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Abstract—High resolution aerial image based vehicle 
localization and categorization methods are crucial for many 
real life applications. Convolutional neural network based 
classifiers have already achieved very high performances, but 
are still suffering from the problem of class imbalance. To 
address this issue, an efficient bi-parted style network 
extension scheme based on a class-imbalance aware loss 
function is proposed.  This novel loss function is devised by 
adding an extra class-imbalance aware regularization term to 
the normal softmax loss, and will force the feature maps in the 
extended network structure to be more sensitive to samples 
from the minority classes. This network extension is compared 
with its strong equivalent counter-parts in experiment, and 
comparably significant improvements on the minority classes 
can be observed. 

Keywords-high resolution aerial image, vehicle detection, 
vehicle categorization, convolutional neural network, class-
imbalance 

I.  INTRODUCTION 

Compared to images from ground-set traffic cameras, 
aerial images have a greater continuous visual coverage, 
which makes them extremely helpful for applications such as 
large range traffic surveillance or multi-target tracking. The 
vehicle localization and categorization methods being 
developed based on them can be of essential importance for 
traffic flow structure analysis and other similar tasks. Despite 
of its greatness in coverage range, vehicles in a typical aerial 
image with ground sampling distance (GSD) around 0.13m 
are still very small, whereas a small private car can be only 7 
to 9 pixels in width. This largely limits the amount of 
imagery information available for classification, and imposes 
a stricter constraint on the permitted deviation during 
localization. Because of this, any vehicle categorization 
result corresponded to a predicted position with deviation 
more than 4 pixels can regarded as erroneous. Thus in order 
to eliminate the cascaded error from the preceding 
localization in procedure, these two prediction processes are 
combined and performed in a joint manner by a 
convolutional neural network (CNN) based multi-class 
classifier. But such arrangement still cannot escape from the 
ubiquitous problem of class-imbalance, which actually 
means, in this article, having far more negative samples than 

the positive ones, and the quantities of vehicle belonging to 
different categories are highly imbalanced. 

In the literature, the term vehicle localization is also often 
referred as vehicle detection when only position estimation is 
considered. The existing solely position targeted studies are 
numerous, and mainly base on two types of models: the 
explicit model and the implicit model. The implicit models 
generally refer to methods that locate vehicles or their 
components by using local features such as SIFT [1], LBP [2] 
or image objects [3]. Although can be be fast and efficient 
when tailored appropriately, they often have a more severe 
multi-detection side-effect which require a more challenging 
re-bundling process. Methods based on explicit model make 
detection via using fixed-shaped sliding window with 
comparable scale to the vehicle. By extracting features from 
that window, e.g. Haar [4], HOG [5],  vehicle locations can 
thus be generated by sliding over the region of interest with 
pre-defined stepping pattern. 

Unlike vehicle localization, studies on aerial image based 
vehicle classification are barely numerable [6,7,8]. All three 
studies isolate the localization and categorization procedures. 
Specifically, in [6], vehicles and their components are 
localized by image objects, and their types are predicted 
based on sizes of the objects. Locations in [7,8] are gotten 
using sliding window and categorization is done based on 
features including HOG, LBF and HF etc. 

The problem of class imbalance is a common problem in 
classification, and many insightful articles and reviews have 
been accumulated on this field by far. The existing methods 
can be roughly divided into three categories: data-level, 
algorithm-level and the hybrid ones [9]. The data-level 
methods focus on alternating the distribution of training 
samples, balancing the sampling ratio from different classes 
during training. Representative methods include the SMOTE 
[10] and many of its variants. The algorithm-level methods 
mainly focus on alleviating the bias on majority classes by 
alternating the cost function to assign greater penalties on 
samples from the minority classes in training. Another 
important branch in the algorithm-level solutions is one-class 
learning, which focuses on improving classification 
performances on a single subset of samples. The hybrid ones 
mix the previous two to improve the sampling scheme and 
learning algorithm, maximize the efficiencies by taking both 
advantages. 



 Figure 1.  The straightforward network extension scheme. 

