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Abstract—Aerial traffic surveillance requires algorithms that 
can accurately predict the locations and orientations of 
hundreds of vehicles in a large high resolution aerial image 
within seconds. Under this constraint, the classical cascaded 
detection framework based on boosting algorithms still 
remains an optimal choice. These methods, however, usually 
use many binary classifiers to enhance the localization 
performance resistant to orientation variances, which is not 
effective in distinguishing confusing orientations and subsets. 
This paper categorizes these confusing subsets automatically 
by analyzing the correlations between specific orientation 
angles and location deviations at local detection window 
regions, makes robust predictions on them by N-nary multi-
class classifiers. This helps to reduce the required number of 
classifiers to less than half and improve both localization and 
orientation estimation accuracies, making it potential for 
additional speed optimization. 

Keywords-high resolution aerial image, vehicle detection, 
orientation estimation 

I.  INTRODUCTION 

As the expense of aerial remote sensing has been greatly 
reduced by the recent advances in unmanned aerial system, it 
is now possible for related departments to make short-time-
interval wide range traffic surveillance in urban regions. But 
this increase in acquisition bandwidth surpasses the 
capability of manual inspection, thus requires fast and 
efficient detection algorithms which can predict the locations 
and orientations of hundreds of vehicles.  Detection vehicles 
in urban region from aerial image is a challenging task, since 
vehicle are small comparing to the size of the image, and 
there are prevalent man-made objects with similar texture 
appearance. To address these difficulties, a number of 
methods have been proposed for robust vehicle appearance 
modeling, which can mainly be divided into two categories: 
methods based on implicit models or explicit models. 

Methods based on implicit models make no pre-
assumption on the shape and size of the vehicles, and extract 
local features around a pixel point or a segment region for 
appearance modeling. For instance, in [1-3], features like 
Local Binary Pattern (LBP), Histogram of Gradients (HOG), 
Scale Invariant Feature Transformations (SIFT) etc. are 
firstly adopted to build a dense feature map, and then fed to 
the classifier to estimate the location of the vehicle or its 

components. These methods can make detection in sub-
optimal situations when the vehicle is partially occluded, but 
the computation of a dense feature map can be very 
expensive, and the final decision on location requires 
unstable heuristic rules to cluster points to avoid overlapping. 
Segmentation based vehicle detection methods [4-6] can 
partially overcome this drawback with better spatial-
contextual information utilization, and predict a better region 
fitted with the vehicle contour. But segmentation on large 
high resolution image can be very slow, and the appropriate 
segmentation scale is hard to choose. On the other hand, 
methods based on explicit model pre-estimate the vehicle 
geometry by constraining the local feature sampling region, 
which is often squared [7], rectangular [8,9] or elliptic [10].  
Such sampling pattern is often termed as sliding window, 
and their derivations are mainly focusing on optimal feature 
selection [11,12] and ideal feature classifier tuning [8]. 

This paper tries to improve the detection efficiency of a 
fast sliding window based cascaded vehicle detection method 
proposed in [8], which originally uses a bundle of single-
orientation sensitive binary classifiers to enhance the 
rotation-invariant localization and orientation angle 
discrimination. But the independent predictions from binary 
classifiers are not good at distinguishing adjacent orientation 
angles and confusing subsets, so this increase in 
computational cost with extra classifiers does not always 
promise a better performance. In this paper, a novel method 
based on Multiple Instance Learning (MIL) is proposed to 
categorize these confusing orientations and subsets by 
examining the local pattern correlations between samples 
with specific location deviations and orientations at local 
detection window regions.  Finally, N-nary multi-class 
classifiers instead of binary classifiers are used to predict 
these categories for better discrimination on their subtle 
relationships.  Experiments show the advantage of this 
method in better localization and orientation estimation. 

II. IMPORTANCE OF LOCAL WINDOW REGION 

Intuitively, the features from some local detection 
window regions are more discriminative for samples with 
specific location deviation or orientation angles. As will be 
shown in this section, such kind of discrimination can be 
quantitatively evaluated by using Multiple Instance Learning 
classifier. 



Figure 1.   Definition of the bag and instance for local region based 
positional correlation estimation. 

