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Abstract—Neuronal networks reconstruction is a big challenge
in the neuroscience. Recent developments in volume electron
microscopy (EM) imaging have enabled us to obtain large
amounts of brain tissues image data. Analysis of the tremendously
huge neuronal EM images based on automated method would
be of vital importance. In this paper, we propose a method that
Deep Convolutional Neural Network (DCNN) is used for neuronal
boundary detection; and then, with the membrane detection prob-
ability map (MDPM) generated by DCNN, a marker-controlled
watershed method is applied to segment neurons in the EM
images over the MDPM. Semi-automated and fully automated
3D reconstruction methods are employed to connect the sections
of the corresponding segmentations belonging to each neuron.
Finally, we have reconstructed dense neurons in 8000×8000×1796
consecutive EM images stack of drosophila mushroom body with
resolution of 4nm×4nm×50nm with automated method and several
sparse neurons with semi-automated method.

Index Terms—Neuronal networks reconstruction, DCNN, wa-
tershed, neuronal boundary detection, drosophila mushroom
body.

I. Introduction

The relation between the structure and brain function is
still poorly understood. Neuroscientists are willing to look into
the fine structure of neuronal networks. Electron Microscopy
(EM) has become one of the main tools for the acquisition of
neuronal image data, which at synaptic resolution of several
nanometers. Roughly, 1mm3 volume of brain tissue generates
about 2000TB EM image data and the whole mouse brain
generates about 60PB. Analysing the magnanimity neuronal
EM images and reconstruction of the neuronal networks, i.e.,
connectome(connectomic), have become a big challenge [1, 2].

Much work has been done to the reconstruction of neuronal
networks [5–7], where [5] invented the automated tape collect-
ing ultramicrotome Scanning Electron Microscopy (ATUM-
SEM) which is currently one of best methods suited for
dense reconstruction of substantial volumes of neuronal tissue
at synaptic level. Jain [8] emphasized that machine learning
would be crucial technology for connectomics. Deep Neural
Network (DNN) [9], especially, Deep Convolutional Neural
Network (DCNN) [10] performs well in settings with little
prior algorithmic knowledge about the classification task.
The automatic analysis of large scale of data with artificial
intelligence (AI) techniques has become such a heat point that
machine learning has been used in the EM image analysis, such

as mitochondria segmentation [11] and synapse segmentation
[12]. On the whole, in terms of reconstruction, the data analysis
procedure can be divided into three steps: (1) EM image
stitching [13]; (2) neuronal segmentation in 2D EM image;
(3) neuronal networks reconstruction. neuronal segmentation
relies on the image segmentation [14],which is based on
the detection of membrane over EM images. For membrane
detection, [15] used the artificial neural network (ANN) as the
pixel-wise classifier, which got a stencil of pixels surrounding
the pixel as the input. The ANN classifier got binary outputs
that labeled the membrane after trained on large amounts
of data. However, many uncontrollable issues result in the
homogeneous of neuronal boundaries color distribution in
the stage of sample preparation and imaging under electron
microscopy. The high overlapping of color distribution of
intracellular and extracellular as well as the membranes cause
it hard to get the characteristic description of the neuronal
boundaries accordingly difficult to segment [7].

Connectome research (connectomics) has a number of com-
peting objectives. On the one hand, investigators prefer an
organism small enough that the connectome can be obtained in
a reasonable amount of time, this argues for a small creature.
On the other hand, one of the main utilities of a connectome
is to relate structure and behavior, so an animal with a large
behavioral repertoire is desirable. It’s also very helpful to use
an animal with a large existing community of experimentalists,
and many available genetic tools. Drosophila looks very good
on these counts [3, 4]. After preparation, a sample of the
drosophila brain tissue is typically cut into 50-nanometers
slices by the ATUM, each slice is then recorded as a 2D
grayscale image in the SEM with pixel size about 5nm× 5nm.