In this article, the class-imbalance problem is addressed 
via bi-parted extension to a typical convolutional neural 
network (CNN), where a novel class-imbalance aware loss 
function is proposed to maximize the improvement 
efficiency on the minority classes from the extra structure. 
Experiments show significant improvements in minority 
classes with equivalent or even smaller sized network 
extensions. Finally, there are some similar works need to be 
mentioned. Unlike the other bi-parted extensions [11-13], the 
extension employed in this article mainly focuses on 
achieving a cost-effective extension with less overhead while 
more efficiency.  The principle of our loss function 
modification is very similar to that in paper [14], but the 
proposed one in that paper is for binary classification 
problem, and cannot be directly applied to multi-class ones. 

II. THE SOFTMAX LOSS FUNCTION AND THE CLASS-
IMBALANCE AWARE LOSS TERM 

A. The Bi-Parted Network Extension and the  Softmax 
Loss function 

As has been suggested in paper [15], the magic behind 
the power of CNN based classifier is representation learning, 
by which each convolutional kernels is formed as a robust 
model of a specific texture pattern modeling the samples in 
different classes. And by employing the varied valued 
positional activations produced by these kernels in their 
corresponding feature maps, the trailing fully-connected 
layers in the network make categorical predictions on the 
given image samples. Therefore, if more relevant kernels are 
provided and trained for samples belonging to the minority 
classes, their classification performances will be improved. 

Following this logic, a straight-forward solution for 
improving the classification performance on those minority 
classes is to simply increase the number of kernels in the 
convolutional layers, especially the last one at the top of 
network with its generated feature maps having direct links 
to the hidden neurons in the trailing fully-connected layers. 
As has been shown in Fig. 1, in which a typical CNN 
structure with 5 convolutional layers is extended with 3 new 
convolutional layers E-CONV3, E-CONV4 and E-CONV5. 
This CNN structure is used as the baseline in the experiment 
analysis part in experiment, and the extension is treated as a 
strong counterpart for the improved efficient extension 
scheme proposed in this paper. 

But the categorical assignment of these newly added 
kernels is determined by the behavior of the loss function 
being employed for network optimization, which in this case, 
the softmax loss is usually employed. The softmax loss is 
derived from the softmax function which transforms the 
vector values z  from the fully-connected layers onto a 
Bernoulli probabilistic distribution. The definition for 
softmax function is given in Equation (1). 
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In (1), iz is the categorical estimation value on class 
i from outputted vector z . During training, this log format 
of this probability function is taken as the loss function being 
imposed on the categorical label of the given sample, which 
is defined in Equation (2), and is minimized by gradient 
descend based method. 
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Where in Equation (2), ŷ and y  are the predicted and 
true categorical label for the given image sample, and 

 softmax
i

z  is the softmax value on the true class index, 

which is i  in this case. As can be seen by the definition of 
softmax loss function, it tends to give the same magnitude of 
penalties on all classes regardless of their majority or 
minority properties. 

B. The Main-Side Loss Function for Class-Imbalance 

According to the analysis in previous section, the major 
problems in the simple extension scheme is the evenly 
updating propoerty of the original softmax loss. Based on 
this issue, a simple modification is performed in the hope of 
improving the minority class sensitivities of the kernels in 
the extended network structure. To achieve this goal, as 
being illustrated in Fig. 2, the extended network structure is 
completely isolated from the main body of the original 
network structure, where an independent one-layered fully-
connected layer is assigned to it for generating the 
categorical probabilities from the newly added feature maps. 



 Figure 2. The principal structure of the Main-Side Network extension scheme. 
For clarity, the original and extended network components 
are abbreviated as the Main and Side Networks. For the loss 
function being shown at the right-most of the figure, it is 
defined in Equation (3). 
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In (3),  *,f z z  is actually the summation *z z  of 

the categorical estimation values z and *z  from the Main 

and Side Network.   *, ,L f yz z  is the softmax loss, and 

the term  * z  is an extra penalty correlated solely with the 

output *z . This ensures the numerical differences between 
the updating differences for the Main and Side Networking 
used during training, with their  back-propagation values are 
given in Equation (4). 
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As can be seen from (4), the updating difference for the 
Side Network is almost the same as that for the Main 

Network, except for the trailing 
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term  * z  acts as a controlling factor to change the 

penalization values on different classes. Recalling that the 
softmax loss is to be minimized during training, 

 * z should be high on samples from majority classes and 

low on those from minority classes. This regulation can also 
be interpreted as to achieve the highest classification 

improvement with the minimal amount of probability 
rectification from the Side Network. 