A. Multiple Instance Learning on Local Window Region 

Multiple Instance Learning (MIL) is a machine learning 
concept derived from supervised learning. In MIL, labels are 
incompletely provided for unit called bag, which consisted of 
multiple data points called instances. A bag is recognized as 
positive if only one of its instances is positive. The goal of 
MIL is to train a classifier to predict the label or positive 
probability of a new bag and its instances, given the data of 
its instances. This attribute is useful for showing the 
importance of local region feature in predicting the positional 
positive likelihood of a given image sample. 

As being shown in Fig. 1, the image patch from one of 
the N  detection windows is designated as bag i , and the 

local features from one of the K  local region k  as instance 

 ,i k  . In order to correlate local region with vehicle 

detection importance in MIL based estimation, the original 
feature vector is additionally indexed with its local 

coordination as    ,, ,ki k i k        . MILBoost [13] 

is choosen as the MIL classifier here, which is based on the 
boosting framework with its loss function defined as 
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In (1), ip  is the positive probability of image i , and iy  
is ground truth label. During training, this loss function is 
minimized by estimating the positive probabilities of 
instances related with the probability of the bag in 
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Where in (2), k
ip  is the positive probability of the k-th 

instance in bag i . This probabilistic XOR definition 

ensures the positive probability of bag ip  increases as long 

as any of its instances’ positive probability k
ip is increased. 

So after the MILBoost classifier is trained with instance 

feature value  ,i k   and correlated bag label iy , it is 

rerun on the training data and get the positive probabilities of 

the instances as   Pr ,k
i i i kp    . 

Figure 2.  Importance of local regions with sample orientation in location 
estimation, greater importance has bigger square. 

B. Subset Correlated Importance for Local Regions 

The positive probabilities { }k
ip  from previous subsection 

shows localization importance of local regional feature for 
each instance, which can be integrated by Bayesian rule to 
show the correlation between local feature region k  and 

specific orientation i  or any sample subsets.  For example, 

denoting the group of images with orientation i  as ( )iG  , 

and conditional probabilistic correlation between k  and 

( )iG   as Pr( ( ) )i kG   , then this probability can be 

calculated by marginalizing the probabilities of positive local 
features as in 
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In (3),   Pr ,i k   is the distribution probability of 

one feature value at local region k  from one image i  in 

group  iG  , which can be approximated by the reciprocal 

of set size  iG   as     Pr 1/,i k iG   . The 

resulting local region importance with a certain orientation 
angle has been shown in Fig. 2, where two set of local 
regions are sampled from the squared inner region and 
middle region. Greater importance is illustrated with bigger 
red square. As can be seen, important regions lay along the 
main vehicle center line. Such calculation and visualization 
can also be made for any arbitrary sample subset. 



Figure 3.  The 3 step confusing orientations and subsets clustering. 

III. ORIENTATION AND SUBSET SENSITIVITY AT LOCAL 

DETECTION WINDOW REGIONS 

So equipped with the conditional probability of local 
regional feature to image patches k

ip  and the calculated local 
region significance for sample groups to specific orientation 
Pr( ( ) )i kG   , now it is possible to split out confusingly 

correlated orientations and subsets based on different local 
regions clusters. Once these orientations and subsets are 
found, they are assigned as the categorical outputs of several 
multi-class classifiers. Thus, ideally, each N-nary multi-class 
classifier is responsible for disentangling one set of inter-
class relationships. 

A. Three Step Orientation and Subset Clustering 

Assuming there are M  multi-class classifiers need to be 
built, then based on the methodology described in above, M  
varied set of local regions should be found. But finding the 
collection of distinctive local regions can easily fall into a 
chick and egg dilemma, since they can only be differentiated 
by the orientations and subsets they are more likely 
correlated with. So in compromise, an even splitting on 
orientation angles set is made as the prior information for 
local region clustering. This results in a 3-step procedures 
clustering method presented in below, and shown in Fig. 3 as 
three functional blocks. 