Our work uses the DCNN to get MDPM, based on which
marker-controlled watershed is utilized to segment the neurons
on the 2D EM images. The watershed performs well on
the image segmentation despite the weak boundaries, howev-
er,it easily produces over-segmentation. By using the marker-
controlled watershed on the MDPM, we get considerably fair
segmentation results. Having got the segmentation, we connect
the segmentations in sequence of images which are stitched
by [13] to form the 3D reconstruction of neuronal networks.
Our automated approach is effective that it rarely relays on
manual operation, able to generate dense neuronal recon-
struction simultaneously, which is mainly based on adjacent



connection between pair of consecutive neuron segmentations;
our semi-automated approach relays on the manual labeled
neuron skeletons, with which, we can produce sparse and
fine reconstruction. With our proposed method, we segment
the neurons on the 2D EM images from drosophila brain
cortex and drosophila mushroom body, on which our method
shows fairly fine performance; In the following sections, we
will describe our method in detail and some experimental
results of the method. Finally, we will show parts of the
automated reconstruction results of the drosophila mushroom
body neuronal networks.

II. Neuron segmentation method
In this section we will describe the neuron membrane detec-

tion method based on the deep convolutional neural network
and watershed based segmentation method. In the following,
we will describe in details the procedure and work flow of
those methods in subsections.

A. Boundary description

The segmentation of neuron is the base of reconstruction
of neuronal networks. Neuron is a type of special cell, whose
boundary is the membrane and the neural structure can also be
separated by the membrane. Our segmentation method is based
on the detection of membrane, which contours the internal
segmentation of a neuron. We will firstly give the explicit
definition of membrane namely the neuronal boundary in the
EM image. Supposing a given point (x, y) that belongs to the
membrane of neuron Neui in the EM image, the membrane
can be defined as

M(Neui) ={(x, y)|(x, y) < intra&&(x, y) < extra
&&d(M(Neui)) ∩ intra , ∅},

(1)

where M denotes the pixels set of membrane that belongs to
the neuron Neui on a slice of EM image, intra and extra is
the shorthand of intracellular and extracellular that present the
inside and outside of the cell respectively. On the EM image,
the membrane is the connected image area that is stained
contrast the other portion which can be labeled by experts
showing in Fig. 1.

Fig. 1. Boundaries between the extracellular and intracellular regions or
between intracellular regions.

Intracellular space and extracellular space are separated by
membrane which usually has some unique features in the EM
images. In some neural tissues, most of the neural structures
densely bunch together where neural regions are tightly ad-
jacent to other neighbour neural regions in EM image. The
membrane becomes the only separation between neurons while
no extracellular portion. There is a visual illustration in Fig.
2. In this case, we can define the boundary of cell similar to
[16]. Supposing there are a set of non-overlapping neural seg-
mentations C = {ci} from a 2D EM image, where ci is the set
of pixels of segmentation related to the certain neuron. Denote
ei as the area (connected pixels set) that expands from ci to all
the edges of neighbouring neurons segmentations c j, j∈Ni , where
Ni denotes the neighbouring neural segmentations adjacent to
neuron i. In this case, the boundary of membrane between ci

can be defied as
M(ci) ={(x, y)|(x, y) ∈ d(ci)&&

d(ci) ∩ c j, j∈Ni , ∅&&(x, y) < d(ci)},
(2)

where d(·) denotes the expanding function which can be used
to expand the ci to ei until ei is adjacent to the edges of c j, j∈Ni

and intersect with all the c j, j∈Ni regions. In practice we can
use the image dilation operation as the expanding function.
Similar to ci, c j, j∈Ni can also be expanded as in equation 3.

M(c j, j∈Ni ) ={(x, y)|(x, y) ∈ d(c j, j∈Ni )&&
d(c j, j∈Ni ) ∩ ci , ∅&&(x, y) < d(c j, j∈Ni )}.

(3)

Accordingly, the boundary between ci and c j, j∈Ni can be defined
as:

boundary(ci, c j, j∈Ni ) = M(ci) ∩ M(c j, j∈Ni ). (4)

After all, we can define the boundaries between all the pairs
of segmented neuronal regions in the 2D EM images. In the
following, we will describe the feature of boundary at pixel
level.