Base on this intuition, the controlling penalization 

 * z  is defined as a weighted Norm-2 penalty for the 

categorical estimation outputs from the Side Network, as in 
Equation (5) and (6). 
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In (5), the operator   represents the element-wise 
multiplication of vectors, and the 

2
   is the Norm-2 

operation. The categorical penalization coefficient vector 

 j   is defined as the composition of the categorical 

classification accuracies measured by the Main Network, and 
the X  is the set of input image samples on which class-wise 
accuracies are evaluated. Such definition ensures that the 
penalizations are greater on the majority classes which have 
already been well classified. 

Moreover, since there are only output neurons equivalent 
to the number of classes in this fully-connected layer in the 
Side Network, less connections are needed to connect with 
those extended feature maps, by which parameters are saved. 

C. The Three Penalization Schemes and ReLU Positive 
Constraint on the Side Network Probabilities 

Since the categorical penalization coefficients are based 
on the class-wise classification accuracies by the Main 
Network, there are several ways to calculate it by changing 
the obtaining scheme for the set of image samples X . In 
this article, three major calculation schemes are analyzed, 
which are listed in Table. 1. 



Figure 4. Influences of the coefficient  on the averaged accuracies. 

Figure 3. Influences of the coefficient  on the averaged accuracies. 

TABLE I.  THE THREE PENALIZATION MODES 

Schemes Descriptions 

Global 
Calculate the class-wise accuracies based on all the 
training samples by the original network. 

Local 

The training samples are firstly clustered in the 
probabilistic space by the original network, and local 
classification probabilities are calculated on the 
clusters, where the penalization coefficients will be 
adjusted locally according to this clustering scheme 
during training. 

Batch-wise 
Class-wise classification accuracies are calculated 
from the training sample mini-batch, which will 
change dynamically during the training. 

Both the global and local penalizations are calculated before the fine-tuning of the network. 

 These schemes represent typical accuracy evaluations 
performed either globally or locally, all has its own 
advantages and disadvantages. For the global version, it 
lacks enough flexibility for accuracy variances in the local 
probability space. The local version based on clustering 
partial overcomes this problem, but is still based on an 
accuracy evaluation executed before the fine-tuning process 
starts, and can become inappropriate as probability space 
changes during training. The batch-wise version keeps an 
alive tracking of the local accuracies but might be too 
flexible for a stable optimization. 

Another important factor to consider is whether a ReLU 
layer should be used as the positive constraint on the 
likelihood values given by the Side-Network. Without such 
constraint, likelihoods from the Side Network can be 
regarded as a fluctuated adjustment with constrained 
magnitude. But when this ReLU layer exists, Side Network 
likelihood can be regarded as a positive increment on the 
estimations where deficiency in probability exists. 

III. EXPERIMENTAL RESULTS 

A. The Data Set and the Networks Extension Counterparts 

The proposed extension scheme is compared with others 
on the Munich dataset [7]. It is an aerial image dataset with 
20 high resolution aerial images at size of 5616 x 3744 with 
ground spatial definition (GSD) up to 13 cm. To facilitate the 
analysis and comparisons, uniformly sized image crops at 48 
x 48 are manually extracted at all possible sliding window 
locations to as the training and testing samples. For these 
image patches, those having patch to vehicle center greater 
than 3 pixels are marked as negatives, while for the rest 
positive ones, four types of vehicles are considered in this 
study: sedan, station wagon, van and working truck. The 
quantity occupation ratios for them in the training set are 
23.06%, 66.96%, 9.10% and 0.88%. The orientations for 
these positives are evenly quantized into 16 categories with 
22.5 degree spacing, and all of them are rotated to the other 
15 directions for data augmentation. 

