ, this L satisfies all the four

properties except (4).

6. Conclusions

In this paper we have shown that (a) the reduct of a covering is the minimal

covering that generates the same covering lower and upper approximations, a

key concept for us to reduce redundant information in data mining when using

the covering generalized rough set model; and (b) the covering lower and upper
approximations determine each other. In addition, a set of axioms is con-

structed to characterize the operations of the covering lower approximation.

However, it is still an open question regarding the axiomization of the

covering upper approximations. Another issue to be investigated in the future

is the applications of covering generalized rough sets in computing with words

and linguistic dynamic systems.
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