B. Pixel-wise feature extraction

Our work is on the base of DCNN which is used as the pixel-
wise classifier. DCNN comes from CNN, the early work that
used convolutional neural network (CNN) is in the restoration

Fig. 2. Neurons that bunch densely together, c j, j∈Ni is one of the neural
regions adjacent to ci.



of EM image [17] where Jain used the supervised trained CNN
for low-level image processing that restoring noisy of degraded
images for segmentation. We use the DCNN to extract features
that can be used in the pixel-wise classification task, which
is the former step of neuron segmentation. DCNN learns
from large amounts of training data and can extract highly
abstract features by multi-layers of convolutions and non-linear
operations. DCNN is from CNN and composes of the deeply
hierarchical layers of the elementary layers of CNN. CNN is
kind of ANN and different from the general ANN, the most
important and basic layers of CNN are convolutional layers. In
CNN, the convolutional filter’s weights are replicated over 2D
space and the non-linear transformation is over the 2D plane
of output of 2D convolutions. The outstanding advantage of
CNN is weight sharing which comes from the fact that the
image statistics are stationary and combinations of features
that are relevant in one region of an image are also relevant
in other regions [18]. Because of the imposed weight sharing,
DCNN has been successfully used in many high-level image
processing problem, such as the image labeling problem. In
the following, our method will show that CNN can also be
used as a general method for low-level image processing of
image segmentation.

The Neuron membrane as the boundary of a neuron seg-
mentation is a set of pixels on the EM image, which can be
denoted as Mi. The detection of membrane is equivalent to find
the certain set of Mi on the image of I. In fact, because of the
similarities of pixels in Mi, the detection of membrane can be
transformed into the task of pixel-wise classification. To this
thought, we need to get the features of each pixel. For a single
given pixel point (x, y), we use its contextural information to
construct the features of this point, and usually the surrounding
pixels of this point is the natural contexture. The work of [15]
used a stencil centred around a pixel to extract it’s contexture
while the DCNN we use as the feature extractor can learn
directly from the image data and we extract a square image
block centred around a pixel point as its contexture which
illustrated in Fig. 3.

Fig. 3. Extracting a contexture square block of image centering a point.

As demonstrated in Fig. 3, for a given pixel point (x, y), we

(a) Original EM image (b) Ground truth

Fig. 4. Images used for obtaining labeled data set; (a): for generating
contexture of each point; (b): for generating label of each pixel.

get a square image block that centred around it with size of
l × l, using the raw intensity value of the block as the input
of DCNN. l is an odd number to enforce symmetry. When a
pixel is close to the image border, it’s square image block will
include pixels outside boundary of the image; in this case, we
firstly mirror along all the sides of the origin image the inside
boundary with ⌊l/2⌋ pixels. After mirrored the boundaries, the
origin image’s size will increase l − 1 in both sides. Thus, for
all of the pixels of the origin image, we can get a l × l image
block. The scale of l is dependent on the resolution of EM
image and the quality of EM imaging as well as many other
unknown factors; therefore, l is an adjustable parameter that
may have effect on the recognition accuracy.

C. Boundary recognition

In this subsection, we recognize membrane of neurons by
using DCNN, which is able to automatically extract high
level abstract features from the raw image intensity values.
As mentioned above, for every pixel point I(x, y), we can get
a square image block b as the contexture of that point and
label c of which according to manually labeled ground-truth.
By sampling on the labeled images, we can obtain an origin la-
beled data set T = {(b1, c1), (b2, c2), (b3, c3), ..., (bn, cn)}, where
subscript of b and c indicate the different samples. One of
the portions of labeled set T is used to train the DCNN. The
neuron membrane recognition model can be formulated as

c(x, y) = fcnn( f ea(I(x, y)))
c ∈ {0 : nonmembrane, 1 : membrane}

(5)

For any given pixel point I(x, y), we can use the extracted
features f ea(I(x, y)) that is from b of I(x, y) forwards through
DCNN trained hierarchical layers. The trained DCNN classifi-
er will predict the labels of instances from the another portion
of T .