STEP 1, even orientations splitting with adjacent angles: 
suppose the 360 degree orientation range has been evenly 
quantized into R categories as   { | 1... }i iR

i R   , then 

the splitting in this step generates M orientation subsets 

{ | 1... }j j M  ,  where the angles in each j  are adjacent, 

and properties  
1

M
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
  and i j    hold for the 

clusters. Denote the group of positive samples with 
orientation fall within j  as ( )jG  , now the local regional 

positive probability of k with ( )jG  can be calculated 

similar to Equation (3) as in 
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STEP 2, local region collection based on hierarchical 
binary combination: for each orientation cluster j , T  most 

correlated local regions are collected through a 1T  step 
hierarchical binary combination. At step t for j , one of the 

remaining ( 1)K t   local regions is tentatively combined 

with the 1t  selected regions 1ˆ { | 1... 1}t
j k k t     , then 

the region t
j  with the highest probability 1ˆPr( )t t

j j j    

is selected to merge with existing ones. Since the conditional 
probability for region combination cannot be directly 
calculated from Bayesian rules, a “minimal-of-two” 
combination rule is devised as in 
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Where in (5), 1( , )ˆ t t
i j j     is the combined feature 

vector of the 1t  selected regions with region t  from image 

j , 1
,ˆ t

i jp  and ,
t
i jp are the abbreviations for the probabilities 

1( , )ˆPr( | )t
i i j  and ( , )Pr( | )t

i i j  . Equation (6) 

shows the method to calculate the conditional probability of 
the t  local regions collection ˆ t

j  for the cluster j , the 

completed T collection ˆT
j   is abbreviated as j  in Fig. 3. 

STEP 3, confusing orientations and subsets clustering 
based on local region collections: based on the M local 
region collections { | 1... }j j M  from STEP 2, the instance 

level probabilities Pr( | ( , ))i i j   are caculated between 

each image patch and every region collection. After that, the 
probability Pr( | )i j   between every orientation angle and 

region collection is calculated in similar way as in Equation 
(3) and (6), and the orientation i  is assigned to the region 

collection j  with the highest Pr( | )i j  , where duplicated 

assignments are skipped. This forms M  new orientation 

angle cluster ˆ{ | 1... }j j M  , where size of new angle 

cluster equals to the old ones, and the splitting properties  
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for each new cluster, the positive samples with other 
orientations and the negative samples are split into subsets 
based on manually set thresholds on the instance level 
probabilities Pr( | ( , ))i i j   , denoted as ˆ( )jPos   and 

ˆ( )jNeg  . Finally, the orientation cluster and subsets for the 

new cluster ˆ
j  are made the categorical outputs for a multi-

class classifier ˆ ˆ ˆ: { , ( ), ( )}j
m j j jf x Pos Neg   .  

B. Localization and Orientation Estimation based on 
Predictions from N-nary Classifiers 

The final localization prediction is made by a binary 
classifier using the classification confidence from the 
M base multi-class classifiers { | 1... }j

mf j M . And for 
those samples being predicted as positives, an extra N-nary 
classifier is applied to give out the orientation category labels. 
The binary classifier for localization is chosen to be the 
AdaBoost.M1 classifier. While for the N-nary orientation 
estimator, an Artificial Neural Network with one hidden 
layer is adopted in consistency with [8]. 

IV. EXPERIMENTAL RESULTS 

A. The Munich Dataset and Data Augmentation 

The proposed classification scheme is compared with 
others on the same Munich dataset as in [8]. It contains 20 
high resolution aerial images at size of 5616 x 3744 with 
ground spatial definition (GSD) up to 13 cm taken by the 
Canon Eos 1Ds Mark III camera system. The dataset is 
originally split in half for training and testing, and in order to 
achieve more accurate evaluation for the performance 
divergence between different classification schemes, 48 x 48 
sized image patches are manually extracted at all possible 
sliding window locations to build training and testing image 
classification datasets. The gotten image patches with 
window to vehicle center deviation greater than 3 pixels are 
marked as negative, and the orientations for positives are 
evenly quantized into 16 categories with 22.5 degree spacing. 
Furthermore, every positive image patch is rotated to the 
other 15 directions for data augmentation, and the positive to 
negative quantity ratio are set to be 1:5 and 1:10 for the 
training and testing datasets. 

Such configuration aims for enhancing the evaluation on 
orientation prediction performance, ensures every different 
classification scheme is trained and tested on data sets with 
same quantity of location deviations and orientation 
variances. The negative definition by fixed pixel variance 
eliminate the randomness post-processing procedures such as 
non-maximal suppression, thus making the comparison less 
prejudiced. 