All experiments are done on a personal computer with i7 
4970k CPU and a GTX 960 GPU based on the Caffe CNN 
computing framework. The baseline network (Orig.) used for 
extension and experimental analysis is VGG-M with 5 
convolutional layers. The simple form of extension (Simple 
Ext.) is the same as in Fig. 1 as the three new untrained 

convolutional layers, where every one of them has 128 
kernels. Whereas or the Main-Side Network bi-parted 
extension, an extra fully-connected layer is placed above E-
CONV5 to produce the likelihood *z . Parameter and 
memory sizes of these extensions are listed in Table. 2, 
where the extension M-S Ext. has almost the same parameter 
size as the Orig., much smaller than Simple Ext. version. The 
memory consumption, on the other hand, is a little higher in 
the case of using Caffe implementation framework. 

TABLE II.  THE PARAMETER AND MEMORY COSTS FOR DIFFERENT 
NETWORK EXTENSION SCHEMES 

Size / Net Orig. Simple Ext. M-S Ext. 

Param. (Mb) 361.7 439.6 362.2 

Mem. (Mb) 1820 1988.4 1977.4 

Parameter and memory costs are measured based on outputs from  Caffe framework. 



B. The Influences of the Coefficent   , The Tree 
Penalization Schemes and the ReLU Layer 

The influence of the penalization coefficient   on the 
averaged accuracies and the F1 scores is shown in Fig. 3 and 
Fig. 4. As can be observed from Fig.3, for all three 
penalization modes with or without the ReLU constraint, 
averaged accuracies increase as this coefficient   decreases. 
It is because the penalization on the Side Network likelihood 
goes weaker. In contrary, as in Fig. 4, the influence of   on 
F1 scores is less significant, as they all carry a fluctuation 
pattern around a fixed value. The influences on accuracies 
from the ReLU layer is also not significant, and it turns out 
only to strengthen the fluctuations on the F1 scores when it 
exists. 

C. Extension Efficiency Compared to Strong Counterparts 

As being listed in Table. 3 and Table. 4, the proposed 
Main-Side Network Extension scheme (M-S Ext.) has 
achieved almost all the highest rank in accuracies and F1 
scores, and the occurrences of the out-performances 
generally appear on the moderately sized minority classes, 
e.g. the Sedan, Van classes. Considering the M-S Ext. 
extension scheme has smaller parameter and memory 
consumption overheads, the proposed extension scheme is 
more cost-effective than the simple version Simple Ext.. 

TABLE III.  COMPARISONS OF THE CLASS-WISE ACCURACIES 
BETWEEN COUNTERPART NETWORKS 

Class / Net Orig. Simple Ext. M-S Ext. 

Negative 96.83% 97.20% 97.30% 

Sedan 58.40% 63.38% 63.87% 

Station Wagon 81.81% 82.13% 81.67% 

Van 90.11% 91.92% 92.66% 

Working Truck 69.72% 74.52% 72.78% 

The highest and second highest values are marked by bold and underlines.. 

TABLE IV.  COMPARISONS OF THE CLASS-WISE F1 SCORES BETWEEN 
COUNTERPART NETWORKS 

Class / Net Orig. Simple Ext. M-S Ext. 

Negative 0.9791 0.9822 0.9820 

Sedan 0.6247 0.6474 0.6474 

Station Wagon 0.8010 0.8245 0.8273 

Van 0.8422 0.8459 0.8505 

Working Truck 0.5435 0.5666 0.5556 

The highest and second highest values are marked by bold and underlines... 

 

IV. CONCLUSION 

In this paper, a cost-efficient network extension scheme 
is proposed to address the issue of class-imbalance in the 
joint vehicle localization and categorization problem. The 

extended network component is trained by a novel class-
imbalance aware loss function to be more sensitive to 
samples from the minority classes. The resulting extension 
has less parameter and memory consumption overhead and is 
capable of achieving equivalent or higher classification 
performances. Future work will be focused on feature map 
selection to further reduce the extra convolution cost from 
the newly added convolutional layers. 
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