1) Training procedure: Given some EM images, we man-
ually labeled the membrane with expert experience to get the
ground-truth as shown in Fig. 4 .

the pixel overlapped on the membrane is labeled to positive
samples, the others (intracellular and extracellular) are the



negative samples. There are approximately 1.5 million positive
instances from eight 1000×1000 training EM images. Because
of the sparsity of membrane, positive instances are 4 time
smaller than negative instances. In order to balance the positive
and negative samples, we use all the positive instances and
samples on the negative pixels to let ration of the number of
positive instances to negative equal 1; Finally, we obtained 3
million labeled data. we separate the labeled data to training
set about 2.5 million and validation set about 0.5 million.
We directly test on the testing images, thus, the testing set
is not needed. The validation set are not used in the training
but used in all the duration of the training processing; to
some degree, the validation is mainly used for us to observe
the generalization ability and helps us choose or modify
the training parameters. On the training processing, DCNN
converges after many epoches, However, the DCNN is not
convex function, thus it may converge to the local minimum
point or overfit on the training set; in this case, we will use
error testing on the validation set to modify training parameters
or do early-stoping for the sake of anti-overfitting.

2) Testing procedure: After the DCNN is trained, we get
the DCNN model as the pixel-wise classifier. The testing is
implemented directly on the test image Itest to get the predicted
label Ltest. According to the ground-truth Gtest of Itest, the test
error can be calculated with the formulation:

pixel − error =
sum(Ltest ⊙Gtest)

h × w
, (6)

where ⊙ denotes XOR operation, sum(Ltest ⊙Gtest) represents
calculating non-zero number of Ltest⊙Gtest, h and w denote the
hight and width of image Ltest respectively. The pixel − error
is the membrane detection error which will be used in the
evolution of segmentation.

In the most of binary classification tasks, there are usually
two probabilities to be calculated by the classifier:
(1): The probability of the pixel belonging to each class;
(2): Probability of a boundary dividing the adjacent regions. In
the graph cut [19], (1) was used as the unary and (2) as weight.
In our work we will mainly utilize the probability in (1). We
apply the DCNN that uses the so f tmax as the output layer to
the image membrane detection task. so f tmax is formulated as

so f tmax(a) = arg max
j

(
e−w j

ta∑
i

e−wi
ta ), (7)

where a denotes the feature vector of image x, wi is the regres-
sion weight vector, i, j denote the classes. The so f tmax outputs
class that has the maximum regression value. Initially, the
DCNN outputs a binary membrane detection map where each
pixel represents class; benefiting from the property of so f tmax,
we modify the output of DCNN in the test stage where we let
the DCNN outputs the statistic salience of membrane namely
the membrane detection probability map(MDPM)

Prob(a) =
e−w1

ta∑
i

e−wi
ta , (8)

with the MDPM, we can get the binary classified membrane
map by thresholding, however, there isn’t a global threshold
to get the finest membrane detection map. On the one hand,
our goal is to segment the neurons on the EM images, while
the binary map is not good enough for the fine segmentation;
On the other hand, membrane detection probability map filters
the most of the non-membrane portions which interfere the
segmentation and retains the weakly membrane yet. To this
thought, we apply post-segmenting algorithm on the MDPM.
In the next section, we will introduce the implementation of
segmentation on the MDPM with mark-controlled watershed.

D. Watershed segments neurons

The MDPM is the statistical salience of membrane on large
amounts of data to some degree. On the MDPM, binary map
can be obtained by thresholding. As mentioned above, if we
apply the global threshold on the MDPM, lots of detailed infor-
mation will lost ,which will result in the coarse segmentation
of neuron. Because of the fact that the weak and intense pixel
values intricately spread across the the MDPM which results
from non-uniform of membrane in term of intensity in color.
With big threshold, many membranes will be classified as non-
membrane, which results in unclosing of neuron membrane
and causes under-segmentation, while, with small threshold,
many interferences come out and cause over-segmentation.
Thus, as there is no good global threshold that solves this
dilemma, we consider using other segmentation method over
the MDPM.