B. Local Regional Features and Classifier Aggregations 

The feature type for local regions are chosen to be HOG 
with 9 bins, which can be approximated in a fast manner by 
ICF as being introduced in [8]. These local feature regions 

are sampled from the inner and middle regions shown in Fig. 
2. Where in inner region, HOG features are of size 4 x 4, 
sampled at step length 2 in a 4 x 4 spatial grid. HOG features 
from middle ring are of size 6 x 6 along the edges, with 9 
equally spaced along each side. This result in 52 local HOG 
features with total feature dimensions 52 x 9 = 468. 

To facilitate description, abbreviations for conventional 
classification schemes by binary classifiers and proposed 
scheme by multi-class classifiers are listed in Table. 1. 

TABLE I.  CLASSIFIER AGGREGATION NAMING ROUTINE 

Name Meanings 

N x Bin. 
Classifier aggregation with N binary classifiers, each is 
sensitive to a specific range of orientation. 

M x Mul. 
(A/R) + mP 
+ nN 

Classifier aggregation with M N-nary multi-class 
classifiers, each classifier predicts a cluster of 
orientations, along with m splitting on positives with 
other orientations and n splitting on negatives. The 
trailing (A/R) indicates whether the angles in the 
orientation cluster are adjacent or re-organized. 

Figure 4.  Precision-Recall curves between binary and multi-class 
classifier aggregations in localization. 

Figure 5.  Precision-Recall curves of different multi-class classifier 
aggregations in localization. 



C. Localization Performance Evaluation 

With the augmented image classification dataset, 
localization evaluation is equivalent to positive negative 
binary classification assessment. So the classification 
schemes are compared by their Recall to Precision curves in 
Fig. 4 and Fig. 5. As in Fig. 4, for conventional classification 
scheme with binary classifiers, the increase in number of 
classifiers does not guarantee better localization performance. 
For instance, the classifier 11 x Bin. shows worse precision 
at high recall range compared with 6 x Bin. In contrary, the 
increased number of classifiers improves the accuracy for 
our proposed scheme with multi-class classifiers, since more 
N-nary classifiers provide richer information on more 
confusing subsets and orientations. Moreover, the 
reorganized orientations in “5 x Mul.(R) 1P1N” and “6 x 
Mul.(R) 1P1N” shows better performance than adjacent 
orientation clustering in “5 x Mul.(A) 1P1N” and “6 x 
Mul.(A) 1P1N”. Benefits of extra splits on negatives and 
other positives are shown in Fig. 5. As can be seen, increased 
splits on negative samples will improve the precision at high 
recall range, while splits on the other positives will improve 
the prevision at lower recall range. While total classifier 
number increase brings overall performance improvements. 

D. Orientation Estimation Performance Evaluation 

Orientation estimation accuracies for methods based on 
pure HOG feature or multi-class confidence scores are 
compared in Fig. 6, in which X-axis shows the quantized 
orientation estimation errors ( 0   means correct 
prediction with zero categorical deviation), and Y-axis shows 
the number of elements under each estimation error. As 
being shown, for all three estimation schemes, the most 
errors lie in 1  and 8   (with 180 degree flipped) 
category. While the “6 x Mul.(A) 1P1N” and “6 x Mul.(R) 
1P1N” based on N-nary classification scores generally better 
than tat based on Raw HOG feature, and the orientation re-
organization also improves the angle prediction accuracy. 

Figure 6.  Orientation categorical deviation histogram between real and 
estimated orientations from different orientation estimation schemes 

V. CONCLUSION 

In this paper, a fast cascaded sliding window based 
vehicle detection algorithm is improved by using N-nary 
multi-class classifiers to model confusing relationships 
between subsets and vehicle orientation angles. These 
relationships are measured by Multiple Instance Learning 
based evaluation of positive confidence at local detection 
window regions. Correlated experiments show significant 
improvements in localization and orientation prediction 
performances for the resulting algorithm. Future efforts will 
focus on classification speed acceleration for real-time 
calculation with the reduced number of N-nary classifiers. 
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