MDPM reflects the membrane recognition salience of each
pixel of the EM image. The membrane is the boundary of
neuron based on which we segment the neuron on MDPM
by utilizing the watershed [20], which is sensitive to weak
boundaries and able to get segmentation line with width of
one pixel. Watershed method is on the base of morphological
operations and with regions growing from the seed points(often
set as the local minimums). The excessive local minimums on
the MDPM which result from the weak probabilities of weak
membrane or non-membrane cause sever over-segmentation if
we directly use the watershed algorithm over the local mini-
mums. Our algorithm overcomes the problem by utilizing the
marker-controlled watershed [21]. The segmentation procedure
consists of the following steps:
(a) Removing the small connecting bridges between otherwise
unconnected image regions by morphologically opening and
closing by reconstruction using a structure element on the
MDPM;
(b)generating the markers for watershed using a threshold on
the output of (a);
(c)Applying watershed algorithm on the output of (a) based
on the markers getting from (b).

III. 3D reconstruction method

For the reconstruction of neuronal networks structures, we
need not only to segment out the neurons on the 2D EM
stack of images but also decide which neuron each voxel
belonging to in 3D. In the 3D reconstruction of neurons, we



need accomplish the 3D segmentation at first. We can get
the 2D segmentation of each neuron on the sequence of EM
images with our proposed method. In the following, we will
connect the sequence of 2D segmentations to form the 3D
neuronal structures. Our method is based on the fusion of 2D
segmentations and the neuronal skeletons.

Supposing there is a given sequence of KN slices of EM
images and their 2D neuronal segmentations S = {sz

i |z ∈ Z, 1 ≤
z ≤ KN}, where z denotes the sequential index of segmentation-
s, i denotes the index of distinct segmentation within the same
slice. To reconstruct the Neui from the sequence of EM images,
we have two policies; the first method: labeling the the skeleton
of the neuron Neui in the sequence of EM images according
to the position and coordinate of neuron on the EM image. the
skeleton being denoted as li, we formulate the reconstruction
of Neui based on the sequence of segmentations S as

Neui = {sz
j|s

z
j ∩ li , ∅, 1 ≤ z ≤ KN}, (9)

Fig. 5. Fusion of segmentations and skeleton in the sequence of 2D EM
images.

where in the sequence of images, ∩ denotes the intersecting
in the 3D space and sz

j ∩ li , ∅ represents that skeleton li pass
through the region of sz

j. The segmentations that belong to the
same neuron are connected to form 3D reconstruction under
the constraint of skeleton li. The second method: utilizing
the semi-automated skeleton tracing strategy, for the sequence
of EM images, connecting the two adjacent images serially,
supposing two segmented EM images sz,sz+1 and a distinct
segmentation sz

j of sz, we need to decide the segmentation
sz+1

j belonging to the same neuron to which sz
j belongs on

slice sz+1. Let cz
j denote the geometrical centroid of sz

j, then

sz+1
j = argue

sz+1
i

{cz+1
j ∩ sz+1

i , ∅}. (10)

Finally, we connect the segmentations on each slice together
to reconstruct neurons. It should be pointed out that we only
need to manually label the start point of skeleton on the first
slice of the sequence, then the segmentations and skeleton
automatically generating interactively.

IV. Experiments

In this section, we will mainly introduce the experimental
results of segmentation and reconstruction.

A. Segmentation

In this experiment, the EM images are obtained from portion
of the drosophila brain tissue. The tissue specimen is specially
stained to make the neuronal membrane contrast against the
other tissue. The data generating procedure is as follows: (1)
The block of stained tissue being cut into slices at thickness of
50nm by automated tap-collecting ultramicrotome(ATUM). (2)
Putting the thin slices on the wafers sequentially. (3) Imaging
on the wafers by Scanning Electron Microscopy(SEM) to
produce sequences of EM images. In order to observe the
neurons at synaptic level, specimen is imaged at resolution of
5nm × 5nm, as mentioned above, we use 2.5 million training
instances from 3 million label data to train the DCNN. By
experimenting on multiple parameters, we choose a group of
parameters that presents relatively good performance in terms
of pixel-error. The architecture of DCNN is reported in Table
I.

TABLE I
DCNN architecture

Layer Type MapsAndNeurons KernelS ize
0 input 1 map of 65 × 65 −−
1 convolutional 48 maps of 60 × 60 4 × 4
2 max-pooling 48 maps of 30 × 30 2 × 2
3 convolutional 48 maps of 28 × 28 3 × 3
4 max-pooling 48 maps of 14 × 14 2 × 2
5 convolutional 48 maps of 10 × 10 5 × 5
6 max-pooling 48 maps of 5 × 5 2 × 2
7 Fully-connected 250 −−
8 Fully-connected 2 −−

We let the contexture image block edge size l to be 65 and
utilize the max-pooling deep convolutional neural network to
generate the MDPM. As aforementioned, the MDPM is seg-
mented by watershed algorithm. Some results of segmentation
are illustrated in Fig. 6. To evaluate the segmentation of the
test image, usually, there are three metrics in relation to the
ground-truth:

Pixel error: as defined in section II-C2, which directly gives
the score of the pixels dissimilarity of segmentation relating
to ground truth.

Rand error: defined as 1 − Frand, where Frand represents
the F1 score of Rand index [22], which directly measures the
clusters of segmentations against the ground truth.

Warp error: metric that measures the topological disagree-
ments [23] between proposed segmentation and ground truth.

The quantized errors of the segmentation results of our
method are in the Table II.

B. Reconstruction

We firstly get the MDPM by DCNN from origin image and
then apply the marker-controlled segmentation procedure to
the MDPM for getting sequence of segmentations of neurons
on the 2D EM images. The neuronal reconstruction is on



(a) (b) (c)

Fig. 6. (a) The original EM image; (b) The membrane detection probability map; (c) The segmented image over the membrane detection probability map.

Fig. 7. Left: one slice of drosophila mushroom body; Right: segmented results.

TABLE II
quantized error of segmentation

Metric Error
Pixel − error 0.134

Warping − error 0.00573
Rand − error 0.0379

the base of neuronal segmentation. We obtained 1850 slices
generated by ATUM with thickness of 50 nanometers and
imaged under SEM, by which, we get a sequence of 1793
images with the size of 8000×8000. By using the first method
described in section III, we sparsely reconstruct a few partial
neurons(Fig. 8) from drosophila mushroom body in Fig. 7,
the 2D segmentations are extracted from 500 consecutive EM
images from the full 1793 images. we densely reconstruct
neurons by using the second method described in the section
III which is semi-automated but weakly relies on the manual
interference. The dense reconstructions (Fig. 9) come from the
500 consecutive segmented slices of the full 1793 images.

V. discussion and conclusion

The strength of deep neural network contributed much to
our approach of neuronal membrane detection. The DCNN is
trained by online back-propagation to become a very powerful
pixel-wise membrane detector with considerably high accura-
cy. The combination of DCNN and watershed enables us to
get the very fine segmentations of neurons in the EM images.
Based on the segmentation, 3D reconstruction is implemented
by automated and semi-automated method. Our approach gives
a full procedure for reconstruction with high flexibility and
feasibility.

We applied our method to the reconstruction of neurons in
the drosophila mushroom body. We believe that the procedure
of our proposed method can be a general method for the
reconstruction of neuronal networks.

Our reconstruction method fully depends on the sequence of
image segmentation, despite the strength of DCNN, the image
segmentation is yet not solved perfectly. There is still much
work to be done about the accuracy and efficiency.

Despite the high performance of GPU implementation of
deep convolutional neural networks, the pixel-wise recognition



Fig. 8. Visualization of the sparse reconstruction of drosophila by semi-automated method.

Fig. 9. Visualization of the dense reconstruction of drosophila by automated method.

of membrane is still very time-consuming. What’s more, the
connection method of segmentation for reconstruction is also
not of high accuracy. There is much work for improving the
overall 3D reconstruction accuracy in the future.
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